
An XML-based Cross-Language Framework

Arno Puder

San Francisco State University

Computer Science Department

1600 Holloway Avenue

San Francisco, CA 94132

arno@sfsu.edu

Abstract. We introduce XMLVM, a Turing complete XML-based pro-

gramming language based on a stack-based, virtual machine. We show

how XMLVM can automatically be created from Java class-files and

.NET’s Intermediate Language. While the programmer is never directly

exposed to XMLVM, we provide tools based on XMLVM for tasks such

as cross-language functional testing or code migration.

Overview

XMLVM is a Turing complete, fine-granular XML-based programming language.
XMLVM uses a generalized virtual machine model that allows us to translate
Java byte code as well as .NET executables (which are also based on a virtual
machine concept) to XMLVM. We therefore manage to embrace both the Java
world as well as the .NET world with one XML-based language. Every instruc-
tion understood by the virtual machine, there is one XML-tag that represents
this instruction. XMLVM is based on a fine-granular syntax which means that
the complete syntax of XMLVM is accessible to an XML-parser.

To facilitate the generation of XMLVM, we have implemented various trans-
lators. The idea is to hide the complexities of XMLVM from the programmer
who will only “see” his or her high-level programming language. We have writ-
ten two translators: the first one converts a Java class file to XMLVM and the
second one converts a .NET Intermediate Language program to XMLVM (see
Figure 1).

XMLVM programs can readily be mapped to other high-level programming
languages. This translation can easily be done by an XSL-stylesheet that maps
XMLVM-instructions one-to-one to the target language. Since XMLVM is based
on a simple stack-based machine, we simply mimic a stack-machine in the target
language. For those high-level languages that do not support a goto-statement
(such as JavaScript), we can remove those goto-statements and replace them
with a combination of a loop- and multi-level exit-statements.

Applications

Middleware defines a software layer between the network and the application to
facilitate the development of distributed applications. Any middleware technol-



Fig. 1. Generating XMLVM.

ogy supports different programming languages. The way XMLVM is used here is
to translate functional tests written in Java to XMLVM and then mapping XM-
LVM to C++. Two XMLVM transformations – both written as XSL-stylesheets
– are applied to change the API. The first transformation adapts the CORBA-
API. The second transformation does the same except for the JUnit API. The
resulting XMLVM program is then translated to C++ by a third stylesheet.

The transformation chain explained above works well for many functional
tests that ordinarily would have to be written for all languages supported by
CORBA. The resulting C++ functional tests are not efficient from a runtime
perspective (due to the overhead of mimicking a stack-machine), but perfor-
mance is not important for functional testing. Further details can be found in
[2].

We have used XMLVM in another project called XML11, which is an ab-
stract windowing protocol inspired by the X11 protocol developed by MIT. In
order to reduce latencies for interactive applications, XML11 also includes a
code migration framework that allows to migrate part of the business logic to
the end-device. We use XMLVM to translate the business logic to a language
that is supported by the end-device, which is done by applying an appropriate
XSL-stylesheet to the XMLVM program. E.g., for web browsers the business
logic is translated to JavaScript which is universally supported by all major
browsers including Microsoft’s Internet Explorer. Further details can be found
in [1].

References

1. Arno Puder. XML11 - An Abstract Windowing Protocol. PPPJ, 2005.

2. Arno Puder and Limei Wang. Cross-Language Functional Testing for Middleware.

In TestCom, LNCS, Montreal, 2005. Springer.


