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Abstract. While refinement is at the heart of the B Method, so far no
automatic refinement checker has been developed for it. In this paper we
present a refinement checking algorithm and implementation for B. It is
based on using an operational semantics of B, obtained in practice by the
ProB animator. The refinement checker has been integrated into ProB
toolset and we present various case studies and empirical results in the
paper, showing the algorithm to be surprisingly effective. The algorithm
checks that a refinement preserves the trace properties of a specification.
We also compare our tool against the refinement checker FDR for CSP
and discuss an extension for singleton failure refinement.
Keywords: B-Method, Tool Support, Refinement Checking, Model Check-
ing, Animation, Logic Programming, Constraints.

1 Introduction

The B-method is a well-established theory and methodology for the rigorous
development of computer systems and programs. B was originally devised by
Abrial [1] and has been applied to a wide range of safety-critical applications.

B is based on the notion of abstract machine. The variables of an abstract
machine are typed using set theoretic constructs such as sets, relations and
functions. Each machine has a certain number of operations that can update the
variables of the machine, as well as an invariant specified using predicate logic.

Refinement is a key concept in the B-Method. It allows one to start from
a high-level specification and then gradually refine it into an implementation,
which can then be automatically translated into executable code. While there is
tool support for proving refinement via semi-automatic proof (within Atelier-B
[24], the B-Toolkit [19], and now also Click’n Prove[3]), there has been up to now
no automatic refinement checker in the style of FDR [12] for CSP [15, 21]. The
proof-based approach to refinement checking requires that a gluing invariant be
provided. In contrast, with our automatic approach no gluing invariant needs
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to be provided. The proof based approach to refinement is a labour intensive
activity. Indeed, when a refinement does not hold it may take a while for a B
user to realise that the proof obligations cannot be proven, resulting in a lot of
wasted effort. In this paper we wish to speed up B development time by providing
an automatic refinement checker that can be used to locate errors before any
formal refinement proof is attempted. In some cases the refinement checker can
actually be used as an alternative to the prover,1 but in general the method
presented in this paper is complementary to the traditional B tools.

In this paper we formalise the notion of refinement checking and present an
algorithm which is at the heart of an automatic refinement checker. This new
refinement checker has been implemented and integrated within the ProB val-
idation tool for the B method [16]. At the heart of ProB is a fully automatic
animator implemented mainly in SICStus Prolog. The undecidability of animat-
ing B is overcome in ProB by restricting animation to finite sets and integer
ranges, while efficiency is achieved by delaying the enumeration of variables as
long as possible. ProB comprises various visualization facilities [18] to display
the state space in a user-friendly way. ProB also contains a model checker [9]
which tries to find a sequence of operations that, starting from an initial state,
leads to a state which violates the invariant (or exhibits some other error, such
as deadlocking, assertion violations, or abort conditions). To compute the set of
reachable states of a B machine the model checker makes use of the same under-
lying interpreter as the animator. In fact, the ProB interpreter can be viewed as
providing the operational semantics of a B machine. In this paper we will re-use
the same ProB interpreter as the foundation of the refinement checker. In the
case where a refinement is violated, the refinement checker displays a sequence
of operations that can be performed by the “refinement” machine but not by
the specification.

2 Scheduler Example

In this section we present a small example of a specification and its refinement
in B to help motivate the work. Later we will be more precise about the meaning
of refinement and refinement checking. Familiarity with B notation is assumed
in the remainder of the paper.

Figure 1 presents a B specification (Scheduler0) of a system for scheduling
processes on a single resource. In this model, each process has a state which is
either idle, ready to become active or active whereby it controls the resource.
The current set of processes is modelled by the variable proc and the pst variable
maps each current process to a state. There is a further invariant stating that
there should be no more than one active process (pst−1[{active}], the image
of {active} under the inverse of pst, represents the set of active processes).
Scheduler0 contains events for creating new processes, making a process ready,
allowing a process to take control of the resource (enter) and allowing a process
1 Namely when all sets and integer ranges are already finite to start with and do not

have to be reduced to make animation by ProB feasible.
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to relinquish control (leave). Each of these events is appropriately guarded by a
WHEN clause2. In particular, the enter event is enabled for a process p when p
is ready and no other process is active.

MACHINE Scheduler0
SETS

PROC;
STATE = {idle, ready, active}

VARIABLES proc, pst
INVARIANT

proc ∈ P(PROC) ∧
pst ∈ proc→ STATE ∧
card(pst−1[{active}]) ≤ 1

INITIALISATION proc, pst := {}, {}

OPERATIONS
new(p : PROC) =̂

WHEN
p ∈ PROC \ proc

THEN
pst(p) := idle ‖
proc := proc ∪ {p}

END;

ready(p : PROC) =̂
WHEN

pst(p) = idle
THEN

pst(p) := ready
END;

enter(p : PROC) =̂
WHEN

pst(p) = ready ∧
pst−1[{active}] = {}

THEN
pst(p) := active

END;

leave(p : PROC) =̂
WHEN

pst(p) = active
THEN

pst(p) := idle
END

Fig. 1. Scheduler specification

Figure 2 presents a B refinement of Scheduler0. In this refinement, instead of
mapping each current process to a state, we have a pool of idle processes idleset
and a queue of ready processes readyq. We also have a flag indicating whether
or not there is a process currently active (activef). When activef is true, the
identity of the currently active process is stored in activep. The queue of ready
processes means that processes will become active in the order in which they
became ready3. Now the enter event is enabled for process p when p is the first
element in the queue and there is no active process.

We expect that Scheduler1 is a valid refinement of Scheduler0 since any
sequence of operations in Scheduler0 should also be possible in Scheduler1.
Refinement checking of Scheduler0 against Scheduler1 with our tool for a max-
imum of three processes (PROC = {p1, p2, p3}) finds no counterexamples. If
we were to weaken the guard of the refined enter event, removing the clause
activef = FALSE, this weaker refinement would allow more than one process
to take control of the single resource. In terms of operation sequences, it would

2 WHEN is the the Event B syntax for the SELECT clause of classical B.
3 In the ready event, readyq ← p represents appending of p to the end of readyq.

3



MACHINE Scheduler1
REFINES Scheduler0
VARIABLES

proc, idleset, readyq, activep, activef
INVARIANT

idleset ∈ P(PROC) ∧
readyq ∈ seq(PROC) ∧
activep ∈ PROC ∧
activef ∈ BOOL

INITIALISATION
proc := {} || readyq := [ ] ||
activep :∈ PROC ||
activef := FALSE ||
idleset := {}

OPERATIONS

new(p : PROC) =̂
WHEN

p ∈ PROC \ proc
THEN

idleset := idleset ∪ {p} ‖
proc := proc ∪ {p}

END;

ready(p : PROC) =̂
WHEN

p ∈ idleset
THEN

readyq := readyq ← p ||
idleset := idleset \ {p}

END;

enter(p : PROC) =̂
WHEN

readyq 6= [ ] ∧
p = first(readyq) ∧
activef = FALSE

THEN
activep := p ||
readyq := tail(readyq) ||
activef := TRUE

END;

leave(p : PROC) =̂
WHEN

activef = TRUE ∧
p = activep

THEN
idleset := idleset ∪ {p} ||
activef := FALSE

END

Fig. 2. Refinement of the scheduler

allow sequences in the refinement in which, for example, enter(p1) is followed by
enter(p2) without leave(p1) occurring in between. It would thus be an incorrect
refinement. The following counterexample is generated by ProB for the incor-
rect refinement: new(p1), new(p2), ready(p1), ready(p2), enter(p1), enter(p2).
This counterexample discovered by ProB is a trace allowed by the incorrect re-
finement that is not a trace of the specification Scheduler0.

3 Refinement Checking for B

In this section we outline the B notion of refinement. We also outline the trace
behaviour of B machines and trace refinement for B machines and relate it to
standard B refinement.

Classical B distinguishes between an enabling condition (guard) and a pre-
condition. ProB supports guards but not preconditions4. If we ignore precon-
4 The B syntax supported by ProB allows preconditions, but they are treated as

guards. The more recent Event B approach [4] supports guards but not preconditions.
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ditions but allow for guards, then all B operations have a normal form defined
by a predicate P relating before state v and after state v′ as follows [1, Chapter
6]: ANY v′ WHERE P (v, v′) THEN v := v′ END.

Classical B refinement is expressed in terms of a gluing invariant which links
concrete states to abstract states. The meaning of operations in B is defined in
terms of weakest precondition formulae as are the refinement proof obligations
for B. In this paper we will find it more convenient to take a standard relational
view of operations and gluing invariants. This view is easily reconciled with the
generalised substitution notation by treating the predicate P in the normal form
for operations above as characterising a relation between before and after states.

The proof obligations for B correspond to the standard relational definition
of forward simulation.5 Let R be the gluing relation, AI and CI be the abstract
and concrete initial states respectively and AOP and COP stand for correspond-
ing abstract and concrete operations. The usual relational definition of forward
simulation is as follows [14]:

– Every initial concrete state must be related to some initial abstract state:
c ∈ CI =⇒ ∃a ∈ AI · c R a

– If states are linked and the concrete one enables an operation, then the
abstract state should enable the corresponding abstract operation and both
operations should result in states that are linked: c R a ∧ c COP c′ =⇒
∃a′ · a AOP a′ ∧ c′ R a′

The proof obligations for refinement are automatically generated from the
gluing invariant and the definitions of the abstract and concrete operations by,
e.g., AtelierB or the BToolkit. The user can then try to prove these using the
semi-automatic provers of those systems. If the proof obligations are all proven,
every execution sequence performed by the refinement machine can be matched
by the abstract machine [8]. Automatic refinement checkers work directly on the
execution sequences and try to disprove refinement by finding traces that can
be performed by the refinement machine but not by the specification. For this
we need to formalise the notions of execution sequences (traces) for B.

Traces The use of event traces to model system behaviour is well-known from
process algebra, especially CSP [15]. Although event traces are not part of the
standard semantic definitions in B, many authors have made the link between
B machines and event traces including [8, 10, 23].

For a B operation of the form X←−op(Y )=̂S, we regard execution of ope-
ration op with input value a resulting in output value b as corresponding to
the occurrence of event op.a.b. An event trace is a sequence of such events and
the behaviour of a system may be defined by a set of event traces. For exam-
ple, the following is a possible trace of the scheduler specification of Figure 1:
〈 new.p1, new.p2, ready.p1, ready.p2, enter.p1, leave.p1 〉.

The state space of a machine is defined as the cartesian product of the types
of each of the machine variables. We represent the machine variables by a vector

5 This is easy to demonstrate by using the normal form for operations characterised
by a before-after predicate and the weakest precondition rules for B.
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v. The normal form for a B operation operating on v with inputs x and outputs y
is characterised by a predicate P (x, v, v′, y). Characterising a B operation of the
form X←− op(Y ) as a predicate in this way gives rise to a labelled transition
relation on states: state s is related to state s′ by event op.a.b, denoted by
s →M

op.a.b s′, when P (a, s, s′, b) holds. This transition relation →M
e is lifted to

traces using relational composition: →M
〈〉 = ID and →M

〈e〉t = →M
e ; →M

t .
Now t is a possible trace of machine M if →M

t relates some initial state to some
state reachable through trace t: t ∈ traces(M) = ∃c, c′ · c ∈ CI ∧ c→M

t c′.

Trace Refinement Checking A machine M is a trace refinement of a machine
N if any trace of N is a trace of M , that is, any trace that is possible in the
concrete system is also possible in the abstract system. It is straightforward
to show by induction over traces that if we can exhibit a forward simulation
between M and N with some gluing relation, then M is trace refined by N . It
is known that forward simulation is not complete, i.e., there are systems related
by trace refinement for which it not possible to find a forward simulation. The
related technique of backward simulation together with forward simulation make
simulation complete [14]. A backward simulation is defined as follows:

c ∈ CI ∧ c R a =⇒ a ∈ AI

c COP c′ ∧ c′ R a′ =⇒ ∃a · c R a ∧ a AOP a′

The B tools produce proof obligations for forward simulation only. There are
cases of refinement where, although the trace behaviour of the concrete sys-
tem is more deterministic, an individual concrete operation is less deterministic
than its corresponding abstract operation. Backwards refinement is required in
such cases. Typical developments B involve the reduction of nondeterminism in
operations so that forward simulation is sufficient in most cases.

A single complete form of simulation can be defined by enriching the glu-
ing structure. Gardiner and Morgan [13] have developed a single complete sim-
ulation rule by using a predicate transformer for the gluing structure. Such
a predicate transformer characterises a function from sets of abstract states
to sets of concrete states. Refinement checking in ProB works by construct-
ing a gluing structure between the concrete and abstract states as it traverses
the state spaces of both systems. So that we have a complete method of re-
finement checking, the ProB checking algorithm constructs a gluing structure
that relates concrete states with sets of abstract states: R ∈ C ↔ P(A).
On successful completion of an exhaustive refinement checking run the con-
structed gluing structure R will relate each individual concrete initial state
to the set of abstract initial states and for each pair of corresponding con-
crete and abstract states, the following simulation condition will be satisfied:
c R as ∧ c COP c′ =⇒ ∃as′ · as AOP as′ ∧ c′ R as′. Here as and as′

represent sets of abstract states and as AOP as′ is defined as AOP [as] = as′. It
can be shown by induction over traces that this entails trace refinement, i.e., a
successful outcome of the algorithm guarantees trace refinement. Because ProB
works on finite state systems, the algorithm always terminates. Completeness of
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the algorithm is proven by demonstrating that whenever the outcome is failure,
then there is a violation of trace refinement.

4 The Algorithm

We now present an algorithm to perform refinement checking. The gluing struc-
ture discussed in the previous Section is stored in Table, and for every entry
(c, A) the algorithm checks whether all operations of the concrete state c can be
matched by some abstract state in A; if not, a counter example has been found,
otherwise all concrete successor states are computed and put into relation with
the corresponding abstract successor states. To ensure termination of the algo-
rithm it is crucial to recognise when the same configuration is re-examined. This
is done by the check “(ConcNode,AbsNodes) ∈ Table”. If that check succeeds
we know that we can safely stop looking for a counter example. Indeed, if one
counter example exists we know that we can find a shorter version starting from
the configuration that is already in the Table.

In the previous section we have introduced the relation→M , where s→M
op.a.b

s′ signifies that the operation op can be performed with inputs a and outputs b
in state s, resulting in a new state s′ of the machine M . For the algorithm below
it is convenient to also model the initalisations by adding a special state root,
and extending →M such that root→M

initialise machine s holds for all valid initial
states s of the machine M .

Algorithm 4.1[Refinement Checking ]

Input: An abstract machine MA and a refinement machine MR

Table := {} ; Res := refineCheck(root,{root});
if Res = 〈〉 then println ’Refinement OK’
else println(’Counter Example:’,Res)
end if

function refineCheck(ConcNode,AbsNodes)
if (ConcNode,AbsNodes) ∈ Table then

return 〈〉
else

Table := Table ∪ {(ConcNode,AbsNodes)};
for all CSucc,Op such that ConcNode→MR

Op CSucc do

TraceS := concat(Trace,[(Op,CSucc)]);

ASuccs := {as | ∃an ∈ AbsNodes ∧ an→MA
Op as};

if ASuccs = ∅ then
return TraceS

else
Res := refineCheck(CSucc,ASucss,TraceS);
if Res 6= 〈〉 then return Res; end if

end if
end for

end if
end function
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Implementation We have actually performed two implementations of the
above algorithm. The first one is implemented inside the ProB toolset, i.e., us-
ing SICStus Prolog. The tabling is done by maintaining a Prolog fact database
which is updated using assert/1. The second implementation has been done in
XSB Prolog. The code of the XSB refinement checker is almost identical, but
instead of using a Prolog fact database it uses XSB’s efficient tabling mechanism
[22]. As we will see later, this implementation is faster than the SICStus Prolog
one, but the overhead of starting up a new XSB Prolog process and loading the
states space is only worth the effort for larger state spaces with no or difficult
to find counter examples. From a pragmatic point of view, this approach also
requires the ProB user to separately install XSB Prolog.

For both implementations the abstract state space currently has to be com-
puted beforehand (using ProB). To ensure completeness of the refinement check-
ing, it should be fully computed. However, our refinement checker also allows
the abstract state space to be only partially computed. In that case, the refine-
ment checker will detect whether enough of the state space has been computed
to decide the refinement (and warn the user if not).

For the SICStus Prolog implementation the state space of the implementation
can, but does not have to be computed beforehand. In other words, the imple-
mentation state space will be expanded on-the-fly, depending on how the refine-
ment checking algorithm proceeds. This is of course most useful when counter
examples are found quickly, as in those cases only a fraction of the state space
will have to be computed. In future work we plan to enable this on-the-fly ex-
pansion also for the abstract state space. For the XSB implementation, running
separateley from ProB, this interaction is currently not possible, and hence both
the abstract and implementation state space have to be computed beforehand.

5 Experiments

To test our refinement checker we have conducted a series of experiments with
various models. As well as using the scheduler example from Section 2, we have
experimented with a much larger development of a mechanical by press by Abrial
[2]. The development of the mechanical press started from a very abstract model
and went through several refinements. The final model contained “about 20
sensors, 3 actuators, 5 clocks, 7 buttons, 3 operating devices, 5 operating modes,
7 emergency situations, etc.” [2]. We were able to apply our new refinement
checker to successfully validate various refinement relations. Furthermore, as no
abstraction was required for ProB (i.e., all sets were already finite to start
with), the refinement checker can actually be used in place of the traditional
B refinement provers. In other words, were thus able to automatically prove
refinement using our new tool. To check the ability of our tool to find errors
we have also applied it to an erroneous refinement (m2 err.ref), and ProB was
able to locate the problem in a few seconds. We have also experimented with a
simple example of a server allowing clients to log in. Precise timings and results
for these and other experiments are presented in the next subsections.
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Table 1. ProB consistency checking and size of state space

Machine Time States Transitions

Server.mch 0.013 s 5 9
ServerR.ref 0.05 s 14 39

scheduler0.mch 46 s 55 190
scheduler1.ref 0.93 s 145 447
scheduler0 6.mch 41.37 s 2,188 14,581
scheduler1 6.ref 501.61 s 37,009 145,926

m0.mch 3.19 s 65 9,924
m1.ref 20.38 s 293 47,574
m2.ref 44.29 s 393 59,588
m2 err.ref 31.51 s 405 61,360
m3.ref 364.90 s 2,693 385,496

Consistency checking In a first phase we have performed classical consistency
and deadlock checking on our examples using ProB’s model checker. The re-
sults can be found in Table 1, and give an indication of the size of the state
space and how expensive it is to compute the operational semantics. The ex-
periments were all run on a PowerPC G5 Dual 2.5 GHz, running Mac OS X
10.3.9, SICStus Prolog 3.12.1 and ProB version 1.1.5. Note, while the machine
had 4.5 Gigabyte of RAM, only 256 Megabyte are available in SICStus Prolog
3.12 for dynamic data (such as the state space of B machines). scheduler0.mch
and scheduler1.ref are the machines presented above in Section 2 for 3 processes,
while scheduler0 6.mch and scheduler1 6.ref are the same machines but for 6 pro-
cesses. The machines m0.mch, m1.ref, m2.ref, m2 err.ref, and m3.ref are from
the mechanical Press example discussed above. Server.mch is a simple B machine
describing the server example, while ServerR.ref is a refinement thereof.

Refinement checking Table 2 are the results of performing various refinement
checks on these machines. Entries marked with an asterisk mean that no pre-
vious consistency checking was performed, i.e., the operational semantics of the
implementation machine was computed on-the-fly, as driven by the refinement
checker. For entries without an asterisk the experiment was run straight after
the consistency checking of Table 1, i.e., the operational semantics was already
computed and the time is thus of the refinement checking proper. The figures
show that our checker was very effective, especially if counter examples existed.

In Table 3 we have conducted some of the experiments where the refine-
ment checker is run as a separate process using XSB Prolog [22], rather than
inside ProB under SICStus Prolog. Our experiments confirm that XSB’s tabling
mechanism leads to a more efficient refinement checking (cf. the third column).
However the time to start up XSB and load the state space is not negligible,
meaning that the XSB approach does not always pay off. This can be seen in the
fourth column which contains the total time for loading and checking: e.g., the
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Table 2. ProB refinement checking and size of refinement relation

Refinement Specification Time Size of table

Successful refinements:

ServerR.ref Server.mch* 0.05 s 14
” Server.mch 0.00 s ”

scheduler1.ref scheduler0.mch* 0.73 s 145
” scheduler0.mch 0.00 s ”
scheduler1 6.ref scheduler0 6.mch 3.80 s 37,009

m1.ref m0.mch* 25.4 s 585
” m0.mch 6.28 s ”
m2.ref m0.mch 8.10 s 785
m2 err.ref m0.mch 8.13 s 809
m2.ref m1.ref 70.57 s 3,804
m3.ref m0.mch 51.96 s 5,345
m3.ref m1.ref 429.37 s 24,039
m3.ref m2.ref 333.85 s 21,205

Counter examples found:

scheduler1err.ref scheduler0.mch* 0.12 s 19
scheduler1err 6.ref scheduler0 6.mch* 1.80 s 121
m1.ref m2.ref 0.01 s 13
m2 err.ref m1.ref* 4.22 s 92
” m1.ref 0.03 s ”

approach pays off for the m2.ref check against m1.ref (overall gain of 30 seconds)
but not for the smaller examples nor when a counter example is found quickly.

Comparison with FDR We have compared our new refinement checker against
the most widely known refinement checker, namely FDR [12]. FDR is a commer-
cial tool for the validation of CSP specifications [15]. While B machines cannot
easily be translated into CSP, the state space explored by ProB can easily be
translated into a CSP specification using just choice and process definitions.
While this automatically generated CSP is not a typical CSP specification, it is
still useful for two purposes. First, it allows us to evaluate our refinement Algo-
rithm 4.1 against the counterpart in FDR. Second, we can determine whether
it would make sense, from an implementation point of view, to outsource the
refinement checks to FDR, rather than using our own algorithm.

The experiments were conducted as follows. After consistency checking (Ta-
ble 1) the state space was saved as a simple CSP file using an export facility
added to ProB. Basically, every state was encoded as a separate CSP Process
and defined by an external choice of all the outgoing transitions. Every transi-
tion was represented by a CSP prefix operation, were the right-hand side is the
CSP Process corresponding to the destination state of the transition. To obtain
the left-hand side, operation arguments were flattened out, e.g., something like

10



Table 3. ProB refinement checking using XSB Prolog

Refinement Specification Checking Time Total Time

Successful refinements:

ServerR.ref Server.mch 0.00 s 0.06 s

scheduler1.ref scheduler0.mch 0.00 s 0.11 s

m1.ref m0.mch 2.85 s 13.76 s
m2.ref m1.ref 26.66 s 40.24 s
m3.ref m2.ref 136.12 s 219.03 s

Counter examples found:

m1.ref m2.ref 0.00 s 22.68 s
m2 err.ref m1.ref 0.01 s 12.79 s

new(p1) got translated into a new CSP channel new p1.6 As an illustration, here
are the first few lines for m0.mch:7

Nroot = initialise_machine->N3448 [] initialise_machine->N3449 []

initialise_machine->N3450 [] initialise_machine->N3451

N3448 = demarrer_presse->N3452 [] presse_descend->N3450 [] ...

FDR 2.8.1 was then run on the same hardware as for the earlier experiments
to check CSP trace refinement and the results can be found in Table 4. Timings
do not include the time needed to load the CSP file, but include the compilation,
normalization and checking time of FDR. Due to a small bug in the TclTk inter-
face of FDR timings were not displayed for ServerR.ref and scheduler1.ref; but
the response was very quick. For scheduler1 6.ref FDR ran for 2.812 hours (CPU
usage) and then generated a “failed to compile ISM” error message. For the other
examples FDR spent most of the time on compilation and normalization of the
CSP model. This means subsequent refinement checks of the same combination
of machines would have been substantially faster. In practice, however, there is
only one refinement check that one is interested in for any two machines (namely
that the “refinement” machine is a refinement of the specification machine).

We have also modelled the scheduler and its refinement in CSP by hand
using what we believe is a natural CSP style using CSP constructs such as par-
allelism and synchronization wherever possible. These are named scheduler1.csp
and scheduler0.csp and are restricted to 3 processes each. We had to manually
limit the size of the communication queue for FDR to terminate, but after that
refinement checking was very quick. Unfortunately, due to the timing bug men-
tioned above we could not evaluate whether this was faster than checking the
automatic translation. We have then tried to check the natural CSP specification
for 6 processes, but unfortunately FDR was unable to deal with that, generating
a “failed to compile ISM” message after 11 s.
6 This had no impact for the mechanical press examples written in Event B style, as

there are no operation arguments in any of the machines anyway.
7 We have also used internal choice, to see whether this improved FDR’s performance.

Unfortunately, FDR generated error messages for those models.
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For checking m1.ref against m0.mch it can be noted that our algorithm is
about 16 times faster than FDR (one has to compare the 101 s against 6.28 s as
the computation of the operational semantics has in both cases been done be-
forehand by ProB; arguably FDR is at a slight disadvantage as the state space
is in CSP form rather than stored as facts in a Prolog database; still the CSP
processes are very simple and thus should not cause a large overhead). Our rela-
tively simple refinement checking algorithm thus proves surprisingly effective in
practice (or, depending on your point of view, FDR proves to be surprisingly in-
effective at checking CSP models which directly encode fully expanded transition
systems). When counter examples exist the difference is even more dramatic, as
FDR spends a lot of effort on compiling and normalising the CSP specification
before (quickly) finding the counter example. We believe that this difference is
at least partly explained by the fact that our algorithm normalises the abstract
state space on the fly rather than beforehand.8 Indeed, Algorithm 4.1 can also
be viewed as linking concrete states with sets of abstract states, by exploring
in parallel all possible alternatives of the abstract machine. This corresponds to
normalisation in FDR [12], but done on-the-fly rather than beforehand. Thus,
when a counter example is found (quickly) only a fraction of the abstract space
will have been normalised. Furthermore, even when no counter example is found,
only that part of the abstract system is normalised which is in common with
the implementation. As the implementation often has more restricted behaviour,
this can result in big reductions and could explain why our tool can handle much
bigger examples (e.g., scheduler1 6.ref). FDR’s approach would only pay off if
one did many refinement checks of the same abstract system, covering a large
part of its state space, and if one has enough memory to normalise the entire
abstract system. In our particular case studies, this was not the case. We plan to
undertake a more thorough comparison of ProB and FDR by comparing more
examples modelled naturally in CSP and naturally in B. Still, as a preliminary
conclusion, we can state that our algorithm compares favourably with FDR.

Table 4. Refinement checking on the already expanded state space with FDR

Refinement Specification Time States Transitions

Successful refinements:

ServerR.ref Server.mch < 1s 5 9

scheduler1.ref scheduler0.mch < 1s 69 205
scheduler1 6.ref scheduler0 6.mch 2.812 hours error error
scheduler1.csp scheduler0.csp < 1 s 68 204

m1.ref m0.mch 101 s 447 71,910
m2.ref m1.ref 152 s 3,239 492,401

Counter examples found:

m1.ref m2.ref 120 s 2 8
m2 err.ref m1.ref 150 s 464 71,107

8 Another bottleneck of the FDR tool seems to be the actual time spent on compiling
the CSP specification.
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6 Extensions

Singleton Failures We have extended our refinement checking algorithm to
also check singleton failure refinement (see, e.g., [6]). A singleton failure trace is a
pair consisting of a trace t as defined earlier and either the empty set or singleton
set containing a single operation F (with arguments). The intuitive meaning of
(t, {F}) is that the machine can perform all the operations in the trace t and
then be in a state where the operation F is not enabled, i.e., can be refused. The
meaning of (t, ∅) is that the machine can perform all the operations in t and then
all operations are enabled for all possible arguments. A machine m1 is said to be
a singleton failure refinement of m0 iff all singleton failure traces of m1 are also
singleton failure traces of m0. Singleton Failures refinement can be situated in
between trace refinement and CSP’s failure refinement as implemented in FDR
(in the latter, rather than talking about an single operation that can be refused
one talks about sets of possible combinations of operations that can be refused).

To implement singleton failure refinement checking, Algorithm 4.1 has been
extended to check for an additional condition when a counter example is found.
More precisely, the function refineCheck(ConcNode, AbsNodes) also looks for ope-
ration calls that are possible in all states in AbsNodes but not in ConcNode.

As B does not have the distinction between internal and external choice,
singleton failure refinement is mainly useful for refinements that should not de-
crease the choices offered by the machine, e.g., data refinement or when moving
non-deterministic choices later. Note, however, when treating parameters of B
operations, a choice of input values could be treated as an external choice, while
a choice of output values could be treated as internal. In future, we plan to make
this distinction. (It is not necessary to make this distinction for trace refinement,
since the traces model does not distinguish internal and external choice.)

Some empirical results can be found in Table 5. All experiments were run
on-the-fly, i.e., the implementation transition was not computed beforehand. As
one can see, several refinement checks that were successful using trace refinement
now yield a counter example. For example, for the m1.ref vs m0.mch check the
algorithm finds the counter example (〈initialise machine〉, demarrer presse),
meaning that there is an initial state of m1.ref where demarrer presse is not
enabled, but in all initial states of m0.mch this operation is enabled.

Table 5. ProB refinement checking using singleton failures

Refinement Specification Time Size of table

Successful refinements:

ServerR.ref Server.mch* 0.07 s 14

Counter examples found:

scheduler1.ref scheduler0.mch* 0.06 s 9
m1.ref m0.mch* 0.05 s 2
m2.ref m1.ref * 0.07 s 2
m3.ref m2.ref * 0.08 s 2
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Application to B and CSP In recent work [7] we have shown how to combine
B and CSP for specification purposes (a specification is partly written in B
and partly in CSP) or for property checking of B machines (the CSP is used
as a temporal property that a B machine must satisfy). Our new refinement
checker is language independent, in the sense that any interpreter plugged into
the ProB toolset can be used. In practice this means that we can check whether
a B machine is a refinement of a CSP machine, or the other way around. For
example, the mutual exclusion property of the scheduler of Section 2 can be
specified as the following CSP process: LOCK = enter?p→ leave.p→ LOCK.
We can check that both B schedulers (Figures 1 and 2) are trace refinements
of the LOCK CSP process. We can also check whether a combined B/CSP
specification is a refinement of another combined specification. One can even
use other formalisms, such as Object Petri nets as implemented in [11]. All this
opens up new possibilities for validation.

7 Related and Future Work, and Conclusion

The idea of using (tabled) logic programming for verification is not new. The
inspiration for the current refinement checker came from the earlier developed
CTL model checker presented in [17]. Another related work is [5], which presents
a bisimulation checker written in XSB Prolog.

In future, we plan to extend the refinement checker to also allow on-the-fly
expansion of the abstract state space. We also wish to move away from the pure
depth first strategy that it currently employs; using a similar mixed breadth-first
depth-first strategy as the ProB model checker. This should allow the refinement
checker to be applied when the abstract and implementation state spaces are big
or even infinite. In our approach, no gluing invariant needs to be provided by
the user. Another extension to our approach would be to check whether a gluing
invariant provided by the user can be satisfied. This is the approach taken by
Robinson for Z refinement using the Possum animation tool [20]. To improve the
scalability we are also looking at symbolic state space reduction techniques.

We have presented the first automatic refinement checker for B. The checker is
implemented within ProB and has been applied to various case studies. Our ex-
periments have shown that, at least for the case studies under consideration, the
algorithm is very effective and surprisingly competitive. Its ability to normalise
the abstract machine on-the-fly seemed to be a key ingredient of its success.

Acknowledgements: We would like to thank Michael Goldsmith and anony-
mous referees of ICFEM for their useful feedback. We are also grateful to Letu
Yang for his help in the B to CSP translator.
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