Making Metamodels Aware of Concrete Syntax*

Frédéric Fondement and Thomas Baar

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
{frederic.fondement, thomas.baar}@epfl.ch

Abstract. Language-centric methodologies, triggered by the success of
Domain Specific Languages, rely on precise specifications of modeling
languages. While the definition of the abstract syntax is standardized by
the 4-layer metamodel architecture of the OMG, most language specifi-
cations are held informally for the description of the semantics and the
(graphical) concrete syntax. This paper is tackling the problem of spec-
ifying the concrete syntax of a language in a formal and non-ambiguous
way. We propose to define the concrete syntax by an extension of the
already existing metamodel of the abstract syntax, which describes the
concepts of the language, with a second layer describing the graphical
representation of concepts by visual elements. In addition, an intermedi-
ate layer defines how elements of both layers are related to each other.
Unlike similar approaches that became the basis of some CASE tools, the
intermediate layer is not a pure mapping from abstract to concrete syn-
tax but connects both layers in a flexible, declarative way. We illustrate
our approach with a simplified form of statecharts.

Keywords: Metamodeling, MOF, UML, OCL, Concrete Syntax Descrip-
tion, Visual Languages

1 Introduction

Productivity gains brought by Domain Specific Languages (DSL) [1] have shown
the importance of using appropriate modeling languages in the early phases of
the software lifecycle. DSLs have triggered the new trend of language-centric
methodologies (see [2, 3] for first proposals) and are based on the idea that the
first step to efficiently treat a problem is to create or to customize a language that
allows to describe the problem adequately. The precise definition of DSLs is in
practice often a task for domain or methodology specialists who have only basic
knowledge on language design. To minimize the effort, all phases of the language
definition should be standardized and supported by tools or frameworks.

A modeling language is usually defined in three major steps. The first one is
to define concepts of the language, i.e. its vocabulary and taxonomy, as captured
by its abstract syntax. Then, its semantics should be described in such a form
that the concepts are clearly understood by the users of the language. Finally,

* This work was supported by HASLER-Foundation, project DICS-1850.

it is necessary to precisely describe the notation, as captured by its concrete
syntax. Whereas the semantics definition is out of the scope of this paper, we
will concentrate on the concrete syntax part, and especially on its relations to
the abstract syntax.

The clear separation between abstract and concrete syntax is a technique
to cope with the complexity of real-world language definitions since it allows
to define the language concepts independently from their representation. For
language designers, it is of primary importance to agree on language concepts
and on the semantics of these concepts. The graphical representation of the
concepts is often considered less important and is described in many language
specifications only informally. However, an intuitive graphical representation is
crucial for usability and indispensable for tool vendors who want to support a
new modeling language with graphical editors, model animators, debuggers, etc.
Sometimes, it is appropriate to have for one language more than one graphical
representation, for instance when different stakeholders use the same language
but need different views on the model. An example of such a language is ORM [4]
that provides a graphical syntax intended for ontology engineers and a pseudo-
natural syntax intended for non-specialists.

Metamodeling is a widely used technique to capture the abstract syntax of a
language. A well defined set of metamodeling constructs such as classes, associa-
tions, attributes, etc., complemented with a constraint language such as Object
Constraint Language (OCL) allows one to define the concepts of the language
and the relationships between them [5]. The abstract syntax is doubtlessly one
of the most important parts of language definitions. Each sentence of the lan-
guage can be represented without loss of semantic information as an instance of
the metamodel. Such an instance can be represented in a standardized, textual
format based on the general-purpose representation language XMI [6]. Model
representations based on XMI are useful for interchanging models between tools
but humans need more comprehensible views on models.

Our approach defines the graphical concrete syntax of modeling languages
by complementing each metaclass in the metamodel with a display scheme. A
display scheme contains an iconic and a constraining part. The iconic part in-
troduces a new layer of display classes that define the visual objects for the
representation of language concepts. The constraining part defines the connec-
tion between the instances of the metaclasses and their graphical representation
by the instances of the display classes. Technically, the constraining part of a
display scheme consists of a display manager class that is placed between the
metaclass and the display class. Furthermore, display manager classes serve as
anchor points for OCL constraints that are used to describe the connection
declaratively.

The definition of our representation classes is heavily inspired by visual lan-
guage definition techniques [7]. Representation classes take for instance into ac-
count the spatial relationships between visual objects such as overlap, right, hid-
denBy, etc., and whether visual objects are connected by a polyline, curved line,
etc. However, there are some noteworthy differences between our approach and

common approaches to define a visual language. Firstly, many visual language
definitions do not explicitly distinguish between concrete and abstract syntax.
In our approach, the classes for the abstract syntax are completely separated
from classes for concrete syntax. Secondly, the mainstream approach to define a
visual language is by graph grammars (see [8] for an overview). The underlying
idea is to generate all syntactically correct sentences of the visual language as
derivations of the grammar rules. In order to decide the question, whether or
not a given diagram is syntactically correct, a derivation of the graph grammar
rules must be constructed. The same question is decided following our approach
just by evaluation of constraints attached to the display manager classes.

The rest of the paper is organized as follows. First, in Sect. 2, a simplified
version of the statechart language is briefly described. This language will be used
as a case study in Sect. 3 where our approach is stepwise developed. Section 4 will
give an overview on related approaches. Finally, Sect. 5 will present conclusions
and future work directions.

2 The Statechart Language

ModelElement

name : String

StateMachine
Event

source outgoing -
trigger | 0..1
subvertex 1 * »
StateVertex Transition <*>—
1 *
A target incoming
| top |1
PseudoState -
- - «enumeration»
kind : PseudoStateKind PseudoStateKind
X I I I initial
container { - composite Simple Final choice
0.1 State State State

Fig. 1. A simplified metamodel for statecharts

We briefly introduce here the concepts of a simplified, but yet illustrative
version of statecharts [9] whose metamodel is shown in Fig. 1. State vertices
might be connected by transitions. A transition has exactly one source vertex
and one target vertex. A vertex is either a pseudo state (initial state, choice,
etc.) or a state, which is in turn either a composite state (i.e. containing other
vertices and transitions), a simple state, or a final state. Transitions are triggered

Table 1. Symbols for representation of concepts

Transition|SimpleState| Composite | FinalState | PseudoState | PseudoState
State (initial) (choice)
name

—event=> name L(MJ @ ° O

by events. A state machine is given by its top state. Not shown in Fig. 1 are well-
formedness rules that complement the metamodel and stipulate, for example,
that a final state can never be the source vertex and an initial pseudo-state can
never be the target vertex of any transition.

:StateMachine

:CompositeState

subvertex p N
b Transiti |ﬂ|| d:CompositeStat
subvertex :Transition closed:CompositeState
opened
:PseudoState
kind=initial :PseudoState open close
source kind=initial subvertex

source

:Transition

subvertex

opened:SimpleState
target

:Transition

target

lock unlock

target

unlocked:SimpleState
source

:Transition

ocked:SimpleState

subvertgx

source

:Transition

subvertex

(a) Instantiation of metamodel (b) More human-friendly,

graphical notation

Fig. 2. Two representations of the same statechart

An informal concrete syntax definition might propose the symbols shown in
Table 1 for the representation of language concepts defined in the metamodel.
Note that there is no need to define a symbol for StateMachine because the state
machine is represented by its top state. The intended meaning for the concrete
syntax definition is illustrated with Fig. 2. Here, the same statechart sentence is
shown both as an raw instance of the metamodel and, in a more intuitive form,
using the intended concrete syntax. For the sake of keeping Fig. 2(a) compact,
events have been omitted in the metamodel instance.

This simple example reveals already some of the weaknesses of informal con-
crete syntax definitions. The mapping of concepts to visual objects as given in
Table 1 must be complemented by comments stating that the name of a com-
posite state is optional in the upper part of the symbol whereas the lower part
optionally shows the representation of the substates. A transition representation
(an arrow) starts in one representation of the transition’s source and ends in
one representation of its target. If a symbol contains parameters as placehold-
ers for additional information, e.g. transitions are supplemented with events,
then it must be specified where the information come from, e.g. that the event
attached to a transition is indeed the same event that triggers the transition.
Another problem is that there may be different icons for the same concept, as
for PseudoState. Here, it is necessary to describe precisely all conditions for the
selection of the correct icon. It is also possible to represent the same concept with
variants of the same icon. For instance, a composite state is displayed with or
without its name what requires to display or to suppress the name compartment
of the symbol.

3 A Scheme-Based Approach to Concrete Syntax
Definition

This section presents our approach to define a concrete syntax of a given lan-
guage. We concentrate here on the definition of a graphical syntax for two rea-
sons. First, most modeling languages provide nowadays an (often informally de-
fined) graphical notation. Second, graphical notations are more challenging as,
for example, purely textual notations. In fact, our approach can also be applied
for the definition of textual notations. In this case, the display classes on the
concrete syntax layer would represent tokens and would be extensions of String
with additional attributes to encode the location of the currently represented
model element.

The concrete syntax is defined by a set of display schemes. A display scheme
is attached to each metaclass of the metamodel. Although schemes have a formal
structure and can be processed by tools, the syntax definition they provide is
nevertheless easily accessible by humans.

The scheme-based approach differs in two respects from related approaches.
First, we do not aim to define a completely new language but concentrate just
on the concrete syntax. This goal is different from what most approaches based
on graph grammars aiming at. They define a language from scratch and have
to capture in a way both the concrete and the abstract syntax of a language.
In most cases, the clear separation between abstract and concrete syntax gets
lost. Second, a scheme-based syntax definition intentionally ignores many prob-
lems related to tool support for the defined syntax. For example, a graphical
editor usually stores the elements of both the abstract syntax layer (the model
elements) and the concrete syntax layer (the display objects). The scheme-based
syntax definition will provide simple criteria to decide whether or not the model
elements are represented correctly by the display objects. However, it is out of

the scope of the concrete syntax definition to describe the mechanisms how ed-
itors can keep abstract and concrete syntax layers in sync. For example, if the
user of the editor creates a new visual object, then, internally, the editor has
also to create an instance of the corresponding metaclass and to connect both
instances.

3.1 Visual Language Theory

Almost each of todays modeling languages comes with a graphical representa-
tion in order to improve readability and usability. Thus, the concrete syntax of
modeling languages is usually defined in terms of a visual language. For this
reason, we summarize here the relevant basic terms from visual language theory
before we explain our approach in detail in the next subsection.

A visual language describes a set of visual sentences which in turn are given by
a set of visual elements. A visual element can be seen as an object characterized
by values of some attributes. It depends on the language which attributes are
important for a graphical element', some of the most frequently used attributes
are shape, color, size, position, attach regions.

Visual elements are placed in the Cartesian plane. For some languages, clas-
sified in [7] as geometric-based languages, the position of visual elements is an
important information. Other languages ignore the position of elements but
focus on the connections between them (connection-based languages). In fact,
most real-world languages show characteristics of both geometric-based and
connection-based languages and are thus called hybrid languages. The strong
classification into geometric-based and connection-based languages is notwith-
standing extremely helpful since it uncovers the 'ingredients’ a visual language
can have.

For geometric-based languages there are two possibilities to encode the po-
sition of a visual element. If the language is based on absolute positions then
a sentence consisting of a circle and a square placed at point (1,0) and (2,0),
respectively, is different from the sentence where the circle is placed at (1,0)
and the square is placed at (3,0). If the language is based on relative positions
(spatial relationships) then both sentences would be described by the fact that
the square is placed to the right of the circle. Some of the most frequently used
spatial relationships are right, up, contain, overlap (see [7] for a more complete
list). It heavily depends on the visual language which of the spatial relationships
are considered to be important. Sometimes, languages are geometric-based even
if it seems that the visual elements can be arranged freely. One example is the
language of UML class diagrams. At a first glance, rectangles for classes can be
placed freely at any point in the space. For instance, a diagram consisting of two
rectangles labeled with A and B would always be read as the same sentence no
matter where the (rectangles for) class A and B are placed. However, there is one

! There is a common classification of attributes into graphical, syntactical and seman-
tic attributes. Only the first two classes of attributes are relevant for our approach
because semantic attributes are already captured by the abstract syntax definition.

exception from this rule: If - let’s say - the rectangle for B appears completely
inside the rectangle for A, then the class A is read to be composed of class B.
Thus, the spatial relation contain is important to define the visual representa-
tion of class diagrams whereas the relations right, up, etc., do not play any role
here.

Connection-based languages allow visual elements to be placed arbitrarily in
the space. None of the spatial relationships has an influence on the parsing of
a sentence of such languages. Instead, it is an important information whether
two elements are connected by a connector (usually a line, polyline, curved line)
or not. Connectors start and end in special regions of visual elements, so-called
attach regions. A visual object can have one or more attach regions which some-
times collapse to attach points. As already mentioned, visual language definitions
formalize an attach region of a visual element just as an attribute of it. This ab-
stracts from the problem to define where an attach region is exactly located
in respect of the visual element (e.g. in the lower right corner). However, some

symbol editors, e.g. VLDESK [10] or AToM3 [11], allow to exactly define the po-
sition of attach regions inside a visual element. They also solve the very similar
problem of defining a shape for visual elements.

3.2 Scheme-based Definition of Concrete Syntax

Metaclass | |Display Manager| | Display
(Concept) Class Class
A A A
instanceOf instanceOf instanceOf Visual Object

. . . mappedTo E
Model Element —Display Manager— Display Object (&-----------------

Fig. 3. Scheme definition architecture

The definition of a concrete syntax means to define (1) a visual language,
i.e. visual elements with relevant attributes and relationships between them and
(2) how the visual elements are connected to the concepts of the language they
are supposed to represent. Figure 3 gives an overview how both goals are ba-
sically achieved by our approach: A sentence of a visual language, i.e. a set of
visual objects, is first mapped to a set of display objects. This mapping and
the formalism to define the graphical rendering of visual objects is intentionally
left open in our approach. We have experienced with Scalable Vector Graphics
(SVG) [12], a language to describe diagrams, but other formalisms or existing
tools as symbol editors can be applied for this purpose as well.

Display classes declare for display objects attributes and operations what
helps to lift up the abstraction level on which the syntax definition is given. An

attribute of a display object summarizes the value of more low level attributes
of the underlying visual object such as xpos, ypos, size, shape, color, etc. The
operations of a display object — as we will see later, operations correspond to
spatial relationships such as contain, overlap, etc. — have to be implemented by
the underlying visual object. If SVG is taken as a formalism to describe visual
objects, the implementation can be done smoothly. If another formalism is taken,
some additional adapter classes might be required.

The connection between display objects and model elements is given by dis-
play managers which are attached to model elements. Usually, each metaclass is
connected with exactly one display manager class that in turn is connected with
the display class defining the graphical representation. The criteria for a syntac-
tically correct representation are defined in form of OCL invariants attached to
the display manager classes. A set of display objects is a syntactically correct
representation of a model, i.e. a set of model elements, if and only if the display
managers attached to the model elements satisfy all invariants of the display
manager classes.

3.3 A Concrete Syntax Definition for Statecharts

We illustrate our approach with a formal definition of the concrete syntax of
statecharts whose abstract syntax was given in Sect. 2. Prior to the formal
definition, an informal version of it should illustrate the gap between the abstract
and concrete syntax, as already introduced in Sect. 2:

Problem 1 A text is shown on the top of transitions to represent the triggering
event if it exists;

Problem 2 Depending on the viewer’s choice, a composite state is depicted
either by a text showing the name of the composite state, or by a region
showing the contents of the composite state (i.e. its contained states), or
both. In the latter case, the two regions are separated by a line;

Problem 3 The plain side of the transition icon is connected to a representation
of its source state; the arrow side is connected to a representation of its target
state;

Problem 4 The shape of a pseudo-state representation depends on its kind.

Figure 4 shows the backbone of the statechart concrete syntax definition.
Four display schemes for graphically representable concepts of statecharts are
defined: Transition, SimpleState, CompositeState, and PseudoState. The
display scheme for FinalState has been omitted for the sake of brevity. All
other concepts defined in the metamodel are either abstract (ModelElement,
State) and thus will be depicted by the scheme of their subclass, or are displayed
implicitly by the concepts they are attached to (StateMachine by its top state
and Event by the transition it triggers). Note that the missing display scheme
for Event might make the graphical representation of a model incomplete. If
an event does not trigger any transition (according to the metamodel it is not
mandatory to trigger at least on transition) then this event is not shown in the
representation.

«Interface»
GraphicalObject

contain()
overlap()

Constraining Part Iconic Part
Metaclasses Display Manager Display Classes
Classes
= — |me [dm - 0 -
h=R) Transition TransitionDM SVGTransition -----------
2 < D..1 1
£ f
SVGArrowENd |-
start
SVGArrowENnd |-
end
0.1] svGText |___
event |text:String
= E Simple |me dm| Simpl o
It imple imple 9 impleState k----------
lgg State |1 x| StateDM 1 SVGSimpleState
Lo
XY
S | 1
2 SVGText f--
name
= ite |[me [dm D i
5 §| |Composite Composite V2| SVGComposite | |
o -S State 1 * StateDM State
=)
3 showName 0..1
g' showContent SVGText -
S name
0..1 .
SVGLine
sgparator
0.1
SVGContents -
contents
v O
= Pseudo |me | dm| pseudo VO|SVGPseudo |
(g < State 1 0..1| StateDM 1 State
=40
>
& SVGlnitial
SVGChoice

Fig. 4. Display schemes for statechart metaclasses

N\

Each display scheme can be split into two parts. The iconic part defines the
graphical rendering of visual objects. The constraining part fills the gap between
the model elements and the display objects. A display manager class is connected
to exactly one metaclass by the association end me (for model element); thus, ev-
ery display manager refers to exactly one model element. The cardinality of the
opposite association end dm (for display manager) encodes how many different
display managers can exist for each model element. Following the syntax defini-
tion given in Fig. 4, model elements of Transition and PseudoState can only be
depicted at most once whereas instances of SimpleState and CompositeState
may be represented arbitrarily often. Thus, also such representations of a state-
chart are syntactically correct that omit parts of the model or show some states
more than once.

Iconic part of a Scheme For each display manager class there is always a
standard association to the corresponding display class with multiplicity 1 and
role name vo (abbreviation for visual object) on the end of the display class. A
display class represents an abstraction of visual objects that have to be defined
in terms of shape, color, etc. It also declares some query facilities. Some standard
queries, as introduced in Sect. 3.1, are declared in interface GraphicalObject
that must be implemented by every display class. This ensures that any display
object is capable to respond to such queries. As seen below, queries are heavily
used in the OCL invariants attached to display manager classes.

SVGTransition
' event : SVGText

end:SVGArrowEnd

Fig. 5. The icon for Transition

Often, a model element is not displayed just by one atomic visual object but
rather by a composition of such objects. Thus, the main display object linked
to the display manager is composed of sub-objects whose position, size, etc.,
is controlled by the main display object. Figure 5 illustrates the internal defi-
nition of SVGTransition, the display class to represent transitions. Objects of
SVGTransition are composed of one sub-object to display the event and two
sub-objects representing attach points. Whereas the sub-object to display the
event is optional, the two sub-objects of type SVGArrowEnd are mandatory.

Besides composing display classes, it is also sometimes necessary to subclass
them. The class SVGPseudoState is an example. The concept PseudoState is

represented depending on the value of attribute kind by completely different
shapes. Each of these shapes is defined by a single display class (e.g. SVGInitial
for initial states, SVGChoice for choices) that inherits from SVGPseudoState. The
class SVGPseudoState itself is declared as abstract.

Constraining part of a Scheme Based on the backbone shown in Fig. 4, the
relationship between abstract and concrete syntax layers can be formalized by
OCL invariants. In order to illustrate the expressive power of these formal con-
straints, we discuss now each of the four, already sketched problems of informal
syntax definitions.

Problem 1 requires to keep attribute values for model elements and repre-
senting display objects in sync. This problem can be resolved by the following
constraint:

— Problem 1
context TransitionDM
inv: if self.me.trigger —>isEmpty ()
then self.vo.event—>isEmpty ()
else self.vo.event.text = self.me.trigger .name
endif

The constraint ensures that the correct name of the event is displayed when-
ever a transition is triggered by an event. Sometimes, it might be appropriate to
relax this rule so that the triggering event of a transition can be suppressed in
the graphical representation. In this case, the invariant looks as follows:

— Problem 1 with optional event display
context TransitionDM
inv: self.vo.event—>notEmpty () implies
self .vo.event.text = self.me.trigger .name

Problem 2 is an example for user-directed representation policies which can
be encoded by attributes of type Boolean in the display manager class. Problem
2 is captured by the following constraint:

— Problem 2
context CompositeStateDM
inv: self.showName = self.vo.name—>notEmpty () and

self .showContent = self.vo.contents—>notEmpty () and
(self .showName and self.showContent)
= self.vo.separator—>notEmpty ()

Problem 3 is similar to Problem 1 but the synchronization between model and
representation cannot be achieved by constraining the values of attributes. In-
stead, the spatial relationships between display objects have to be taken into
account. This can be done by an OCL invariant due to the declaration of
overlap(GraphicalObject) :Boolean in interface GraphicalObject that is im-
plemented by all display classes. Note that the semantics of the query overlap is
hidden in the implementation of the visual objects. Thus, the ’correctness’ of the

OCL invariant depends on the ’correctness’ of the implementation of overlap
in the visual objects.

— Problem 3
context TransitionDM
inv: self.me.source.dm.vo—>one(svo|
self.vo.start.overlap(svo)) and
self .me. target .dm.vo—>one(tvo|
self.vo.end.overlap (tvo))

Problem 4 is an example for the representation of modeling elements belong-
ing to the same concept (PseudoState) by different shapes. The OCL invariant
takes advantage of OCL’s ability to check the actual type of an expression with
0oclIsKind0f).

— Problem 4
context PseudoStateDM
inv: let kindAsso:Set(TupleType(kind:PseudoStateKind ,
type:OclType)) =
Set{Tuple{kind = PseudoStateKind:: initial ,
type = SVGInitial},
Tuple{kind = PseudoStateKind :: choice ,
type = SVGChoice}}
in
self.vo.oclIsKindOf(
kindAsso—>any(t| t.kind = self.me.kind).type)

4 Related Work

The problem of defining a graphical concrete syntax on the top of a metamodel
has already been addressed by the OMG and numerous authors.

The OMG has adopted a standard for diagram interchange for UML2.0
(UML-DI [13]) to overcome the shortcomings of model interchange based on
XMI. Indeed, XMI focuses on transmitting pure modeling data, given by the
abstract syntax of models, and ignores graphical information. UML-DI provides
a generic metamodel for extending any other metamodel so that graphical infor-
mation can also become part of the data interchanged in XMI. However, UML-DI
only concentrates on gathering graphical data and does not focus on how those
data are structured. Consequently, these data are still ambiguous and tools in-
terchanging them still need to agree on their meaning. For instance, the UML-DI
meaning for UML is defined using an XMI to SVG translator that cannot be
reused for a completely new language. Moreover, neither UML-DI nor XMI-to-
SVG translators capture spacial relationships in order to express, for example,
that two graphical elements do overlap.

Other approaches, like XMF [14], argue that the concrete syntax involves a
representation language. An example of such languages is Scalable Vector Graph-
ics (SVG) [12], but the XMF framework provides its own graphical language in
form of a representation metamodel with well defined semantics. Here, semantics

corresponds to a graphical representation rendering. Thus, to define the repre-
sentation of a given language whose abstract syntax is given by a metamodel,
it is sufficient to define a model transformation between the metamodel of the
language and the representation metamodel.

Another approach is taken by most meta-CASE tools, like GME [15], DOME
[16], MetaCASE [17], or AToM3 [11]. In principle, they define a representation
template for each metaclass in the abstract syntax. A template includes a set of
representation language constructs, as instances of the representation language
metamodel, together with some holes to make variants in the representation
possible. Again, each of these tools impose its own graphical language. When
a model element has to be represented, the holes are replaced depending on
relevant information from the current model. Unfortunately, while most of these
tools provide a constraint language that can be used to impose restrictions on
the abstract syntax, they do not provide access to the concrete syntax. A notable
exception is AToMS3 that allows constraints written in Python to select among
variations of the icons. However, also in AToM? the definition of the concrete
syntax is done at a much lower level as our approach which uses OCL as the
main language to specify the concrete syntax.

Graph-grammar based language definitions (as Triple-Graph-Grammar [18],
GenGED [19]) are constructive and aim at finding a derivation for a given dia-
gram. In addition to rules, GenGED offers the possibility to attach constraints
to the concrete syntax classes (called type graph nodes in the GenGED terminol-
ogy), but the purpose of the constraints is merely the computation of a possible
layout for a diagram. The language definition itself is still based on graph gram-
mar rules (see [20] for the GenGED definition of the same statechart fragment
as we used here for illustration).

5 Conclusion

We have presented a way to specify the concrete syntax of languages whose
abstract syntax is already available in form of a metamodel. The main idea is to
complement the metamodel with display schemes.

The iconic part of a scheme defines some display classes for representing
model elements. Variants in the representation are expressed by attributes or
methods attached to the display classes. We do not impose any language to
define display classes but assume that display classes do implement the interface
GraphicalObject.

The constraining part of a scheme consists of a display manager class to-
gether with associations to metaclasses and display classes as well as a number
of constraints. The purpose of the constraints is to stipulate restrictions for the
visualization of model elements. The expressive power of constraints has been
illustrated by applying them on a simplified version of the statechart language.

Our scheme-based approach resides at a higher level abstraction than most
other approaches. Except for the shape information for the icons, only OCL
constraints have to be attached to display manager classes. The relatively high

number of new classes that must be defined is outweighed by the fact that many
of these classes can be defined mechanically.

We are currently implementing our approach in form of a free editor that
is customizable with modeling language specifications. The user is able to place
different symbols on a canvas and by creating a symbol (instance of a display
class) the corresponding display manager and model element is created as well.
At any time, the user can ask the editor whether the current diagram is syntac-
tically correct or not. Internally, the editor evaluates then all OCL constraints
attached to the extended metamodel. This check might be costly if implemented
naively because each constraint must be checked for a rather high number of
objects. A solution for this problem is to use strategies to determine only those
constraints that might be broken by the changes in the diagram made after the
last check (see [21]). However, the efficiency aspect becomes less important if our
free editor is seen as a reference implementation for concrete syntax definitions.
Other tool vendors, that have implemented the same language using more effi-
cient techniques, could test whether their tools comply with the formally given
syntax of the modeling language or not.

References

1. Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James Hook, Alex Kotov,
Jeffrey Lewis, Dino Oliva, Tim Sheard, Ira Smith, and Lisa Walton. A software
engineering experiment in software component generation. In Proceedings of the
18th International Conference on Software Engineering (ICSE), pages 542-552,
1996.

2. Stuart Kent. Model driven engineering. In Michael J. Butler, Luigia Petre, and
Kaisa Sere, editors, Proceedings of Third International Conference on Integrated
Formal Methods (IFM 2002), volume 2335 of LNCS, pages 286—298. Springer, 2002.

3. Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ intro-
duction: Model-driven development. IEEE Software, 20(5):14-18, 2003.

4. Terry Halpin. Information Modeling and Relational Databases : From Conceptual
Analysis to Logical Design. Morgan Kaufmann, second edition, 2003.

5. OMG. Meta-Object Facility (MOF) 1.4. OMG Document formal/02-04-03, April
2002.

6. OMG. XML Metadata Interchange (XMI) 2.0. OMG Document formal/03-05-02,
May 2003.

7. Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe Polese. A
classification framework to support the design of visual languages. Journal of
Visual Languages and Computing, 13(6):573-600, 2002.

8. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

9. David Harel. Statecharts: A visual formulation for complex systems. Science of
Computer Programming, 8(3):231-274, 1987.

10. Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe Polese. A framework for
modeling and implementing visual notations with applications to software engi-
neering. ACM Transactions on Software Engineering and Methodology (TOSEM),
13(4):431-487, 2004.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Juan de Lara and Hans Vangheluwe. Using AToM3 as a meta-case tool. In Pro-
ceedings of the 4th International Conference on Enterprise Information Systems
(ICEIS), pages 642—649, 2002.

W3. Scalable Vector Graphics (SVG) 1.1 Specification, January 2003.

OMG. UML 2.0 diagram interchange specification - final adopted specification.
OMG Document ptc/03-09-01, September 2003.

Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied
metamodelling: A foundation for language-driven development. Available at
http://albini.xactium.com, 2005.

Matthew J. Emerson, Janos Sztipanovits, and Ted Bapty. A MOF-based meta-
modeling environment. Journal of Universal Computer Science, 10(10):1357-1382,
2004.

Honeywell. Dome users guide. http://www.htc.honeywell.com/dome/support.htm,
2000.

MetaCase. Abc to metacase technology. http://www.metacase.com/papers, 2004.
White Paper.

Andy Schiirr. Specification of graph translators with triple graph grammars. In
Proceedings of 20th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’94), volume 903 of LNCS, pages 151-163. Springer, 1995.
GenGED Team. GenGED homepage. http://tfs.cs.tu-berlin.de/ genged/, 2005.
Roswitha Bardohl, Hartmut Ehrig, Juan de Lara, and Gabriele Taentzer. Integrat-
ing meta-modelling aspects with graph transformation for efficient visual language
definition and model manipulation. In Proceedings of 7th International Conference
on Fundamental Approaches to Software Engineering (FASE 2004), volume 2984
of LNCS, pages 214-228. Springer, 2004.

Jordi Cabot and Ernest Teniente. Determining the structural events that may
violate an integrity constraint. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, Proceedings of UML 2004 - The Unified
Modelling Language: Modelling Languages and Applications, volume 3273 of LNCS,
pages 320-334. Springer, 2004.

