Skip to main content

One-Shot Integral Invariant Shape Priors for Variational Segmentation

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We match shapes, even under severe deformations, via a smooth re-parametrization of their integral invariant signatures. These robust signatures and correspondences are the foundation of a shape energy functional for variational image segmentation. Integral invariant shape templates do not require registration and allow for significant deformations of the contour, such as the articulation of the object’s parts. This enables generalization to multiple instances of a shape from a single template, instead of requiring several templates for searching or training. This paper motivates and presents the energy functional, derives the gradient descent direction to optimize the functional, and demonstrates the method, coupled with a data term, on real image data where the object’s parts are articulated.

UCRL-CONF-212393. This work was performed under the auspices of the U. S. Department of Energy by Univesity of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Supported by NSF IIS-0208197, AFOSR F49620-03-1-0095, ONR N00014-03-1-0850.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kendall, D.G.: The diffusion of shape. Advances in Appl. Probability 9, 428–430 (1977)

    Article  Google Scholar 

  2. Pitiot, A., Delingette, H., Toga, A., Thompson, P.: Learning Object Correspondences with the Observed Transport Shape Measure. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 25–37. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Manay, S., Hong, B., Yezzi, A., Soatto, S.: Integral invariant signatures. In: European Conf. Comp. Vis. (2004)

    Google Scholar 

  4. Manay, S., Hong, B., Cremers, D., Yezzi, A., Soatto, S.: Integral invariants and shape matching. Pat. Anal. and Mach. Intell (2005) (submitted)

    Google Scholar 

  5. Bookstein, F.: The Measurement of Biological Shape and Shape Change. Lect. Notes in Biomath., vol. 24. Springer, New York (1978)

    MATH  Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Cooper, D.M., Graham, J.: Active shape models – their training and applications. Comp. Vision Image Underst. 61, 38–59 (1995)

    Article  Google Scholar 

  7. Cremers, D., Osher, S., Soatto, S.: Kernel density estimation and instrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 36–44. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  9. Fréchet, M.: Les courbes aléatoires. Bull. Inst. Int’l Stat. 38, 499–504 (1961)

    MATH  Google Scholar 

  10. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. Pat. Anal. and Mach. Intell. 26, 373–383 (2004)

    Google Scholar 

  11. Grenander, U.: Lectures in Pattern Theory. Springer, Berlin (1976)

    MATH  Google Scholar 

  12. Grenander, U., Chow, Y., Keenan, D.M.: Hands: A Pattern theoretic Study of Biological Shapes. Springer, New York (1991)

    Google Scholar 

  13. Trouvé, A.: Diffeomorphisms, groups, and pattern matching in image analysis. Int. J. Computer Vision 28, 213–221 (1998)

    Article  Google Scholar 

  14. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  16. Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of curves and its application to automatic hierarchical classication of silhouettes. Pat. Anal. and Mach. Intell. 21, 1312–1328 (1999)

    Article  Google Scholar 

  17. Kass, M., Witkin, A., Terzopoulis, D.: Snakes: Active contour models. Int. J. Computer Vision 1, 321–323 (1987)

    Article  Google Scholar 

  18. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.: Analysis of planar shape influnce in geodesic active contours. In: Int. Conf. Comp. Vis., pp. 810–815 (1995)

    Google Scholar 

  19. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Proc. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  20. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Int. Conf. Comp. Vis., pp. 694–699 (1995)

    Google Scholar 

  21. Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Proc. 10, 1169–1186 (2001)

    Article  MATH  Google Scholar 

  22. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. Conf. Comput. Vision and Pat. Rec., vol. 1, pp. 316–323 (2000)

    Google Scholar 

  23. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: Model-based curve evolution technique for image segmentation. In: Proc. Conf. Comput. Vision and Pat. Rec., pp. 463–468 (2001)

    Google Scholar 

  24. Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.: Using shape priors in geometric active contours in a variational framework. Int. J. Computer Vision 50, 315–328 (2002)

    Article  MATH  Google Scholar 

  25. Rousson, M., Paragios, N.: Shape priors of level set represenations. In: European Conf. Comp. Vis., pp. 78–92 (2002)

    Google Scholar 

  26. Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3D segmentation in MRI imaging. In: Int. Conf. Medical Image Computing and Computer Assited Intervention, pp. 209–216 (2004)

    Google Scholar 

  27. Bakircioglu, M., Grenander, U., Khaneja, N., Miller, M.I.: Curve matching on brain surfaces using frenet distances. Human Brain Mapping 6, 329–333 (1998)

    Article  MATH  Google Scholar 

  28. Sebastian, T., Klein, P., Kimia, B.: Alignment-based recognition of shape outlines. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, p. 606. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Tomasi, C., Manduchi, R.: Stereo without search. In: European Conf. Comp. Vis., pp. 452–465 (1996)

    Google Scholar 

  30. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and Applied Math. 42 (1989)

    Google Scholar 

  31. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. Pat. Anal. and Mach. Intell. 18, 884–900 (1996)

    Article  Google Scholar 

  32. Nain, D., Yezzi, A., Turk, G.: Vessel segmentation using a shape driven flow. In: Int. Conf. Medical Image Computing and Computer Assited Intervention (2004)

    Google Scholar 

  33. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manay, S., Cremers, D., Yezzi, A., Soatto, S. (2005). One-Shot Integral Invariant Shape Priors for Variational Segmentation. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_27

Download citation

  • DOI: https://doi.org/10.1007/11585978_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics