Skip to main content

Selection of the Optimal Parameter Value for the ISOMAP Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Abstract

The ISOMAP algorithm has recently emerged as a promising dimensionality reduction technique to reconstruct nonlinear low-dimensional manifolds from the data embedded in high-dimensional spaces, by which the high-dimensional data can be visualized nicely. One of its advantages is that only one parameter is required, i.e. the neighborhood size or K in the K nearest neighbors method, on which the success of the ISOMAP algorithm depends. However, it’s an open problem how to select a suitable neighborhood size. In this paper, we present an effective method to select a suitable neighborhood size, which is much less time-consuming than the straightforward method with the residual variance, while yielding the same results. In addition, based on the characteristics of the Euclidean distance metric, a faster Dijkstra-like shortest path algorithm is used in our method. Finally, our method can be verified by experimental results very well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cleveland, W.S.: Visualizing Data. AT&T Bell Laboratories, Murray Hill, NJ, Hobart Press, Summit NJ (1993)

    Google Scholar 

  2. Keim, D.A.: Designing Pixel-Oriented Visualization Techniques: Theory and Applications. IEEE Transactions on Visualization and Computer Graphics 6(1), 59–78 (2000)

    Article  Google Scholar 

  3. Inselberg, A., Dimsdale, B.: Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. In: Visualization 1990, San Francisco, CA, pp. 361–370 (1990)

    Google Scholar 

  4. Kandogan, E.: Visualizing Multi-dimensional Clusters,Trends,and Outliers Using Star Coordinates. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 107–116 (2001)

    Google Scholar 

  5. LeBlanc, J., Ward, M.O., Wittels, N.: Exploring N-Dimensional Databases. In: Visualization 1990, San Francisco, CA, pp. 230–239 (1990)

    Google Scholar 

  6. Johnson, B.: Visualizing Hierarchical and Categorical Data. Ph.D. Thesis, Department of Computer Science, University of Maryland (1993)

    Google Scholar 

  7. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)

    Google Scholar 

  8. Pickett, R.M., Grinstein, G.G.: Iconographic Displays for Visualizing Multidimensional Data. In: Proceedings of IEEE Conference on Systems, Man and Cybernetics, pp. 514–519. IEEE Press, Piscataway (1988)

    Chapter  Google Scholar 

  9. Mao, J.C., Jain, A.K.: Artificial Neural Networks for Feature Extraction and Multivariate Data Projection. IEEE Transactions on Neural Networks 6(2), 296–317 (1995)

    Article  Google Scholar 

  10. Naud, A., Duch, W.: Interactive Data Exploration Using MDS Mapping. In: Proceedings of the 5th Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 255–260 (2000)

    Google Scholar 

  11. Shao, C., Huang, H.K.: Improvement of Data Visualization Based on SOM. In: Proceedings of International Symposium on Neural Networks, Dalian, China, pp. 707–712 (2004)

    Google Scholar 

  12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  13. de Silva, V., Tenenbaum, J.B.: Unsupervised Learning of Curved Manifolds. In: Proceedings of MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, USA, pp. 453–466 (2001)

    Google Scholar 

  14. Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., Koudas, N.: Non-Linear Dimensionality Reduction Techniques for Classification and Visualization. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, pp. 645–651 (2002)

    Google Scholar 

  15. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  16. Hadid, A., Pietikäinen, M.: Efficient Locally Linear Embeddings of Imperfect Manifolds. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 188–201. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  18. Balasubramanian, M., Schwartz, E.L., Tenenbaum, J.B., de Silva, V., Langford, J.C.: The Isomap Algorithm and Topological Stability. Science 295(5552), 7–7 (2002)

    Article  Google Scholar 

  19. Kouropteva, O., Okun, O., Pietikäinen, M.: Selection of the Optimal Parameter Value for the Locally Linear Embedding Algorithm. In: Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2002), Singapore, pp. 359–363 (2002)

    Google Scholar 

  20. Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds. Technical report, Department of Psychology, Stanford University (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shao, C., Huang, H. (2005). Selection of the Optimal Parameter Value for the ISOMAP Algorithm. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_40

Download citation

  • DOI: https://doi.org/10.1007/11579427_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics