
The Semantics and Tool Support of OZTA

J.S. Dong1 P. Hao?1 S.C. Qin2 X. Zhang1

1 National University of Singapore
{dongjs,haoping,zhangxi5 }@comp.nus.edu.sg

2 University of Durham, UK
shengchao.qin@durham.ac.uk

Abstract. In this work, we firstly enhance OZTA, a combination of Object-Z and
Timed Automata, by introducing a set of timed patterns as language constructs
that can specify the dynamic and timing features of complex real-time systems in
a systematic way. Then we present the formal semantics in Unifying Theories of
Programming for the enhanced OZTA. Furthermore, we develop an OZTA tool
which can support editing, type-checking of OZTA models as well as projecting
OZTA models into TA models so that we can utilize TA model checkers, e.g.,
Uppaal for verification.

Keywords: Timed Patterns, Semantics, Tool and Verification

1 Introduction

The specification of complex real-time systems requires powerful mechanisms for mod-
elling state, concurrency and real-time behavior. Integrated formal methods are well
suited for presenting complete and coherent requirement models for complex systems.
This research area has been active for a number of years (e.g. [4, 3]) with a particular
focus on integrating state based and event based formalisms (e.g. [9, 17]). However, the
challenge is how to provide a systematical semantic model for the integrated formal
languages, and how to analyze and verify these models with tool support? For the first
issue, we believe UTP [13] is particularly well suited for giving formal semantics for
the integrated specification languages and it has been used to define other integrated for-
malisms[12, 13]. For the second issue, we believe one effective approach is to project
the integrated requirement models into multiple domains so that existing specialized
tools in these corresponding domains can be utilized to perform the checking and ana-
lyzing tasks.
OZTA [6] is an integrated formal language which builds on the strengths of Object-
Z(OZ) [8, 16] and Timed Automata(TA) [1, 18] in order to provide a single notation
for modelling the static, dynamic and timing aspects of complex systems as well as
for verifying system properties by reusing Timed Automata’s tool support. One novel
aspect of OZTA is its communication mechanism which supports partial and sometime
synchronization [6].

? author for correspondence: haoping@comp.nus.edu.sg

The basic OZTA notation has been briefly described in an introductory paper [6] and
this paper enhances the OZTA notation by extending its automaton part with time pat-
tern structures. However the main purpose of this paper is to formalize the semantics
of OZTA and present an OZTA tool we developed for its editing, type-checking and
projection.
The rest of the paper is organized as follows, section 2 presents syntax of OZTA with
extension of timed patterns; section 3 provides semantics of OZTA; section 4 shows the
tool support of OZTA; and lastly section 5 gives the conclusion.

2 Extending OZTA with Timed Patterns

OZTA specifications are combinations of Object-Z schemas with Timed automatons.
Timed Automata, with powerful mechanisms for designing real-time models using mul-
tiple clocks, has well developed automatic tool support. However, if TA is considered
to be used to capture real-time requirements, then one often need to manually cast those
timing patterns into a set of clock variables with carefully calculated clock constraints,
which is a process that is close to design rather than specification. In our previous
paper [7], we studied time automata patterns and found that a set of common timed
patterns, such asdeadline, timeout, waituntil, can be used to facilitate TA design in a
systematic way. In this paper before presenting the semantics of OZTA, we firstly give a
full version of the OZTA syntax, in which the automaton part of the the OZTA notation
is extended with timed pattern structures. The enhanced specification of OZTA syntax
with the notion of timed patterns is presented as follows:

Specification::= CDecl; ...; CDecl
CDecl ::=¹ Visiblist; InheritC; StateSch; INIT; StaOp; [TADecl]
Visiblist ::= VisibAttr; VisibOp
InheritC ::= InheritCName
StateSch::= CVarDecl
CVarDecl::= v : T
StaOp::= ∆(AttrName| ActName), CVarDecl• Pred(u, v′)
TADecl::= ClockDecl; TA
ClockDecl::= x : Clock
TA ::= State| State• Inv(x, n) | [(Event)][(Reset(x))][(Guard(x, n))] • TA | Wait (x, n)

| TA • Deadline(x, n) | TA • WaitUntil (x, n) | TA • Timeout(x, n) • TA
| TA; TA | TA 2 TA | TAu TA | µ X • TA(X) | TA1 ‖ TA2 • S

State::= StaOp| StaCtr
Event::= Event| Event! | Event?
Reset::= (:=)〈〈Clock× N〉〉
Guard ::= (<=)〈〈Clock× N〉〉 | (>=)〈〈Clock× N〉〉 | (<)〈〈Clock× N〉〉

| (>)〈〈Clock× N〉〉 | (∧)〈〈Φ× Φ〉〉 | true
Invar ::= (<=)〈〈Clock× N〉〉 | (<)〈〈Clock× N〉〉 | true
S ::= { 7↔ }〈〈Event× Event〉〉 | { ↔ }〈〈Event× Event〉〉 | { → }〈〈Event× Event〉〉

in which, the argumentx represents a certain clock, andn is a natural number;StaCtr
represents a control state andStaOpis an operation state corresponding to an Object-
Z operation;State• Inv(x, n) specifies a state with a local invariant;Event, Reset(x),

Guard(x, n) are transition labels, which respectively specifies event (Event! is an output
event, Event? is an input event), clock reset and clock constraint; the three branches of
Srespectively represent the construct of handshaking synchronization, partial synchro-
nization and sometime synchronization; the rest of the TA expressions are the timed
automata patterns which can be directly utilized to construct timed automata.

2.1 The Pattern Structure

Each of the pattern expressions has a graphic presentation. Some TA patterns are pre-
sented in Figure 1 - 4, the rest can be found in [7]. In these graphical TA patterns, an
automatonA is abstracted as a triangle, the left vertex of this triangle or a circle attached
to the left vertex represents the initial state ofA, and the right edge represents the ter-
minal state ofA. For example, Figure 1 demonstrates how two timed automatons can

A1 A2

Fig. 1.Sequential Composition ‘;’

x :=0

A

x<=t

Fig. 2.Deadline ‘Deadline(x, t)’

A2

A1

Fig. 3.External Choice ‘2’

0ss

A

Fig. 4.Recursion‘u s0 • A(s0)’

be sequentially composed. By linking the terminal state ofA1 with the initial state of
A2, the resultant automaton passes control fromA1 to A2 whenA1 goes to its terminal
state. Figure 2 shows one of the common timing constraint patterns –deadline. There is
a single clockx. When the system switches to the automatonA, the clockx gets reset to
0. The local invariantx <= t covers each state of the timed automatonA and specifies
the requirement that a switch must occur beforet time unit for every state ofA. Thus
the timing constraint expressed by this automaton is thatA should terminate no later
thant time units. Figure 3 shows the external choice pattern of two timed automatons
A1 andA2 which share an initial state, and the environment has the choice to trigger
one of them by different external events. Figure 4 illustrates therecursionpattern of a
timed automatonA, s0 is the fixed point, The recursion is achieved by diverting all the
transitions from pointing tos0 to the initial state ofA.

2.2 An Example: Frog Puzzle Game

A traditional frogs puzzle game is that: given seven stones, three white frogs at left
facing right and three black frogs at right facing left.
A frog can move in the direction it is facing to an empty stone, which is adjacent or is
reached by jumping over a frog on an adjacent stone. To complex the puzzle, we add

some timing constraints to the moves of frogs, i.e., each frog takes at least 1 time units
but no more than 2 time units to move to its next position. We define that the puzzle is
solved if a sequence of moves can be found that will exchange the positions of the black
and white frogs within 30 time units. The OZTA model of this frog puzzle is given as
follow,
Posn== 1..7

Puzzle

wf , bf : PPosn
nf : Posn
win : B

#wf = 3 ∧ #bf = 3

INIT

wf = {1, 2, 3} ∧ bf = {5, 6, 7}
nf = 4

BlackMove
∆(bf , nf)

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7}
∧ nf = 4) ∧ nf ′ rightb nf
bf ′ = bf ∪ {nf} − {nf ′}
Lose1
∆(win)

win′ = false

Win
∆(win)

bf = {1, 2, 3} ∧ wf = {5, 6, 7} ∧
nf = 4
win′ = true

WhiteMove
∆(wf , nf)

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7} ∧
nf = 4)
nf ′ leftwnf
wf ′ = wf ∪ {nf} − {nf ′}
Lose2
∆(win)

nf 6∈ rightb(| bf |) ∧ nf 6∈ leftw(| wf |)
win′ = false

x, y : clock

BlackMove

y<=2

s1

Win

Lose_1

s0

WhiteMove

y<=2

Lose_2

x:=0 count

x<=30

y:=0
x<30

y>=1

x>30

y:=0
x<30

y<=1

rightb : Posn↔ Posn

∀ i, j : Posn•
i rightb j ⇔ i = j + 1 ∨ i = j + 2

leftw : Posn↔ Posn

∀ i, j : Posn•
i leftw j ⇔ i = j − 1 ∨ i = j − 2

In this model, we define the empty stone also as a frog objectnf . BlackMovecaptures the
position exchanges between the black frogs and the empty stone; same forWhiteMove;
Win defines the situation when the puzzle is solved. The game begins with acount
event after its initial state; player will lose the game when the time is out as described
by (x > 30) • Lose1 or whenever the frogs are all jammed by each other in the middle
way as described byLose2. The graphical TA part of the model can be derived from the
following textual specification according to thesequential composition, external choice,
deadline, waituntil, andrecursionpatterns:

TA =̂ µ Y • (x := 0)(count) •
µ X • ((x < 30) • BlackMove• Deadline(y, 2) • WaitUntil(y, 1); X)

2 ((x < 30) • WhiteMove• WaitUntil(y, 1) • Deadline(y, 2); X)

2 ((x <= 30) • Win; Y) 2 ((x > 30) • Lose1; Y) 2 (Lose2; Y)

To illustrate the synchronization mechanism of OZTA, we consider several puzzle-
solving systems:

The handshaking synchronization operator↔ indicates

that the two switches labelledcount in the objects ofp0,

p1 were identical, i.e., the automata must synchronize on

these switches, as illustrated in Figure 5(1). The product

of the two timed automata effectively ensures that the two

puzzles start at same time point in the competition while

operate independently and concurrently.

PuzzleC1

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count↔ p1.count}

The partial synchronization operator→ indicates that

whenever thep0.count is taken, then there must be syn-

chronization with the switchp1.count. However, the switch

p1.count can occur independent of the switchp0.count.

The partial synchronization betweenp0 and p1 is illus-

trated in Figure 5(2).

PuzzleC2

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count→ p1.count}

The sometime synchronization operator7↔ indicates that

when any of the switchesp0.count or p1.count is taken

there may or may not be synchronization with the switch

p1.countor p0.countrespectively. The sometime synchro-

nization betweenp0 andp1 is illustrated in Figure 5(3).

PuzzleC3

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count 7↔ p1.count}

p0.s0 p0.s1

p1.s0 p1.s1

p0.s0 p0.s1

p1.s0 p1.s1

p0.s0 p0.s1

p1.s0 p1.s1

count

count

(1)

count

(2)

count

p1.count

p0.count

count

count

p1.count

(3)

Fig. 5.Handshaking, Partial and Sometime Synchronization

3 The Semantics of OZTA

Before building the semantic model for OZTA, we need to choose an appropriate model
of time. There are two typical time models: a discrete model and a continuous model.
The current semantic model for OZTA [6] is a primitive operational semantics based
on continuous time without pattern features. To make our model with the extension of
timed patterns and more apt for exploration of algebraic refinement laws, we choose the
discrete model. The discrete time model has also been adopted by the Sherif and He’s
work [14] on the semantics for time Circus [12] and Qin, Dong and Chin’s work [13]
on the semantics for TCOZ.

3.1 The Automata Model

The following meta variables are introduced in the alphabet of the observations of the
OZTA automata behavior, some of which are similar to those in the previous UTP
semantic frameworks [13]. The key difference is that we now take consideration of
clock variable updates.

– ok, ok′: Boolean. These two variables are introduced to denote the observations of
automaton initiation and termination.ok records the observation that the automa-
ton has started. Whenok is false, the automaton has not started, so no observation
can be made.ok′ records the observation that the automaton has terminated or has
reached an intermediate stable state. The automaton isdeadlockwhen ok’ is false.

– wait, wait′: Boolean. Whenwait is true, it states that the automaton starts in an
intermediate state. Whenwait′ is true, the automaton has not terminated; when it is
false, it indicates a final observation.

– state, state′: Var → Value. In order to record the state of data variables(class at-
tributes and local variables) that occur in an automaton, these two variables are
introduced to map each variable to a value in the corresponding observations.

– tr, tr ′: seq(seqEvent× PEvent). The two variables are introduced to record the
sequence of observations on the interactions between an automaton and its envi-
ronment.tr records the observations that occurred before the automaton starts and

tr ′ records the final observation. Each element of the sequence represents an obser-
vation over one time unit. Each observation element is composed of a tuple, where
the first element of the tuple is the sequence of events that occurred during the time
unit, and the second one is the associated set of refusals at the end of the same time
unit. The setEventdenotes all possible communicating events.

– trace: seqEvent. This variable is used to record a sequence of events that take place
so far since the last observation. It can be derived fromtr, tr ′ as the following:

flat(tr) a trace= flat(tr ′)

wherea is a concatenation operator and flat :

seq(seq(Event× PEvent) → seqEvent

flat(〈〉) =̂ 〈〉 flat(〈(es, ref)〉a tr) =̂ esa flat(tr)
– cval, cval′: Clock→ N∪{NULL}. Among whichClockdenotes all clock variables;

N is the set of natural number;NULL is a number of no meaning, denoting the
situation that the clock has not been enabled yet.

Some other definitions are given to facilitate the description of OZTA semantics.

– The predicateno interact(trace) denotes that there are no communication events
recorded intrace.

no interact(s) =̂ s = 〈〉
– The operator◦ is the composition of two sequentially made observations. For two

observation predicateP(v, v′), Q(v, v′), wherev, v′ represents respectively the ini-
tial and final versions of all observation variables, the composition of them is:

P(v, v′) ◦Q(v, v′) =̂ ∃ v0 • P(v, v0) ∧ Q(v0, v′)
– A binary relation¹ is the ordinary subsequence relation between sequences of the

same type.
– The predicateclock update(x, n) denotes that the value of clock variablex is up-

dated to a natural numbern.

clock update(x, n) =̂ cval′ = cval⊕ {x 7→ n}

3.2 The Semantics of Automata with Patterns

In this section, the observation model for OZTA automata is developed. We useTA to
stand for the semantics of an automatonTA instead of the term[[TA]] in UTP. Before
we go into the detail of the semantics for each Automata expressions, A healthiness
conditionR must be satisfied by the semantics predicate TA for any automaton, which
is defined as,

R(TA) =̂ TA = (TA∧ tr
t¹ tr ′)

tr
t¹ tr ′ states that, given two timed traces,tr andtr ′, tr ′ is an expansion oftr [13].

State and Control Operation

– State Operation
StaOp=̂ ∆(b), a : T • Pred(u, v′) =̂ ok′ ∧ ¬ wait′ ∧ no interact(trace) ∧ (∀ x :
domcval | cval(x) 6= NULL • clock update(x,#tr ′ −#tr)) ∧ ((∃ val1 • state′ =
state⊕{a 7→ val1})◦(∃ val • state′ = state⊕{a 7→ val} ∧ Pred(state(u), state′(v′))))
In an operation state, time may progress, no event occurs, state will be updated.
NULL means the clock has no value, and it has not been initialized yet.

– Control Operation
StaCtr =̂ ok′ ∧ ¬ wait′ ∧ no interact(trace) ∧ (∀ x : domcval | cval(x) 6=
NULL • clock update(x,#tr ′ −#tr))
In a control state, time may progress, no event occurs and no state updates.

– Urgent state
StaU=̂ (StatOP∨ StaCtr) ∧ #tr ′ = #tr
The semantics of an urgent state is that the automaton will pass the control from
the urgent state to a next state without delay.

– Init State
StaI =̂ ok′ ∧ ¬wait′ ∧ tr = 〈〉 ∧ no interact(trace) ∧ ∀ x : domcval • cval(x) =
NULL)
The sequence of observations of an OZTA model starts from an initial state. The
value of each clock variable is initially set toNULL.

Local Invariant In verification tools, e.g. Uppaal, local invariants are often restricted
to constraints that are downwards closed, i.e., in the form:x < n or x ≤ n, where n is
natural number.
State• (x < n) =̂ x ∈ domcval ∧ (State∧ (cval(x) + #tr ′ − #tr) < n ∧ (∀ c :
domcval | cval(c) 6= NULL • clock update(x, cval(c) + #tr ′ −#tr)) ∨ Stop)
State• (x <= n) =̂ x ∈ domcval ∧ (State∧ (cval(x) + #tr ′ − #tr) ≤ n ∧ (∀ c :
domcval | cval(c) 6= NULL • clock update(x, cval(c) + #tr ′ −#tr)) ∨ Stop)

Clock Reset Reset(x) =̂ ok′ ∧ ¬wait′ ∧ #tr ′ = #tr ∧ state′ = state ∧ x ∈
domcval∧ clock update(x, 0)
It can also be described in this way,
Reset(x) • TA =̂ Reset(x); TA
Consecutive clock reset operations are combined into one atomic reset operation.

Event Event=̂ ok′ ∧ ¬wait′ ∧ trace= 〈Event〉 ∧ state′ = state∧ #tr ′ = #tr
It can also be described in this way,
Event• TA =̂ Event; TA

Clock Constraint An automaton can be guarded by clock constraints. The clock-
guarded automatonGuard(x, n) • TA behaves asTA if the conditionGuard(x, n) is
initially satisfied.
Guard(x, n) • TA =̂ (∃ x : Clock• x ∈ domcval) ∧ (Guard(x, n) ∧ TA∨ ¬ Guard(x, n)
∧ Stop)
It enjoys the following properties:

– false• TA = Stop
– true • TA = TA
– Guard(x, n) • Stop= Stop
– Guard1(x1, n1) • (Guard2(x2, n2) • TA) =

(Guard1(x1, n1) ∧ Guard2(x2, n2)) • TA
– Guard(x, n) • (TA1; TA2) = (Guard(x, n) • TA1); • TA2

Wait The Wait construct specifies an automaton in which time idles forn time units
then terminates.
Wait(x, n) =̂ ok′ ∧ ¬ wait′ ∧ #tr ′ − #tr = n ∧ (∀ i : #tr ′ < i < #tr •
no interact(π1(tr ′(i))))
It is subjected to the following laws.

– WAIT n1; WAIT n2 = WAIT(n1 + n2)
– STOP • Timeout(x, n) • TA = WAIT n; TA

Deadline The Deadline constructTA • Deadline imposes a timing constraint on a
timed automaton, which requires thatTA should terminate no later thann time units.
TA • Deadline(x, n) =̂ (ok∧ x ∈ domcval∧ clock update(x, 0))◦(TA∧ #tr ′−#tr ≤
n)

WaitUntil The WaitUntil constructTA • WaitUntil(x, n) constrains automationTA to
finish its process no less than n time units.
TA • WaitUntil(x, n) =̂ (TA∧ (#tr ′ −#tr ≥ n)) ∨ ((∃ tro • tr ¹ tro ¹ tr ′ ∧ #tro −
#tr < n) ∧ ((ok∧ x ∈ domcval∧ clock update(x, 0))◦TA[tro/tr ′, true/ok′, false/wait′]◦
Wait(x, n− (#tro −#tr))[tro/tr]))

Timeout The Timeout constructTA1 • Timeout(x, n) • TA2 specifies that if no tran-
sition has been triggered for n time units in timed automatonTA1, thenTA1 will be
timeout and the control will be passed toTA2.
TA1 • Timeout(x, n) • TA2 =̂ (ok ∧ x ∈ domcval ∧ clock update(x, 0)) ◦ ((TA1 ∧
no interact(trace) ∧ #tr ′ −#tr ≤ n) ∨ (∃ k : #tr < k ≤ tr + n,∃ tro • π1(tr ′(k)) 6=
〈 〉 ∧ tr ¹ tro ∧ #tro−#tr = k ∧ (∀ i : #tr < i < #tr +k • no interact(π1(tr ′(i))) ∧
tro(i) = tr ′(i)) ∧ TA1[tro/tr]) ∨ (∃ tro • tr ¹ tro ∧ #tro−#tr = n ∧ (∀ i : #tr < i <
#tr + n • no interact(π1(tr ′(i))) ∧ tro(i) = tr ′(i)) ∧ TA2[tro/tr]))

Recursion We define the semantics of recursion same as [13],
µ X • TA(X) =̂ u{X | X w TA(X)}, whereX is the fixed point.

Parallel Composition The parallel composition of two automatons represents all the
possible behaviors of both automatons which are synchronized on a specific set of
events and on the time when the events occur.
In addition to the handshake synchronization, OZTA also supports other two synchro-
nization mechanisms, namely, partial synchronization and sometime synchronization.

Given a parallel compositionTA1 |[E]| TA2 • S, whereE denotes the set of events that
TA1 andTA2 will communicate with, andScontains elements of the forma→ b, a 7↔ b
(E ∩ event(S) = ∅), the notationa → b ∈ S simply indicates that eventa from TA1

must be synchronized with eventb from TA2, but eventb can occur independently ofa.
Givena 7↔ b ∈ S, it indicates that eventa from TA1 andb from TA2 may synchronize
with each other, or occur independently.

This parallel composition is defined in terms of the general parallel merge operator‖M
in UTP [10]:

A1 |[E]| A2 • S =̂ (((A1; idle) ‖M A2) ∨ (A1 ‖M (A2; idle)));

((ok⇒ SKIP) ∧ (¬ok⇒ tr
t¹ tr ′))

Take note that SKIP is a semantic predicate which preserves the observations, that is,
SKIP =̂ (obs′ = obs), whereobsdenotes all observables.

An idle process, which may either wait or terminate, follows after each of the two
automatons. This is to allow each of the automatons to wait for its partner to terminate.

idle =̂ ok′ ∧ no interact(trace) ∧ state′ = state

The merge predicateM is defined as,

M =̂ ok′ = (0.ok∧ 1.ok) ∧ wait′ = (0.wait ∨ 1.wait) ∧ state′ = (0.state⊕1.state) ∧
tr ′ ∈ syn(0.tr, 1.tr, E, S) ∧ #tr ′ = #0.tr = #1.tr ∧ cval′ = 0.cval⊕ 1.cval

Given two timed tracestr1, tr2, and a set of eventsE, and a set of pairs of partial/sometime
synchronizationsS, the setsyn(tr1, tr2, E, S) is defined inductively as follows.

syn(tr1, tr2, E,∅) =̂ syn(tr2, tr1, E,∅)
syn(〈〉, 〈〉, E, S) =̂ {〈〉}
syn(〈(t, r)〉, 〈〉, E, S) =̂ {〈(t′, r)〉 | t′ ∈ (t ‖

E S
〈〉)}

syn(〈〉, 〈(t, r)〉, E, S) =̂ {〈(t′, r)〉 | t′ ∈ (〈〉 ‖
E S

t)}
syn(〈(t1, r1)〉a tr1, 〈(t2, r2)〉a tr2, E, S) =̂

{〈(t′, r ′)〉a u | t′ ∈ (t1 ‖
E S

t2) ∧ r ′ = r1 ∪ r2 ∧
u ∈ syn(tr1, tr2, E, S)}

s ‖
E S

t is used to merge untimed traces s and t into one untimed trace, whereE is the set

of events to be synchronized,S is the set of partial/sometime synchronization pairs.

In the following clauses,e, e1 are representative elements ofE (events),x, x1 represent
communication events not residing inE or S, a→ b, a1 → b1 are representative partial
synchronization pairs fromS, while c 7↔ d, c1 7↔ d1 are representative sometime
synchronization pairs fromS. Let y, y1, y2 ∈ {x, x1, b, b1, c, d, c1, d1}.
Let z, z1, z2 ∈ {e, a, e1, a1}. Moreover, we usek(a, b) to denote the synchronization of
a andb.

s ‖
E ∅

t =̂ t ‖
E ∅

s 〈〉 ‖
E S
〈〉 =̂ {〈〉}

〈z〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈z〉 =̂ {}

〈y〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈y〉 =̂ {〈y〉}

〈y〉as ‖
E S
〈z〉at =̂ {〈y〉al | l∈(s ‖

E S
〈z〉at)}, z→y6∈S

〈z〉as ‖
E S
〈y〉at =̂ {〈y〉al | l∈(〈z〉as ‖

E S
t)}, z→y6∈S

〈e〉as ‖
E S
〈e〉at =̂ {〈e〉al | l ∈ (s ‖

E S
t)}

〈z1〉as ‖
E S
〈z2〉at =̂ {}, wherez1 6= z2

〈y1〉as ‖
E S
〈y2〉at =̂ {〈y1〉al | l ∈ (s ‖

E S
〈y2〉at)}∪

{〈y2〉al | l ∈ (〈y1〉as ‖
E S

t)}, wherey1 7↔ y2 6∈ S

〈a〉as ‖
E S
〈b〉at =̂ {〈k(a, b)〉al | l ∈ (s ‖

E S
t)}∪

{〈b〉al | l ∈ (〈a〉as ‖
E S

t)}
〈b〉as ‖

E S
〈a〉at =̂ {〈k(a, b)〉al | l ∈ (s ‖

E S
t)}∪

{〈b〉al | l ∈ (s ‖
E S
〈a〉at)}

〈c〉as ‖
E S
〈d〉at =̂ {〈k(c, d)〉al | l ∈ (s ‖

E S
t)}∪

{〈c〉al | l ∈ (s ‖
E S
〈d〉at)} ∪ {〈d〉al | l ∈ (〈c〉as ‖

E S
t)}

A network of timed automata is the parallel compositionA1 ‖ A2 ‖ ... ‖ An of a set of
timed automataA1, A2, ..., An.

3.3 The Semantics of Class

OZTA has two kinds of classes, active and passive ones. The behavior of (an object of)
an active class can be specified by a record of its continuous interactions with its envi-
ronment via its time automaton specifications, whereby any update on its data state is
hidden. Passive class does not have its own thread of control and its state and operations
(processes) are available for use by its controlling object.
In order to address issues like class encapsulation and dynamic typing that are essential
for object-orientation, a class model is established which is very similar with [13, 11]
except that the TCSP operations are replaced with timed automatons. More detailed
information on the semantics of class model can be referred to [13].

4 OZTA Tool

This section introduces the toolOZTA we developed for OZTA notation.
OZTA is a tool for modelling, type-checking and projecting complex real-time systems.
It mainly consists of four components, i.e., a GUI editor, a type checker, a LATEX code

generator and an Uppaal translator. The input language is based on the syntax and se-
mantics we presented in the previous sections. The output ofOZTA can either be an
XML representation of OZTA models or LATEX source files of OZTA models;OZTA
can also generate projections of OZTA models which is ready to be taken as input for
simulation and verification in Uppaal.
Figure 6 provides an overview ofOZTA :

XML Parser Editor

OZTA
XML Document

LaTex Document
XML
Schema

OZTA
XML Document

User Edit

Latex
Transfer

Checker

ADT

Graphical User Interface

Error Report

Scanner

Uppaal
Translater

Uppaal XML
Document

Fig. 6.Class Diagram ofOZTA

4.1 GUI Editor with pattern support

The graphical editor has a main editing panel which consists of a schema editing part
and a timed automaton editing part. Implemented with the timed patterns, the editor
can support a more systematic design of timed automata. Automatons are generated in
a top-down way. Firstly an abstracted default automatonA of an external choice pattern
is automatically generated on the TA editing panel according to its established schema
part of the model. Each branch ofA is also an abstracted automaton and respectively
represents one of the operation schemas defined on the schema editing panel. The de-
signer can later embody these branches by recursively applying certain patterns until
the behavior of the automaton meets its requirements.

4.2 Type Checker

The major functionalities of ourOZTA type checker are to check syntax errors and to
check static semantic errors in the OZTA specification. A full set of type checking rules
can be found in our technical report [5].

4.3 LATEX Code Generator

This generator outputs the LATEX source file and EPS files for an OZTA model, which
can be directly complied and viewed in LATEX tools such as WinEdt.

4.4 Translator

An Uppaal translator is developed and integrated withOZTA . It extracts TA and state
variables information from OZTA notation and generates an XML representation of
Uppaal model for further embodiment and verification.

OZTA to Uppaal Uppaal is a useful integrated tool for modelling, simulation and veri-
fication of real-time systems. The simulation in Uppaal enables examination of possible
dynamic executions of a system during early design (or modelling) stages and thus pro-
vides an inexpensive mean of fault detection prior to verification by the model checker
which covers the exhaustive dynamic behavior of the system. Its model checker is to
check invariant and bounded liveness properties by exploring the symbolic state space
of a system, i.e., reachability analysis in terms of symbolic states represented by con-
straints. The description language of Uppaal is a timed automaton extended with a set
of locally declared clocks, variables and constants. By projecting an OZTA model to a
TA model, we can reuse Uppaal to simulate the dynamic behaviors the OZTA model
and verify its various kinds of properties.
Coupled with operation schema predicates and data structures, the semantics of oper-
ation states in the TA part of an OZTA model is slightly different from those of states
in Uppaal. However, the main structure of the OZTA automata model is still consistent
with that of Uppaal model by regarding the OZTA operation states as abstracted au-
tomatons which need further implementation. This gap between the OZTA’s TA model
and Uppaal’s TA model can be remedied by some manual work on the operation states,
namely, to further embody these abstracted automatons by adding the data information.
For example, in the frog puzzle game, we map the state variablesbf , wf , nf of its
OZTA model to the Uppaal model as globalint variablesbf [3], wf [3], nf . Due to the
limited expressiveness for data manipulation in Uppaal, we need to respectively ex-
pandBlackMoveandWhiteMoveinto three branches. The predicates in the operation
schemas of the OZTA model are projected as guards on the corresponded transitions.
The final Uppaal model can be generated in this way as shown in Figure 7.
Although our projection can handle most of the TA information of an OZTA model, one
limitation needed to be pointed out is that, there is no verification tool yet which can
support checking the properties related with the partial synchronization and sometime
synchronization due to the novelty of this concept.

Model-Checking OZTA models To find the solution of this frog puzzle, we can check
the following property in Uppaal.

E <> P.Win

which means that there exists a sequence of moves that will exchange the positions of
the black and white frogs within 30 time units.
Uppaal verified that this property actually holds for this given model. Solutions of the
puzzle can be visualized in Uppaal’s simulator by running its diagnostics trace.

s0

s1

Wf1
y<=2

Wf2

y<=2

Wf3
y<=2

Bf1

y<=2

Bf2

y<=2

Bf3

y<=2

Win

Lose_1

Lose_2

x:=0,wf[0]:=1,wf[1]:=2,wf[2]:=3,
bf[0]:=5,bf[1]:=6,bf[2]:=7,nf:=4

y:=0,temp:=nf

nf==wf[1]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[2]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[0]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==bf[1]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[2]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[0]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

x<=30,nf==4,
wf[1]+wf[2]+wf[0]==18

y>=1
nf:=wf[1],wf[1]:=temp

y>=1
nf:=wf[2],wf[2]:=temp y>=1

nf:=wf[0],wf[0]:=temp

y>=1
nf:=bf[1],bf[1]:=temp

y>=1
nf:=bf[2],bf[2]:=temp

y>=1
nf:=bf[0],bf[0]:=temp

win:=1

nf==wf[1]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0, temp:=nf

nf==wf[2]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==wf[0]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==bf[1]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[2]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[0]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

x>=30

win:=0

nf!=bf[0]-1,nf!=bf[0]-2,
nf!=bf[1]-1,nf!=bf[1]-2,
nf!=bf[2]-1,nf!=bf[2]-2,
nf!=wf[0]+1,nf!=wf[0]+2,
nf!=wf[1]+1,nf!=wf[1]+2,
nf!=wf[2]+1,nf!=wf[2]+2win:=0

Fig. 7.Frog Puzzle Model in Uppaal

5 Conclusion

The contributions of the paper are listed as follows:

– We enhanced OZTA notation by introducing a set of timed patterns as language
construct that can specify the dynamic and timing features of complex real-time
systems in a systematic way.

– We presented a semantic model of OZTA in Unifying Theories of Programming
which provides the semantic foundation for language understanding, reasoning and
tool construction.

– We constructed an OZTA tool which can support editing, type-checking OZTA
models as well as transforming OZTA models into TA models so that we can utilize
TA model-checkers, e.g., Uppaal for verification.

In our future work, we plan to further enhance ourOZTA tool by extending the current
set of TA patterns into a dynamic pattern library so that new patterns can be defined by
system designers and added into the pattern library for future reuse. We are also inter-
ested to study other projections, e.g., OZTA to Alloy, so that various properties of an
OZTA model can be analyzed in the projected domains. Another future research work
would be, based on our UTP semantics, to extend and link some proof systems [15] of
Object-Z for reasoning about OZTA models.

Acknowledgement

We would like to thank Chen Qian, and He Kang for their part of work on the coding
of the OZTA tool.

References

1. R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–
235, 1994.

2. K. Araki, A. Galloway, and K. Taguchi, editors.IFM’99: Integrated Formal Methods, York,
UK. Springer-Verlag, June 1999.

3. E. Boiten, J. Derrick, and G. Smith, editors.IFM’04: Integrated Formal Methods, Lect.
Notes in Comput. Sci. Springer-Verlag, April 2004.

4. M. Butler, L. Petre, and K. Sere, editors.IFM’02: Integrated Formal Methods, Lect. Notes
in Comput. Sci. Springer-Verlag, October 2002.

5. J. S. Dong, P. Hao, S. C. Qin, and X. Zhang. OZTA. Technical report TRC6/05, School of
Computing, National University of Singapore, 2005.
http://nt-appn.comp.nus.edu.sg/fm/ozta.

6. J.S. Dong, R. Duke, and P. Hao. Integrating Object-Z with Timed Automata. InThe 10th
IEEE International Conference on Engineering of Complex Computer System, Shanghai,
China, 2005.

7. J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi. Timed Patterns: TCOZ to Timed Automata.
In The 6th IEEE International Conference on Formal Engineering Methods, Seattle, USA,
2004.

8. R. Duke and G. Rose.Formal Object Oriented Specification Using Object-Z. Cornerstones
of Computing. Macmillan, March 2000.

9. C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with FDR. In Araki
et al. [2].

10. C.A.R. Hoare and J. He.Unifying Theories of Programming. Prentice-Hall, 1998.
11. Z. Liu J. He and X. Li. A relational model for specification of object-oriented systems.

Technical report 262, UNU/IIST, 2002.
12. A. Cavalcanti J. Woodcock. The Semantics of Circus. InThe 2th International Conference

on Z and B, LNCS 2272, pages 184–203. Springer-Verlag, 2002.
13. S. C. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation of TCOZ in Unifying Theory

of Programming. InFormal Methods(FM’03), LNCS 2805, pages 321–340. Springer-Verlag,
2003.

14. A. Sherif and J. He. Towards a Timed Model for Circus. InThe 2th IEEE International
Conference on Formal Engineering Methods, Shanghai, China, 2002.

15. G. Smith. Reasoning about Object-Z specifications. Inthe Proceedings of Asia-Pacific
Software Engineering Conference (APSEC ’95), pages 794–804. IEEE Computer Society
Press, 1995.

16. G. Smith. The Object-Z Specification Language. Advances in Formal Methods. Kluwer
Academic Publishers, 2000.

17. J. Woodcock and A. Cavalcanti. The Semantics of Circus. In2nd International Conference
on Z and B, volume 2272 ofLect. Notes in Comput. Sci., pages 184–203. Springer-Verlag,
2002.

18. X.Nicollin, J.Sifakis, and S.Yovine. Compiling Real-time Specifications into Extended Au-
toamta. InIEEE TSE Special Issue on Real-Time Systems, volume 18(9), pages 794–804,
1999.

