Skip to main content

Adaptive Deinterlacing for Real-Time Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3768))

Abstract

In general, motion compensated (MC) deinterlacing algorithms can outperform non-MC (NMC) ones. However, we often prefer to choose the latter due to the considerations of error propagation and computational complexity, especially in real-time applications such as video compression and transcoding [1]. How to get a compromised solution between performance and complexity is a challenging problem, which will be addressed in this paper. We first propose a directional adaptive algorithm for motion detection, and then introduce a reasonable and applicable adaptive MC/NMC deinterlacing mechanism to meet the requirements of real-time applications. The proposed adaptive deinterlacing scheme is proved efficient by both subjective visual sensation and objective experimental results. Feasibility of real-time applications is given as well as the coding efficiency tested by the Audio Video coding Standard (AVS) of China. For further improvement, a block-based local modal is brought forward aiming at perfect effects on unconventional motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vetro, A., Christopoulos, C., Sun, H.: Video Transcoding Architectures and Techniques: An Overview. IEEE Signal Processing Magazine 20(2), 18–29 (2003)

    Article  Google Scholar 

  2. Glenn, W.E.: Interlace and Progressive Scan Comparisons Based on Visual Perception Data. SMPTE Journal, 114–117 (February 1999)

    Google Scholar 

  3. Pigeon, S., Guillotel, P.: Advantages and Drawbacks of Interlaced and Progressive Scanning Formats. CEC RACE/HAMLET Deliverable R2110/WP2/DS/R/004/b1 (June 1995)

    Google Scholar 

  4. Heng, B.: Application of Deinterlacing for the Improvement of Surveillance Video. MS Thesis, Massachusetts Institute of Technology (June 2001)

    Google Scholar 

  5. Vandendorpe, L., Cuvelier, L.: Statistical Properties of Coded Interlaced and Progressive Image Sequences. IEEE Transactions on Image Processing 8(6), 749–761 (1999)

    Article  Google Scholar 

  6. Advanced Television Systems Committee, http://www.atsc.org

  7. Audio Video coding Standard Working Group of China, http://www.avs.org.cn/en

  8. Kwon, S., Seo, K., Kim, J., Kim, Y.: A Motion-Adaptive De-interlacing Method. IEEE Transactions on Consumer Electronics 38(3), 145–150 (1992)

    Article  Google Scholar 

  9. Delogne, P., Cuvelier, L., Maison, B., Caillie, B.V., Vandendorpe, L.: Improved Interpolation, Motion Estimation and Compensation for Interlaced Pictures. IEEE Transactions on Image Processing 3(5), 482–491 (1994)

    Article  Google Scholar 

  10. De Haan, G., Bellers, E.B.: Deinterlacing of Video Data. IEEE Transactions on Consumer Electronics 43(3), 819–825 (1997)

    Article  Google Scholar 

  11. De Haan, G., Bellers, E.B.: Deinterlacing—An Overview. Proceedings of the IEEE 86(9), 1839–1857 (1998)

    Article  Google Scholar 

  12. Sugiyama, K., Nakamura, H.: A Method of De-interlacing with Motion Compensated Interpolation. IEEE Transactions on Consumer Electronics 45(3), 611–616 (1999)

    Article  Google Scholar 

  13. Jung, Y., Choi, B., Park, Y., Ko, S.: An Effective Deinterlacing Technique Using Motion Compensated Interpolation. IEEE Transactions on Consumer Electronics 46(3), 460–466 (2000)

    Article  Google Scholar 

  14. Kwon, O., Sohn, K., Lee, C.: Deinterlacing Using Directional Interpolation and Motion Compensation. IEEE Transactions on Consumer Electronics 49(1), 198–203 (2003)

    Article  Google Scholar 

  15. Lee, S., Lee, D.: A Motion-Adaptive De-interlacing Method Using an Efficient Spatial and Temporal Interpolation. IEEE Transactions on Consumer Electronics 49(4), 1266–1271 (2003)

    Article  Google Scholar 

  16. Yang, S., Jung, Y., Lee, Y.H., Park, R.: Motion Compensated Assisted Motion Adaptive Interlaced-to-Progressive Conversion. IEEE Transactions on Circuits and Systems for Video Technology 14(9), 1138–1148 (2004)

    Article  Google Scholar 

  17. Steinmetz, R., Nahrstedt, K.: Multimedia: Computing, Communications and Applications. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  18. Lee, H.Y., Park, J.W., Bae, T.M., Choi, S.U., Ha, Y.H.: Adaptive Scan Rate Up-Conversion System Based on Human Visual Characteristics. IEEE Transactions on Consumer Electronics 46(4), 999–1006 (2000)

    Article  Google Scholar 

  19. Filliman, P.D., Christopher, T.J., Keen, R.T.: Interlace to Progressive Scan Converter for IDTV. IEEE Transactions on Consumer Electronics 38(3), 135–144 (1992)

    Article  Google Scholar 

  20. Koivunen, T.: Motion Detection of an Interlaced Video Signal. IEEE Transactions on Consumer Electronics 40(3), 753–760 (1994)

    Article  Google Scholar 

  21. De Haan, G., Biezen, P.W.A.C., Huijgen, H., Ojo, O.A.: True-Motion Estimation with 3-D Recursive Search Block Matching. IEEE Transactions on Circuits and Systems for Video Technology 3(5), 368–379 (1993)

    Article  Google Scholar 

  22. Lee, D.: Extending Human Vision. Victoria Centre of the national Royal Astronomical Society of Canada (2003), available from internet, http://victoria.rasc.ca

  23. Nguyen, A., Dubois, E.: Spatio-Temporal Adaptive Interlaced-to-Progressive Conversion. In: Dubois, E., Chiariglione, L. (eds.) Signal Processing of HDTV IV, pp. 749–756. The Netherlands, Amsterdam (1993)

    Google Scholar 

  24. Kovacevic, J., Safranek, R.J., Yeh, E.M.: Deinterlacing by Successive Approximation. IEEE Transactions on Image Processing 6(2), 339–344 (1997)

    Article  Google Scholar 

  25. Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  26. Microsoft Corporation: Broadcast-Enabled Computer Hardware Requirements. Broadcast Technologies White Paper, pp. 11–12 (1997)

    Google Scholar 

  27. Wang, Y., Ostermann, J., Zhang, Y.-Q.: Video Processing and Communications. Pearson Education, London (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Q., Gao, W., Zhao, D., Sun, H. (2005). Adaptive Deinterlacing for Real-Time Applications. In: Ho, YS., Kim, HJ. (eds) Advances in Multimedia Information Processing - PCM 2005. PCM 2005. Lecture Notes in Computer Science, vol 3768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11582267_48

Download citation

  • DOI: https://doi.org/10.1007/11582267_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30040-3

  • Online ISBN: 978-3-540-32131-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics