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Abstract. This paper studies automatic extraction of structured data from Web 
pages. Each of such pages may contain several groups of structured data re-
cords. Existing automatic methods still have several limitations. In this paper, 
we propose a more effective method for the task. Given a page, our method first 
builds a tag tree based on visual information. It then performs a post-order tra-
versal of the tree and matches subtrees in the process using a tree edit distance 
method and visual cues. After the process ends, data records are found and data 
items in them are aligned and extracted. The method can extract data from both 
flat and nested data records. Experimental evaluation shows that the method 
performs the extraction task accurately.  

1   Introduction 

Structured data objects are an important type of information on the Web. Such objects 
are often data records retrieved from a backend database and displayed in Web pages 
with some fixed templates. This paper also calls them data records. Extracting data 
from such data records enables one to integrate data from multiple sites to provide 
value-added services, e.g., comparative shopping, and meta-querying.  

There are two main approaches to data extraction, wrapper induction and auto-
matic extraction. In wrapper induction, a set of data extraction rules are learnt from a 
set of manually labeled pages [5, 8, 9, 14]. However, manual labeling is labor inten-
sive and time consuming. For different sites or even pages in the same site, manual 
labeling needs to be repeated because different sites may follow different templates. 
For large scale web data extraction tasks, manual labeling is a serious drawback.  

For automatic extraction, [1, 4, 6] find patterns or grammars from multiple pages 
containing similar data records. Requiring an initial set of pages containing similar 
data records is, however, a limitation. [6] proposes a method that tries to explore the 
detailed information pages behind the current page to segment data records. The need 
for such detailed pages behind is a drawback because many data records do not have 
such pages or such pages are hard to find. [3] proposes a string matching method. 
However, it could not find nested data records. A similar method is proposed in [11]. 
[7] and [15] propose some algorithms to identify data records, which do not extract 
data items from the data records, and do not handle nested data records. Our previous 
system DEPTA [13] is able to align and extract data items from data records, but does 
not handle nested data records. 



This paper proposes a more effective method to extract data from Web pages that 
contains a set of flat or nested data records automatically. Our method is based on a 
tree edit distance method and visual cues. It is called NET (Nested data Extraction 
using Tree matching and visual cues). Given a Web page, it works in two main steps: 
1. Building a tag tree of the page. Due to erroneous tags and unbalanced tags in the 

HTML code of the page, building a correct tree is not a simple task. A visual 
based method is used to deal with this problem.  

2. Identifying data records and extracting data from them. The algorithm performs a 
post-order traversal of the tag tree to identify data records at different levels. This 
ensures that nested data records are found. A tree edit distance algorithm and vis-
ual cues are used to perform these tasks.  

Experimental evaluation shows that the technique is highly effective.  

2   Problem Statement 

Fig. 1a gives an example page segment that contains two data records. In this seg-
ment, the first data record has two nested data records, i.e., the same type of products 
but different sizes, looks, prices, etc.  

Our task: Given a Web page that contains multiple data records (at least two), we 
discover the underlying data records, extract the data items in them and put the data in 
a relational table. For Fig. 1a, we aim to produce the table in Fig. 1b. Due to space 
limitations, we omitted the red spot in Fig. 1a. Note that “image 1” and “Canning Jars 
by Ball” are common for the first and the second rows due to nesting. 

3   Building the Tag Tree 

In a Web browser, each HTML element is rendered as a rectangle. Instead of using 
nested tags (which have many errors) in the HTML code to build a tag tree, we build 
a tag tree based on the nested rectangles (see [13] for more details).  
1.  Find the 4 boundaries of the rectangle of each HTML element by calling the em-

 
(a). An example page segment 

image 1 Canning Jars by Ball 8-oz Canning Jars, Set of 4 ***** $4.95 
image 1 Canning Jars by Ball 1-pt Canning Jars, Set of 4; Blue Gingham **** $5.95 
image 2 Canning Tools by Norpro 12-dia Canning Rack **** $4.95 

(b). Extraction results 
Fig. 1: An example page and the extraction results 



bedded parsing and rendering engine of a browser, e.g., Internet explorer.  
2.  Detect containment relationships among the rectangles, i.e., whether one rectangle 

is contained inside another. A tree can be built based on the containment check. 

4   The Proposed Algorithm 

Before presenting the algorithm, we discuss two observations about data records in 
Web pages, which simplify the extraction task. The observations were made in [7]. 
1. A group of data records that contains descriptions of a list of similar objects are 

typically presented in a contiguous region of a page and are formatted using simi-
lar HTML tags, e.g., the data records in Fig. 1a.   

2. A group of similar data records being placed in a region is reflected in the tag tree 
by the fact that they are under one parent node, although we do not know which 
parent (the algorithm will find out). In other words, a set of similar data records 
are formed by some child sub-trees of the same parent node.  

These observations make it possible to design a tree based method for data extraction.  
The basic idea of our proposed algorithm is to traverse the tag tree in post-order 

(or bottom-up). This ensures that nested data records are found at a lower level based 
on repeating patterns before processing an upper level. For example, in Fig. 1a, the 
following two nested data records are found first at a lower level:  

8-oz Canning Jars, Set of 4 ***** $4.95 
1-pt Canning Jars, Set of 4; Blue Gingham **** $5.95 

Then at an upper level, all the data records are found as shown in Fig. 1b.  
The overall algorithm NET is given in Fig. 2.  

Algorithm NET(Root, T)  Traverse(Node, T) 
1 Traverse(Root, T); 1 if Depth(Node) => 3 then 
2 Output(). 2 for each Child ∈ Node.Children do 

     3 Traverse(Child, T); 
    4 Match(Node, T);  

Fig. 2: The overall NET algorithm 
Line 1 of Traverse() says that the algorithm will not search for data records if the 
depth of the sub-tree from Node is 2 or 1 as it is unlikely that a data record is formed 
with only a single level of tag(s). Match() is the procedure that performs tree match-
ing on child subtrees of Node (see below). T is a threshold for a match of two trees to 
be considered sufficiently similar. Output() in NET() outputs the extracted data to the 
user in relational tables (as a page may have multiple data areas with different struc-
tured data, and data in each area are put in a separate table). Note that some simple 
optimization can be performed to the NET algorithm. For example, if Child does not 
have any data item, e.g., text, image, etc, Traverse() may not be performed on Child.  

The Match procedure is given in Fig. 3. TreeMatch() matches two child subtrees 
under Node (line 4). In lines 2 and 3, we set TreeMatch() to be applied to every pair 
of child nodes, which ensures all necessary data item matches are captured. Alig-
nAndLink() aligns and links matched data items (leaf nodes) (line 5). The details of 
these procedures are given below.  

PutDataToTable() extracts the matched data items and puts them in tables. This 
will be discussed below together with GenPrototypes(). Note that PutDataToTable() 
does not output the final results, which is done by Ouput() (line 2 of NET() in Fig. 2).  



Tree Matching: TreeMatch() 
TreeMatch() uses a tree edit distance or matching algorithm. Since a list of data re-
cords form repeated patterns, this procedure basically finds such tree patterns.  

In this work, we use a restricted tree matching algorithm, called simple tree 
matching (STM) (Yang 1991). STM evaluates the similarity of two trees by producing 
the maximum matching through dynamic programming with complexity O(n1n2), 
where n1 and n2 are the sizes of trees A and B respectively.  

Let A and B be two trees and i ∈ A, j ∈ B are two nodes in A and B respectively. A 
matching between two trees in STM is defined to be a mapping M such that for every 
pair (i, j) ∈ M where i and j are non-root nodes, (parent(i), parent(j)) ∈ M. A maxi-
mum matching is a matching with the maximum number of pairs.  

Let A = <RA, A1, A2,…, Am> and B=<RB, B1, B2,…, Bn> be two trees, where RA and 
RB are the roots of A and B, and Ai, Bj are the ith and jth first-level sub-trees of A and 
B respectively. When RA and RB match, the maximum matching between A and B is 
MA,B+1 (MA,B is the maximum match between <A1, A2,…, Am> and <B1, B2,…, Bn>).  

In the Simple_Tree_Matching algorithm in Fig. 4, the roots of A and B are com-
pared first (line 1). If the roots match, then the algorithm recursively finds the maxi-
mum matching between first-level sub-trees of A and B and save it in W matrix (line 
8). Based on the W matrix, a dynamic programming scheme is applied to find the 
number of pairs in a maximum matching between two trees A and B.  

Note that we add a visual based condition in line 1. That is, we want to make sure 
that A and B has no visual conflict. For example, based on the visual information, if 

Match(Node, T) 
1 Children = Node.Children;  
2 for each ChildF in Children do 
3 for each ChildR in Children = Children – {ChildF} do 
4 if TreeMatch(ChildF, ChildR) > T then 
5 AlignAndLink();  
6 if all items in ChildR are aligned and linked then 
7  Children = Children – {ChildR} 
8 if some alignments have been made then 
9 PutDataInTables(Node); 
10 GenPrototypes(Node); 

Fig. 3: The Match procedure 

Simple_Tree_Matching(A, B) 
1. if the roots of the two trees A and B contain distinct symbols or there is a visual 

conflict between A and B 
2. then return (0); 
3. else  m:= the number of first-level sub-trees of A; 
4. n:= the number of first-level sub-trees of B; 
5. Initialization:  M[i, 0]:= 0 for i = 0, …, m; 
  M[0, j] := 0 for j = 0, …, n; 
6. for i = 1 to m do 
7. for j = 1 to n do 
8. M[i,j]:=max(M[i,j-1], M[i-1, j], M[i-1, j-1]+W[i, j]); 
 where W[i,j] = Simple_Tree_Matching(Ai, Bj) 
9. return (M[m, n]+1) 

Fig. 4: The simple tree matching algorithm 



the width of A is much larger than that of B, then they are unlikely to match. Due to 
space limitations, we are unable to present all the rules that we use here. These rules 
help to produce better match results and also to reduce the computation significantly. 

Align Matched Data Items: AlignAndLink() 
AlignAndLink() aligns the data items after tree matching. We simply trace back in the 
M matrices to find the matched/aligned items in the two trees. When there is more 
than one match for a node that gives the maximum result, we choose the one appear-
ing the earliest in the tree. This performs well (visual information may also be used).  

All the aligned data items are then linked. The links are directional, i.e., an earlier 
data item will point to its next matching data item. Fig. 5 gives an example, where ti 
represents a terminal (data item) node, and Nj represents a tag node. Since NET per-
forms post-order traversal, at the level N4-N5, t2-t4 and t3-t5 are matched (assume 
they satisfy the match condition, line 4 of Fig. 3). They are aligned and linked (dash 
lines). N4 and N5 are data records at this level (nested in N2). t6 is optional.  

At the level of N2-N3, TreeMatch() will only match N4 subtree and N6 subtree. 
We see that t2-t8 and t3-t9 are linked. t1 and t7 are also linked as they match (Fig. 6). 

The subtree at N5 is omitted in Fig.6 because N5 has the same structure as N4. N4 
is marked with a “*” in Fig. 6 as it is turned into a prototype data record by GenPro-
totypes(). Note that t6 is inserted into N4 as an optional node, denoted by “?”. A 
prototype represents a standard/typical data record containing the complete structure 
so far. We may not be able to use the first data record (e.g., N4) directly because it 
may not contain some optional items, which may cause loss of data items in upper 
level matches. Note also that a prototype may consist of multiple child nodes (not just 
one as N4) as a single data record may consist of multiple child nodes. To produce 
the prototype, in general we need to perform multiple alignments of data records [13]. 
However, we use a simpler method based on the extracted data (see below).  

Put Data in Tables and Generate Prototypes: PutDataInTables() and 
GenPrototypes() 
PutDataInTables (Fig. 7) puts the linked data items in tables (as there may be more 
than one data areas with different structures). A table here (DataTable in Fig. 7) is a 
linked list of one dimensional arrays, which represent columns. This data structure 
makes it easy to insert columns in appropriate locations for optional data items.  

Fig. 6: Aligned data nodes under 
N1 are linked 
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 The basic idea of the algorithm is as follows: All linked data items are put in the 
same column (line 9-12). A new row is started if an item is being pointed to by an-
other item in an earlier column (line 7). For example, for node N2 in Fig. 5 this pro-
cedure produces the DataTable in Fig. 8. For node N1 in Fig. 6, it produces the 
DataTable in Fig. 9. Here we only use *N4, but not N5 (in Fig. 5). PutDataInTables() 
is a linear algorithm.  

After putting data in tables, producing prototypes from each table is fairly simple. 
GenPrototypes() follows the tree structure based on the first data record (e.g., N4 in 
Fig. 5) and inserts those tree paths representing optional items not in the first data 
record, but in other data records. The optional items are clear from the table because 
they occupy some columns that do not have data items in the first data record. In the 
example of Fig. 9, t6? is added to N4 as an optional item which gives *N4 (the proto-

PutDataInTables(Node) 
1 Children = FindFirstReturnRest(Node.Children); // find the first child node of a data area 

and return all child nodes from it onward  
2 Tables = {};  // multiple data areas may exist under Node 
3 DataTable = create a table of suitable size; // store data items 
4 Row = 0; // DataTable row that a data item will be inserted in 
5 for each Child in Children in sequence do 
6 if Child has aligned data items then  
7 if a link to Child exists from an data item in an earlier column then  // a variable 

can keep track of the current column 
8  Row = Row + 1;  
9 for each data item d in Child do 
10 if d does not have in-coming link then  
11 add a new column and insert d in Row; 
12 else Insert d in Row and the same column as the data item with an out-going 

link pointing to d.  
13 else  Tables = Tables ∪ {DataTable}; 
14 if no aligned data in the rest of Children nodes then 
15 exit loop  
16 else DataTable = create a table of suitable size; 
17  Row = 0; 

Fig. 7: The PutDataInTables procedure 

        
 

N4 t2  t3    
N5 t4  t5  t6  

Fig. 8: DataTable for N4 and N5 (children of N2) 

 
 

N2 t1  t2  t3  t6?  
N3 t7  t8  t9    
Fig. 9: DataTable for N2 and N3 (children of N1) 

t1 t2 t3  
t1 t4 t5 t6 
t7 t8 t9  

Fig. 10: Final output (children of N1) 

DataTable 

DataTable            



type). In Fig. 6, we can also see that t6? is attached to *N4.  

Output Data and Prototypes: Output() 
Output() outputs the final data tables, which are tables not covered by any upper level 
tables. For example, Fig. 10 shows the final table for the tree in Fig. 5. Note that the 
nested data are expanded and included. The procedure also outputs the final proto-
types that can be used to extract data from similar pages from the same site. 

5   Empirical Evaluation 

This section evaluates NET. We compare it with the most recent system DEPTA [13], 
which does not find nested data records. We show that for flat data records, NET 
performs as well as DEPTA. For nested data records, NET also performs very well. 
Our experimental results are given in Table 1.  

Column 1 lists the site of each test page. Due to space limitations, we could not 
list all of them here. The number of pages that we used in our experiments is 40. The 
first 32 pages (without nesting) are from DEPTA. The last 8 pages all contain nested 
data records. We did not collect more nested pages for testing because such pages are 
relatively rare and quite difficult to find.  

Columns 2 and 4 give the numbers of data items extracted wrongly (Wr.) by 
DEPTA and NET from each page respectively. In x/y, x is the number of extracted 
results that are incorrect, and y is the number of results that are not extracted. The tree 
similarity threshold is 0.7, which is the default of our system and is used in all our 

Table 1: Experimental results

DEPTA NET  
URL Wr. Corr. Wr. Corr. 

Without Nesting 
http://accessories.gateway.com/ 0/0 15/15 0/0 15/15 
http://google1-cnet.com.com/ 0/0 180/180 0/0 180/180 
http://google-zdnet.com.com/ 0/0 80/80 0/0 80/80 

… … … … … 
http://sensualexpression.com/ 0/0 12/12 0/0 12/12 
http://www.shopping.com 0/0 35/35 0/0 35/35 
http://www.tigerdirect.com/ 0/0 70/70 0/0 70/70 

Recall 97.15% 98.99% 
Precision 99.37% 98.92% 

With Nesting 
http://froogle.google.com/ 12/0 124/136 0/0 136/136 
http://www.cooking.com/ 0/15 48/63 1/0 62/63 
http://www.kmart.com/ 38/0 0/38 0/0 38/38 
http://www.rei.com/ 45/26 32/103 2/0 101/103 
http://www.sonystyle.com/ 78/23 0/101 0/0 101/101 
http://www.target.com/ 0/43 36/79 0/0 79/79 
http://www.walmart.com/ 50/0 28/78 0/0 78/78 
http://www1.us.dell.com/ 189/0 32/221 0/0 221/221 

Recall 36.63% 99.63% 
Precision 42.13% 100% 



experiments. Columns 3 and 5 give the numbers of correct (Corr.) data items ex-
tracted by DEPTA and NET from each page respectively. Here, in x/y, x is the num-
ber of correct items extracted, and y is the number of items in the page.   

From the table, we can observe that without nesting the results of DEPTA and 
NET are both accurate. With nesting, NET is much better. DEPTA still can correctly 
extract some data items because not all data records in the pages have nested records. 
The precision and recall are computed based on the extraction of all pages.  

6   Conclusions 

In this paper, we proposed a more effective technique to perform automatic data 
extraction from Web pages. Given a page, our method first builds a tag tree based on 
visual information. It then performs a post-order traversal of the tree and matches 
subtrees in the process using a tree edit distance method and visual cues. Our method 
enables accurate alignment and extraction of both flat and nested data records. Ex-
perimental results show that the method performs data extraction accurately.  
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