Skip to main content

Object Categorization by Compositional Graphical Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

This contribution proposes a compositionality architecture for visual object categorization, i.e., learning and recognizing multiple visual object classes in unsegmented, cluttered real-world scenes. We propose a sparse image representation based on localized feature histograms of salient regions. Category specific information is then aggregated by using relations from perceptual organization to form compositions of these descriptors. The underlying concept of image region aggregation to condense semantic information advocates for a statistical representation founded on graphical models. On the basis of this structure, objects and their constituent parts are localized.

To complement the learned dependencies between compositions and categories, a global shape model of all compositions that form an object is trained. During inference, belief propagation reconciles bottom-up feature-driven categorization with top-down category models. The system achieves a competitive recognition performance on the standard CalTech database.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Machine Intell. 26(11) (2004)

    Google Scholar 

  2. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  3. Bienenstock, E., Geman, S., Potter, D.: Compositionality, mdl priors, and object recognition. In: NIPS, vol. 9 (1997)

    Google Scholar 

  4. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: CVPR Workshop on Perceptual Organization in Computer Vision (2004)

    Google Scholar 

  5. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: ECCV (2002)

    Google Scholar 

  6. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR (2003)

    Google Scholar 

  7. Fergus, R., Perona, P., Zisserman, A.: A visual category filter for google images. In: ECCV (2004)

    Google Scholar 

  8. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 22(1) (1973)

    Google Scholar 

  9. Geman, S., Potter, D.F., Chi, Z.: Composition Systems. Technical report, Division of Applied Mathematics, Brown University, Providence, RI (1998)

    Google Scholar 

  10. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2) (2001)

    Google Scholar 

  11. Lades, M., Vorbrüggen, J.C., Buhmann, J.M., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42 (1993)

    Google Scholar 

  12. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Stat. Learning in Computer Vision (2004)

    Google Scholar 

  13. Leibe, B., Schiele, B.: Scale-invariant object categorization using a scale-adaptive mean-shift search. In: Pattern Recognition, DAGM (2004)

    Google Scholar 

  14. Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Norwell (1985)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60(2) (2004)

    Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Computer Vision 60(1) (2004)

    Google Scholar 

  17. Murphy, K., Weiss, Y., Jordan, M.: Loopy-belief propagation for approximate inference: An empirical study. In: UAI (1999)

    Google Scholar 

  18. Ommer, B., Buhmann, J.M.: A compositionality architecture for perceptual feature grouping. In: EMMCVPR (2003)

    Google Scholar 

  19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  20. Veltkamp, R.C., Tanase, M.: Content-based image and video retrieval. In: Marques, O., Furht, B. (eds.) A Survey of Content-Based Image Retrieval Systems. Kluwer, Dordrecht (2002)

    Google Scholar 

  21. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: ECCV (2000)

    Google Scholar 

  22. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods—A Mathematical Introduction, 2nd edn. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ommer, B., Buhmann, J.M. (2005). Object Categorization by Compositional Graphical Models. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_16

Download citation

  • DOI: https://doi.org/10.1007/11585978_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics