
Please do not remove this page

The impact of software development strategies
on project and structural software attributes in
SOA
Perepletchikov, Mikhail; Ryan, Caspar; Tari, Zahir
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/The-impact-of-software-development-strategies/9921858914301341/fi
lesAndLinks?index=0

Perepletchikov, M., Ryan, C., & Tari, Z. (2005). The impact of software development strategies on project
and structural software attributes in SOA. On the Move to Meaningful Internet Systems 2005: OTM
Workshops. https://doi.org/10.1007/11575863

Published Version: https://doi.org/10.1007/11575863

Document Version: Accepted Manuscript

Downloaded On 2024/03/19 20:56:01 +1100
© Springer-Verlag Berlin Heidelberg 2005
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/The-impact-of-software-development-strategies/9921858914301341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/The-impact-of-software-development-strategies/9921858914301341
http://doi.org/doi:https://doi.org/10.1007/11575863
https://researchrepository.rmit.edu.au

The Impact of Software Development Strategies on

Project and Structural Software Attributes in SOA

Mikhail Perepletchikov, Caspar Ryan, and Zahir Tari

RMIT University

School of Computer Science and Informational Technology
{mikhailp, caspar, zahirt}@cs.rmit.edu.au

Abstract. Service-Oriented Architecture (SOA) is a promising approach for

developing integrated enterprise applications. Although the architectural as-

pects of SOA have been investigated in research and industry literature, the ac-

tual process of designing and implementing services in SOA is not well under-

stood. The goal of this paper is to identify tasks needed for successful design

and implementation of services, and investigate their effect on the project and

structural software attributes in the context of SOA. This facilitates the specifi-

cation of guidelines for decreasing the required development effort and capital

cost of the SOA projects, and improving the structural software attributes of

service implementations. The tasks are identified in the context of top-down,

bottom-up and meet-in-the-middle software development strategies.

1 Introduction

Service-Oriented Architecture (SOA) is an approach for developing enterprise soft-

ware systems that employ services. SOA-based systems are defined as a collection of

interacting services that offer well-defined interfaces to their potential users, where a

service represents a function that is self-contained, and does not depend on the context

or state of other services [7].

Although the notion of a “service” is becoming increasingly popular as a means for

developing large-scale distributed systems, no systematic, methodological approach to

service-oriented software development exists to date [11]. Furthermore, there are

conflicting opinions as to which development strategy should be used when develop-

ing SOA-based systems. These strategies include top-down, bottom-up, and meet-in-

the-middle development approaches, and even though such approaches are applicable

to the development of informational systems in general [1], this paper concentrates on

additional constraints and properties introduced by SOA.

The contribution of this paper is as follows. Firstly, the general tasks for designing

and implementing SOA-based applications were identified based on a critical analysis

of related literature [2, 3, 6, 7, 13, 15-17], communication with industry practitioners

and researches [16, 17], and the authors’ practical experience with SOA development.

Secondly, the impact of these tasks on project and structural software attributes were

E72964
Typewritten Text

E72964
Typewritten Text
Citation:Perepletchikov, M, Ryan, C and Tari, Z 2005, 'The impact of software development strategies on projectand structural software attributes in SOA', in R. Meersman et al. (ed.) On the Move to MeaningfulInternet Systems 2005: OTM Workshops, Agia Napa, Cyprus, 11 October 2005.

E72964
Typewritten Text

E72964
Typewritten Text

E72964
Typewritten Text

E72964
Typewritten Text

analytically determined. Finally, initial guidelines for improving the internal structure

of services while decreasing project costs were specified.

The emphasis of this paper is on the design and implementation phases of SOA de-

velopment rather than enterprise architecture or business modeling. As such, it con-

cerns issues related to the transition from business process models to the implementa-

tion of services in software. This lays a foundation for further study of methodological

aspects covering design and implementation of SOA-based systems. In addition, the

paper briefly discusses the relationship between structural software attributes and

software quality attributes. Such relationship will be formalised and evaluated in fu-

ture work.

The rest of the paper is organised as follows: Section 2 presents background mate-

rial including important concepts of SOA, descriptions of software and project attrib-

utes under investigation, and an overview of top-down, bottom-up, and meet-in-the-

middle development strategies. This facilitates identification of development tasks and

their impact on project and structural software attributes in the context of SOA, and

the provision of guidelines for successful design and implementation of services in

SOA as described in Section 3. Finally, Section 4 closes with conclusions and a dis-

cussion of future work.

2 Important Characteristics of SOA

SOA is an abstract concept of how software services should be composed and orches-

trated. A conceptual model of SOA consists of two primary parties: a service provider,

who publishes a service description and realises the service; and a service consumer,

who finds the service description in a registry and invokes the service [2].

The notion of a service is similar to that of a component, in that services, much like

components, are independent building blocks that collectively represent an application

[10]. However, services are coarser grained than components; and they exhibit com-

plete autonomy from other services, meaning that each service is implemented sepa-

rately from other services resulting in a loosely coupled system [7]. In addition, ser-

vices can be composed into composite services or business processes, hence they can

be reused in a context not known at the design time.

For the purpose of this paper, SOA is defined as a software development paradigm

that is based on a concept of encapsulating application logic within the independent,

loosely coupled, business-aligned services that interact via messages using standard

communication protocols. This particular definition was chosen since it captures the

main essence of SOA from both, representational (architectural) and development

perspectives.

2.1 Software Engineering Attributes in the Context of SOA

Since the specific software engineering attributes for SOA are yet to be defined, this

paper discusses how conventional software engineering attributes can be applied in the

context of SOA-based design and implementation. A software attribute of a product is

any feature or property of the product. The attributes used in this paper can be catego-

rised as: project based attributes (including capital cost and development effort), and

software attributes (divided into internal structural attributes and external quality

attributes).

• Project based attributes

In traditional SE, the dominant part of the overall project cost is usually the devel-

opment effort dictated by the estimated size of the final software product [8]. This is

not necessarily true for service-oriented development since one of the advantages of

SOA is the ability to develop new applications by repurposing pre-existing services,

or purchasing services from software vendors. Consequently, development effort

might be low when the services are predominantly repurposed or purchased, whereas

the actual capital cost can be high depending on the cost of the purchased services.

For the purpose of this paper, capital cost is analysed separately from development

effort, where capital cost represents upfront project costs including: equipment, devel-

opment tools, and training costs. Development effort represents ongoing costs

throughout Software Development Life Cycle.

• Internal structural software attributes

The paper investigates the impact of development strategies and their associated

activities and tasks on the widely-used [4] internal structural software attributes of

coupling, cohesion, and complexity.

In line with its common usage, coupling is defined as a measure of the extent to

which interdependencies exist between implementation of services in software. Cohe-

sion is defined as the extent to which elements of a service contribute to one and only

one task. Finally, complexity is defined in terms of the internal work performed by a

service. In general, low coupling and complexity, and high cohesion are desired [4].

Structural software attributes do not describe visible quality of a product, rather,

they have a causal impact on external quality attributes. Identifying guidelines for

decreasing complexity and coupling, and increasing cohesion of services ultimately

aims to positively influence external quality attributes.

• External quality attributes

According to the quality model specified in the ISO/IEC 9126-1:2001 standard [9],

there are six main external software quality attributes: functionality, reliability, effi-

ciency, usability, maintainability, and portability.

The structural software attributes combined with various factors influence the ex-

ternal quality attributes, therefore a predictive model for estimating a particular quality

attribute can be established in the form of:

Quality attribute = f (structural attributes, other factors)

The external quality attributes are introduced in this paper for the purpose of estab-

lishing a connection between structural properties of services and quality of SOA-

based systems. The derivation of formal, measurable models for each of the external

quality attribute will be described in future work.

2.2 SOA Development Strategies

There are three main strategies used for developing SOA-based enterprise applica-

tions: top-down, bottom-up, and meet-in-the-middle.

A top-down strategy starts with the requirements and business process models and

refines them in a stepwise fashion down to a software implementation. The top-down

development is often referred to as domain decomposition, which consists of the de-

composition of the business domain into its functional areas and subsystems [2]. In the

SOA-based top-down development, business process models provide a blueprint for

the identification of services. Services are than modeled and realised by service pro-

viders, and consumed by service consumers.

A top-down development strategy is arguably more interoperable than a bottom-up

approach since avoiding language-specific types and starting with interface and mes-

sage definitions can lead to a much higher likelihood of interoperability [12]. The

drawback of top-down approach is that, in its full generality, it can only be applied to

systems developed entirely from scratch [1].

A bottom-up strategy, in contrast, originates from the technical basis and tries to

work upwards to the requirements and business process models by building services

on a top of existing (legacy) systems. In bottom-up development, software engineers

analyse and leverage APIs, transactions, and modules from legacy systems such as

mainframe or ERP applications. In some cases, componentisation of the legacy sys-

tems is needed to re-modularise the existing assets to support service functionality [2].

Most distributed information systems these days involve a component of bottom-up

development [1].

A bottom-up strategy includes two different activities. Firstly, developers can add a

layer of services on top of legacy systems by creating wrappers and adaptors for leg-

acy software. Secondly, legacy systems can be refactored in such a way that the exter-

nal behavior of the code remains the same, whereas the internal structure becomes SO.

A meet-in-the-middle strategy is essentially a combination of top-down and bot-

tom-up techniques. Currently, the techniques for meet-in-the-middle approach are not

well understood. To the knowledge of the authors, the only well-described technique

is a goal-service modeling proposed by Arsanjani [2].

In this technique, high-level business process functionality is externalised for

coarse-grained services. Examining the existing legacy functionality and deciding how

to create adaptors and wrappers allows specifying finer-grained services. Finally, a

cross-sectional approach can be applied in order to reduce the number of candidate

services that have already been identified. This technique also ties services to goals,

performance indicators, and metrics.

3 The Impact of Development Strategies on Software Attributes

In order to facilitate investigation of the impact of development strategies on project

and structural software attributes, the top-down, bottom-up, and meet-in-the-middle

strategies have been divided into a number of general activities, where an activity

contains a number of tasks for designing and implementing services in SOA-based

applications. Tables 1-3 show the development strategies together with the associated

activities and tasks, where a grouping of related tasks is shown in a separate cell

within the table.

The impact of the identified tasks on the project and structural software attributes

was analysed, and tasks have been grouped together based on their influence on a

particular attribute under investigation. The up (
↑
) and down (↓) arrows are used to

indicate the impact of a particular task on the attributes under investigation. The

and symbols are used to indicate whether such impact is positive or negative in

regards to a particular attribute.

In situations where a task influences attribute/s other than the one it was originally

intended for, the impact of this task on such attribute/s is shown in brackets together

with arrows indicating negative/positive influence. For example, the ‘provide training’

task in the “Building services” activity of the top-down strategy directly influences the

capital cost attribute thus having following indicator associated with it - ↑ (Develop-

ment Effort ↓). This states that the ‘provide training’ task will increase capital cost,

but at the same time decrease development effort.

Any given combination of tasks constitutes a guideline that can be selected based

on the requirements of the project. Note that the aim of this paper is not to identify a

concrete development methodology, but to investigate the impact of tasks on project

and software attributes, and establish initial guidelines for SOA-based design and

implementation. These guidelines are presented in the following sub-sections.

3.1 Guidelines for Top-down Development

There are various activities involved in realising services in a top-down approach.

Such activities include building services from scratch, repurposing existing services,

and purchasing services.

The crucial task of building services from scratch is to identify the smallest units of

software (service components) that can be reused in different contexts. Service com-

ponents should be then composed into coarser-grained composite services or business

processes. By structuring the system as a set of highly-reusable, loosely-coupled ser-

vices, companies can increase Return on Investment (ROI) due to decreased mainte-

nance costs and ability to repurpose services in future projects.

Also, organisations should purchase Enterprise Service Bus (ESB) implementa-

tions to facilitate connectivity, routing of messages, etc. In addition, Integrated

Services Environments (ISE) should be used to design, configure, test, and debug

business processes. Although these products might increase the capital cost of the

project, they will reduce the required development effort as shown in Table 1.

To facilitate the future repurposing of services, an enterprise should incorporate a

private service registry to centralise published service descriptions into one accessible

resource. When repurposing services, pre-existing services should be integrated into

the system using integration/composition code, the services themselves should not be

modified. This will save time on testing since there is no need to conduct unit tests on

the pre-existing services, only integration tests are required. Finally, prior to making a

decision to purchase services, an enterprise should conduct a Cost-Benefit Analysis to

evaluate pros and cons of purchasing services instead of building them in-house.

Table 1. The impact of top-down strategy on the project and structural software attributes

Project Structural Software Attributes

Activities

Capital Cost ↓
 (CC) ↑

Devel. Effort ↓
 (DE) ↑

Complexity ↓
 (C1) ↑

Coupling ↓
 (C2) ↑

Cohesion ↑ (C3)
↓

Building

services

- Have existing

team of devel-

opers
↓

- Provide

training ↑

(DE
↓
)

- Purchase

standardized

middleware and

development

tools (eg. ESB) ↑ (DE
↓
)

- Establish

standard docu-

mentation/

reference

models ↑ (DE
↓
)

- Maintain

private registry

of services ↑

(ROI ↑)

- Build itera-

tively
↓

- Use mature

software

development

processes
↓

(CC ↑)

- Group

development

teams around

logical busi-

ness tasks
↓

- Build for

reuse ↑ (ROI ↑

C2
↓
)

- Apply MDA

approach to

decompose

business

processes (BP)

into fine-

grained ser-

vice compo-

nents
↓
 (DE

↓
)

- Implement

service com-

ponents using

principles of

OO
↓

- Decompose

highly-

complex

components
↓

- Encapsulate

global data in

a dedicated

service
↓

- Identify the

smallest units

of software that

can be reused in

different con-

texts (service

components)
↓

- Couple ser-

vice compo-

nents and

services

through inter-

faces only, not

through imple-

mentation
↓

- Specify

simple, concise

interfaces
↓

- Avoid embed-

ding workflow

aspects within

services imple-

mentation
↓

- Develop

fine-grained

service com-

ponents ↑

- Compose

service com-

ponents into

composite

services only

if resulting

service repre-

sents a con-

crete business

function ↑

- Avoid

embedding

application

policies such

as security,

SLAs, and

QoS within

services

themselves ↑

Repur-

posing

services

- Hire a busi-

ness modeling

expert to iden-

tify existing

services that

can be reused in

new application ↑ (DE
↓
)

- Utilise exist-

ing middleware

and develop-

ment tools
↓

- Reuse preex-

isting services

identified

from private

registry
↓

- Embed

composition

code neces-

sary to support

new capabili-

ties into BPs,

not in indi-

vidual ser-

vices
↓

N/A (the

internal

structure of

services

remains

intact)

N/A (the inter-

nal structure of

services re-

mains intact)

N/A (the

internal

structure of

services

remains

intact)

Purchas-

ing

services

- Purchase

services from

known vendors ↑ (DE
↓
)

- Perform

adequate Cost-

Benefit Analy-

sis to evaluate

the costs and

benefits of

developing

/purchasing

services ↑ (DE
↓
)

- Develop only

specific

services,

purchase the

rest
↓

- Purchase

fine-grained

services, but

build coarse

services in-

house
↓

- Repurpose if

possible
↓

N/A (we

cannot influ-

ence the

internal

structure of

purchased

services)

N/A (we cannot

influence the

internal struc-

ture of pur-

chased ser-

vices)

N/A (we

cannot influ-

ence the

internal

structure of

purchased

services)

3.2 Guidelines for Bottom-up Development

An important task in bottom-up development is to use software quality metrics to

measure the structural design properties of legacy systems in order to decide whether

it is best to refactor the system, or simply add a layer of services to it. In future work,

the suitability of existing structural complexity measures will be evaluated, and a

threshold for acceptable level of complexity will be established. Also, it is important

to take business process models into account when determining required services.

When refactoring legacy systems, it is advisable to start small, focusing on

strongly-coupled and highly-complex modules. This will allow measuring ROI before

making a large commitment, and gain experience before taking on larger problems. To

reduce development cost when refactoring existing systems, an organization should

make an effort to employ people who were involved in the architecture, design, and

implementation of such systems as shown in Table 2. To reduce development cost

when adding a layer of services to legacy systems, companies should consider pur-

chasing commercial off-the-shelf software service adaptors/wrappers. In addition, the

existing resources should be utilised as much as possible.

The main factor influencing the internal structural properties of services in bottom-

up development is the granularity of services. Developers should make an effort to

develop fine-grained services, consequently increasing cohesion, and decreasing com-

plexity and coupling.

3.3 Guidelines for Meet-in-the-middle Development

The bottom-up approach can lead to poor business-service abstractions since the de-

sign is usually dictated by the existing IT environment, rather than business needs. On

the other hand, a top-down strategy might cause insufficient, non-functional require-

ment characteristics, and provide an impedance mismatch on the service and compo-

nent layer [17]. Therefore, a meet-in-the-middle strategy is highly recommended.

The meet-in-the-middle is potentially the most expensive approach, but should re-

sult in a more-complete set of business-aligned services, consequently increasing ROI

as shown in Table 3. The tasks for improving structural software properties in a meet-

in-the-middle development include a combination of previously-described guidelines

for top-down and bottom-up software development strategies.

3.4 Conflicting Factors

There are a number of conflicting factors that negatively influence some of the attrib-

utes, while contributing positively to others. Such factors introduce trade-offs between

project cost and software quality, hence they should be carefully analysed by manag-

ers and software engineers in order to decide on a particular course of action.

Table 2. The impact of bottom-up strategy on the project and structural software attributes

Table 3. The impact of meet-in-the-middle strategy on the software attributes

Project Structural Software Attributes

Activities

Capital Cost ↓
 (CC) ↑

Devel. Effort ↓
 (DE) ↑

Complexity ↓
 (C1) ↑

Coupling ↓
(C2) ↑

Cohesion ↑ (C3)
↓

Refac-

toring

legacy

systems

- Employ

people who

were involved

in the architec-

ture /design of

legacy systems ↑ (DE
↓
)

- Purchase

utility (general-

purpose) ser-

vices ↑ (DE
↓
)

- Maximise use

of existing

resources (eg.

DBs)
↓

- Refactor itera-

tively
↓

- Focus on

strongly-coupled

and highly com-

plex modules
↓

(C1
↓
 C2

↓
 C3 ↑)

- Purchase service

adapters for

modules that are

loosely-coupled

and highly cohe-

sive (no refactor-

ing needed)
↓

(CC ↑)

- Share com-

plexity across

refactored

service com-

ponents
↓

- Remove

implementa-

tion coupling

by ensuring

that refac-

tored mod-

ules and

modules

with service

adaptors

communi-

cate strictly

through the

interfaces
↓

- Refactor

existing

modules into

fine-grained

service

components ↑

Adding a

layer of

services

to legacy

systems

- Employ

people who

were involved

in the architec-

ture /design of

legacy systems ↑ (DE
↓
)

- Use COTS

service adaptors ↑ (DE
↓
)

- Maximise use

of existing

resources
↓

- Develop coarse-

grained services
↓

(C1 ↑ C2 ↑ C3
↓
)

- Establish ESB

and incrementally

add services to it
↓

- Remove de-

pendencies be-

tween systems that

share infrastruc-

ture ↑ (C1
↓
 C2

↓
)

- Legacy

systems

should interact

only through

service layer
↓

- Avoid

combining

functionality

from differ-

ent legacy

systems into

one service
↓

- Add fine-

grained

services ↑

Project Structural Software Attributes

Activities

Capital Cost ↓
 (CC) ↑

Devel. Effort ↓
 (DE) ↑

Complexity ↓
 (C1) ↑

Coupling ↓
(C2) ↑

Cohesion ↑ (C3)
↓

Adding a

layer of

services

to legacy

systems

- Employ people

who were in-

volved in the

architecture/

design of legacy

systems ↑ (DE
↓
)

- Establish

standard docu-

mentation mod-

els ↑ (DE
↓
)

- Maximise use

of existing

resources
↓

- Examine legacy

systems to de-

termine services

that can be

developed by

externalising

existing func-

tionality
↓

- Apply cross-

sectional ap-

proach [2] to cut

down the number

of candidate

services
↓

- Combination

of top-down

and bottom-up

approaches

- Combina-

tion of top-

down and

bottom-up

approaches

- Combina-

tion of top-

down and

bottom-up

approaches

Two major conflicting factors were identified: Firstly, the build for reuse task in

the “Building services” activity of the top-down strategy results in higher development

effort, but at the same increases ROI and improves implementation-level coupling of

services as shown in Table 1. Hence, a trade-off between increased reusability and

higher development cost can be observed. This is due to the fact that building a reus-

able unit (service) requires three to five times the effort needed to develop a unit (ser-

vice) for one specific purpose [5]. On the other hand, highly-reusable services can

decrease future development costs, consequently increasing ROI. Also, highly-

reusable services will exhibit low coupling since they are built as totally independent

software units. When building for reuse, project managers should consider these is-

sues, so that an informed decision can be made regarding development for reuse.

Secondly, the granularity of services influences a number of attributes. For exam-

ple, developing coarse-grained services when adding a layer of services to legacy

systems will decrease the development efforts since it is easier for developers to gen-

erailise existing functionality into coarse-grained service interfaces. Also, coarse-

grained services can improve network performance since they require less communi-

cation than fine-grained services. On the other hand, creating coarse-grained services

introduces increased coupling and decreased cohesion [14], resulting in lower system

quality in terms of maintainability, reliability, and efficiency. Therefore, project man-

agers should make a trade-off in regards to expected granularity of services based on

the particular project constraints.

4 Conclusions and Future Work

This paper has identified general tasks for the design and implementation phases of

SOA-based development in the context of top-down, bottom-up, and meet-in-the-

middle strategies. The impact of such tasks on project and structural software attrib-

utes has been qualitatively analysed. The tasks were combined into general guidelines

for improving the internal structure of SOA-based software, and decreasing capital

cost and development effort. Although the guidelines presented in this paper have not

been empirically evaluated, they could be used by project managers and software

engineers in order to determine a suitable development approach given particular

quality requirements, project constraints, and application types.

To formalise findings presented in this paper, a suite of SOA-oriented metrics for

measuring and quantifying project and software quality attributes will be identified in

future work. Such metrics will be applied to the data collected from available SOA-

based projects, consequently facilitating an empirical evaluation of the presented

guidelines.

In addition, the issues discussed in the paper should facilitate future research into

design and implementation of services in SOA. For example, the paper described two

of the main issues related to SOA-based development that need to be investigated in

future work: i) can services be made sufficiently independent so as to be reused in

entirely different applications, whilst minimising development effort?; and ii) what is

the optimal granularity of services?

Finally, the recommendations for directly influencing external quality attributes

during the development will be provided in future work. For example, to increase

efficiency, an organisation could develop/purchase service-oriented messaging back-

bone to communicate in formats other than XML since XML parsing and manipula-

tion are very resource consuming.

Acknowledgement: This project is funded by the ARC (Australian Research Coun-

cil), under Linkage scheme no. LP0455234.

References

[1] Alonso, G., et al., Web Services: Concepts, Architectures and Applications. 2004, Heidel-

berg, Germany: Springer-Verlag.

[2] Arsanjani, A., Service-oriented modeling and architecture: how to identify, specify, and

realize services for your SOA. 2004, IBM - whitepaper.

 ftp://www6.software.ibm.com/software/developer/library/ws-soa-design1.pdf

[3] Barry, D.K., Web services and service-oriented architectures: the savvy manager's guide.

2003, San Francisco, CA: Morgan Kaufmann; Elsevier Science.

[4] Briand, L.C. and J. Wust, Modeling development effort in object-oriented systems using

design properties. IEEE Transactions on Software Engineering, 2001. 27(11): p. 963-986.

[5] Crnkovic, I. Component-based Software Engineering. in 25th International Conference on

Information Technology Interfaces. 2003. Cavtat, Croatia.

[6] Endrei, M., et al., Patterns: Service-Oriented Architecture and Web Services. 2004: IBM

Redbooks.

[7] Erl, T., Service-Oriented Architecture: a field guide to integrating XML and Web services.

2004, Upper Saddle River, NJ: Prentice Hall PTR.

[8] Fenton, N.E. and M. Neil, Software Metrics: Roadmap, in Future of Software Engineering,

A. Finkelstein, Editor. 2000, ACM Press.

[9] ISO/IEC, 9126-1:2001 Software Engineering: Product quality - Quality model. 2001.

[10] Kotonya, G., et al. A service model for component-based development. in 30th

EUROMICRO Conference. 2004. Rennes, France.

[11] Kruger, I.H. and R. Mathew. Systematic development and exploration of service-oriented

software architectures. in Fourth Working IEEE/IFIP Conference on Software Architecture.

2004. Oslo, Norway.

[12] Lehmann, M., Deploying large-scale interoperable Web Services infrastructures, in Web

Services Journal. 2005. p. 10-15.

[13] Papazoglou, M.P. Service-Oriented Computing: concepts, characteristics and directions.

in International Conference on Web Information Systems Engineering. 2003. Roma, Italy.

[14] Perepletchikov, M., C. Ryan, and K. Frampton. Comparing the Impact of Service-Oriented

and Object-Oriented Paradigms on the Structural Properties of Software. in Second Interna-

tional Workshop on Modeling Inter-Organizational Systems (MIOS'05). 2005. Ayia Napa,

Cyprus.

[15] Singh, M.P. and M.N. Huhns, Service-Oriented Computing: Semantics, Processes,

Agents. 2005, West Sussex, England: John Wiley & Sons.

[16] Yang, J., M.P. Papazoglou, and B. Orriens, Service component: a mechanism for Web

Service composition reuse and specialization. Journal of Integrated Design and Process Sci-

ence, 2004. 7(4): p. 1-18.

[17] Zimmermann, O., P. Krogdahl, and C. Gee, Elements of Service-Oriented Analysis and

Design: an interdisciplinary modeling approach for SOA projects. 2004, IBM - whitepaper.

http://www-128.ibm.com/developerworks/library/ws-soad1/

