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Abstract – We propose a model of the shape, motion and appearance of a scene, seen through

a sequence of images, that captures occlusions, scene deformations, arbitrary viewpoint variations

and changes in its radiance. This model is based on a collection of overlapping layers that can

move and deform, each supporting an intensity function that can change over time. We discuss the

generality and limitations of this model in relation to existing ones such as traditional optical flow

or motion segmentation, layers, deformable templates and deformotion. We then illustrate how

this model can be used for inference of shape, motion, deformation and appearance of the scene

from a collection of images. The layering structure allows for automatic inpainting of partially

occluded regions. We illustrate the model on synthetic and real sequences where existing schemes

fail, and show how suitable choices of constants in the model yield existing schemes, from optical

flow to motion segmentation and inpainting.
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1 Introduction

We are interested in modeling video sequences where changes occur over time due to viewer

motion, motion or deformation of objects in the scene – including occlusions – and appearance

variations due to the motion of objects relative to the light sources. A suitable model will trade

off generality, by allowing variations of shape, motion and appearance, with tractability, by being

amenable to inference and analysis. The goal of modeling is to support inference, and depending

on the application one may be more interested in recovering shape (e.g. in shape analysis, classifi-

cation, recognition, registration), or recovering motion (e.g. tracking, optical flow), or appearance

variations (e.g. segmentation) including restoration (inpainting). Traditionally, the modeling task

has been approached by making strict assumptions on some of the unknowns in order to recover

the others, for instance the brightness-constancy assumption in optical flow, or the affine warping

in shape analysis and registration. This is partly justified because in any image-formation model

there is ambiguity between the three factors – shape, motion and appearance – and therefore the

most general inference problem is ill-posed. In some applications, for instance video compression,

the ambiguity is moot since all that matters is for the model to capture the sequence as faithfully

and parsimoniously as possible. Nevertheless, since all three factors affect the generation of the

image, a more germane approach would call for modeling all three jointly, then letting complexity

dictate the responsibility of each factor, and the application dictate the choice of suitable regu-

larizers to make the inference algorithms well posed. We therefore concentrate our attention on

modeling, not on any particular application. So, this is not yet another paper on tracking, nor on

motion segmentation, nor on optical flow, nor on shape registration. It is a little bit of all.
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We propose a model of image formation that is general enough to capture shape, motion and

appearance variations (Section 2), and simple enough to allow inference (Section 4). We want

to be able to capture occlusion phenomena, hence our model will entail a notion of hierarchy or

layering; we want to capture image variability due to arbitrary changes in viewpoint for non-planar

objects, hence our model will entail infinite-dimensional deformations of the image domain. Such

deformations can be due to changes in viewpoint for a rigid scene, or changes of shape of the

scene seen from a static viewpoint, or any combination thereof. Our model will not attempt to re-

solve this ambiguity, since that requires higher-level knowledge. Furthermore, we want to capture

large-scale motion of objects in the scene, as opposed to deformations, hence we will allow for a

choice of a finite-dimensional group, e.g. Euclidean or affine, separate from infinite-dimensional

deformations. Finally, we want to capture changes in appearance, hence scene radiance will be

one of the unknowns in our model. Changes in radiance can come from changes in reflectance or

changes in illumination, including changes in the mutual position between the light sources and the

scene; again we do not attempt to resolve this ambiguity, since that requires higher-level knowl-

edge. The image-formation model we propose is not the most general that one can conceive; far

from it. Indeed, it is far less general than the simplest models considered acceptable in Computer

Graphics, and we illustrate the lack of generality in Section 3. Nevertheless, it is more general than

any other model used so far for motion analysis in Computer Vision, as we discuss also in Section

3, and is complex enough to be barely tractable with the analytical and computational tools at our

disposal today. We pose the inference problem within a variational framework, involving partial

differential equations, integrated numerically in the level set framework [15], although any other
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computational scheme of choice would do, including stochastic gradients or Markov-chain Monte

Carlo. The point of this paper is to propose a model and show that it can be inferred with at least

one particular computational scheme, not to advocate a particular optimization technique.

1.1 Relation to existing work

This work relates to a wide body of literature in scene modeling, motion estimation, shape analysis,

segmentation, and registration which cannot be properly reviewed in the limited space available.

In Section 3 we illustrate the specific relationship between the model we propose and existing

models. These include Layers [21, 12], which only model affine deformations of the domain

and can therefore only capture planar scenes under small viewer motion or small aperture, and

where there is no explicit spatial consistency within each layer and the appearance of each layer

is fixed. As we will illustrate, our model allows deformations that can model arbitrary viewpoint

variation, model layer deformation and enforce spatial coherence within each layer. One could

think of our work as a generalization of existing work on Layers to arbitrary viewpoint changes, or

arbitrary scene shape, and to changes in radiance (texture), all cast within a principled variational

framework.

Our work relates to a plethora of variational algorithms for optical flow computation, for in-

stance [18, 1, 8] and references therein, except that we partition the domain and allow arbitrary

smooth deformations as well as changes in appearance (that would violate the brightness con-

stancy constraints that most work on optical flow is based on, with a few exceptions, e.g. [10]). It

also relates to various approaches to motion segmentation, where the domain is also partitioned and
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allowed to move with a simple motion, e.g. Euclidean or affine, see for instance [7] and references

therein. Such approaches do not allow deformations of the region boundaries, or changes in the in-

tensity within each region. Furthermore, they realize a partition, rather than a hierarchy, of domain

deformations, so our model can be thought of as motion segmentation with moving and deforming

layers with changes in intensity and inpainting [3]. In this, our work relates to [19], except that

we allow layers to overlap. So, our work can be though of as a layered version of Deformotion

with changes in region intensities. Also relevant to our work is [17] where one distance function

is registered to another using rigid and non-rigid transformations. Our work relates to deformable

templates [9, 14], in the sense that each of our layers will be a deformable template. However,

we do not know the shape and intensity profile of the template, so we estimate that along with the

layering structure. A one layer version of our work is similar to [20] where the author describes

energies on the manifold G ×M where g ∈ G is a group action (possibly a C∞ diffeomorphism

or an affine transformation) and M is a manifold consisting of a collection of landmark points or

images). For the example of G being the set of C∞ diffeomorphisms and M being the set of im-

ages, the geodesic between two points (g1,m1), (g2,m2) ∈ G×M describes metamorphoses from

one (group, image) pair to another. Our work is also related to active appearance models [6, 2],

in that we seek the same goal, although rather than imposing regularization of shape and appear-

ance by projection onto suitably inferred linear subspaces we employ generic regularizers. One

can therefore think of our work as a generalization of active appearance models to smooth shape

and intensity deformations, cast in a variational framework. Of course this work relates more

generically to active contours, e.g. [4, 13, 5, 16] and references therein. In the next section we
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introduce our model, and in Section 4 we illustrate our approach to infer its (infinite-dimensional)

constitutive elements.

2 Modeling

We represent a scene as a collection of L overlapping layers. Each layer, labeled by an index

k = 1, . . . , L, is a function that has associated with it a domain, or shape Ωk ⊂ R2, and a range,

or radiance ρk : Ωk → R+. Layer boundaries model the occlusion process, and each layer k

undergoes a motion, described by a (finite-dimensional) group action gk, for instance gk ∈ SE(2)

or A(2), and a deformation, or warping, described by a diffeomorphism wk : Ωk → R2, in order

to generate an image I at a given time t. The warping models changes of viewpoint for non-planar

scenes, or actual changes in the shape of objects in the scene. Since each image is obtained from the

given scene after a different motion and deformation, we index each of the image’s corresponding

variables by t: gkt , wkt , and It. Finally, since layers occlude each other, there is a natural ordering

in k which, without loss of generality, we will assume to coincide with the integers: Layer k = 1 is

occluded by layer k = 2 and so on. But since this occlusion model could change, say layer k = 2

goes behind layer k = 3 and then later layer k = 2 is in front of layer k = 3, there is a function

l = max{k | x ∈ Ωk}. This function l indicates the layer that will contribute to the intensity

at a pixel in a given image which is the frontmost layer that intersects the warped domain. For

simplicity we assume that Ω0 = R2 (the backmost layer, or “the background”). With this notation,

the model of how the value of the generic image It : Ω0 → R+ at the location x ∈ Ω0 ⊂ R2 is

generated can be summarized as It
(
glt ◦ wlt(x)

)
= ρl(x), with x ∈ Ωl, l = max{k | x ∈ Ωk}. To
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simplify the notation, we call xlt
.
= glt ◦ wlt(x), which sometimes we indicate, for simplicity, as xt,

so that 



It
(
xlt
)

= ρl(x), x ∈ Ωl

xlt = glt ◦ wlt(x), l = max{k | x ∈ Ωk}.
(1)

Our goal in this work is to infer the radiance family {ρk}k=1,...,L, the shape family {Ωk}k=1,...,L, the

motions {gkt }k=1,...,L;t=1,...,N and the deformations {wkt }k=1,...,L;t=1,...,N that minimize the discrep-

ancy of the measured images from the ideal model (1), subject to generic regularity constraints.

Such a discrepancy is measured by a cost functional φ(Ωk, ρk, wkt , g
k
t ) to be minimized

φ
.
=

N∑

t=1

∫

Ω0

(
It(xt)− ρl(wlt

−1 ◦ glt
−1

(xt))
)2

dxt + ζ
L∑

k=1

∫

∂Ωk
ds

+λ
L∑

k=1

∫

Ωk
‖∇ρk(x)‖2dx+ µ

L,N∑

k,t=1

∫

Ωl
r(wkt (x))dx (2)

subject to l = max{k | x ∈ Ωk}.

Here r is a regularizing functional, for instance r(w)
.
= |ẇ| + 1

|ẇ| where |ẇ| is the determinant of

the jacobian of w. Since it is desirable to keep w to be a one-to-one function this regularizer r

keeps |ẇ| close to one. If |ẇ| deviates from 1 then either of terms |ẇ| and 1
|ẇ| gets bigger. λ, µ, and

ζ are positive constants. Note that l is a function, specifically l : Ω0 → Z+. We have chosen the

two-norm for the data-dependent term and the regularizer for simplicity, but other choices would

of course do as well.
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3 Generality of the model

It can be easily shown that eq. (1) models images of 3-D scenes with piecewise smooth geometry

exhibiting Lambertian reflection with piecewise smooth albedo1 viewed under diffuse illumination

from an arbitrarily changing viewpoint. It does not capture global or indirect illumination effects,

such as cast shadows or inter-reflections, complex reflectance, such as specularities, anisotropies or

sub-surface scattering. These are treated as modeling errors and are responsible for the discrepancy

between the model and the images, which is measured by φ in eq. (2). We lump these discrepancies

together with sensor errors and improperly call them “noise.” Although far from general, (1) is

nevertheless a more ambitious model than has ever been used in the context of motion estimation

and tracking. In fact, many existing models are special cases of (1).

We start by showing how the model includes traditional optical flow as a special case. In

particular, if we assume a single layer to represent the whole image domain (i.e. L = 0), a trivial

group action (i.e. g = Id) and no regularity in the modeled radiance ρ = ρ0 (i.e. λ = 0) then the

resulting minimization problem includes only the radiance ρ and the warps w1 = w0
1 and w2 = w0

2

as unknowns (we consider the case of just two images I1 and I2 for now). We are therefore left

with the much simpler energy

φ(ρ, w1, w2) =
2∑

t=1

∫

Ω0

(
It(xt)− ρ(wt

−1(xt))
)2
dxt + µ

2∑

t=1

∫

Ω0

r(wt(x)) dx. (3)

If our goal is just to find the warp w = w2 ◦ w−1
1 that registers I1 to I2 (through the common

1The model can be further generalized by allowing ρl to be vector-valued to capture a set of radiance statistics such
as the coefficients of a filter bank or other texture descriptors, but this is beyond the scope of this paper.
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radiance model ρ), then we may further simplify things by setting w1 = Id and w2 = w, thereby

eliminating yet another unknown and yielding (approximately, as we omit the Jacobian of ω)

φ(ρ, w) =

∫

Ω0

(I1(x)− ρ(x))2 + (I2(w(x))− ρ(x))2 dx+ µ

∫

Ω0

r(w(x)) dx. (4)

Since we have omitted the smoothness penalty on ρ, it is straightforward to show for a given choice

of w that (4) is minimized by setting ρ(x) to the mean of I1(x) and I2(w(x)). Thus, in this special

case (no smoothness on ρ) we may replace the joint optimization in (4) with a direct optimization

of w through this substitution of ρ. The resulting energy

φ(w) =
1

2

∫

Ω0

(I1(x)− I2(w(x)))2 dx+ µ

∫

Ω0

r(w(x)) dx, (5)

depending upon the choice of the regularizer r (note that r typically depends on the derivatives of

w rather than its direct values), corresponds to either the classical optical flow in [11] or to one of

its many variants.

Our model has the advantage of not enforcing global regularization (regularization is imposed

within layers, but not across layers), of not comparing images to each other, but to an underlying

model (this carries significant advantages when it comes to robustness to noise, as we illustrate

with experiments), and of having an explicit model of the appearance of the scene, which allows

“inpainting” individual layers while preserving their motion boundaries.

Choosing L = 1, w = Id, λ = 0, µ = 0 yields motion segmentation, that has also been ad-

dressed by many, see for instance [7] and references therein for the case of affine motion g ∈ A(2).

9



In motion segmentation one partitions the domain into a number of individually moving segments,

each of which is assumed to move with a constant (finite-dimensional) motion. Like in optical flow,

there is no model of appearance, and the data-dependent term consists of the brightness constancy

constraint which forces direct image-to-image comparison:

φ(gt,Ωt) =
∑

t

∫

Ωt

(It(x)− It+1(gtx))2dx+ νL(Ω) (6)

where L denotes the length of the boundary of the region Ωt. Note that, in this case, we have

allowed Ω to be one of the unknowns since wt is no longer part of the inference, although one

could easily define Ωt
.
= wt(Ω0), as we have discussed in the previous section.

Choosing L = 1, ρ = const, r(w) = ‖w‖ yields a model called Deformotion in [19], and has

also been extended to grayscale images L = 1, r(w) = ‖w‖. Our work is the natural extension of

Deformotion to layers.

Choosing L > 1, w = Id, Ωk unconstrained and g ∈ A(2) would yield a variational version of

the Layers model [21], that to the best of our knowledge has never been attempted. Note that this

is different than simpler variational multi-phase motion segmentation, since in that case the motion

of a phase affects the shape of neighboring phases, whereas in the model (1) layers can overlap

without distorting underlying domains. One can think of the Layer model as a multi-phase motion

segmentation with inpainting [3] of occluded layers and shape constraints.

The model also relates to deformable templates, where ρ = const in the traditional model [9]

and ρ = smooth in the more general version [14]. Another relevant approach is Active Appear-

ance Models where the regions, warping and radiances are modeled as points in a linear space.
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wkt (x) = wk0(x) +W k(x)st (7)

where w0 : Ωk → R2 and W k : Ωk → Rn denotes a set of basis functions or principal components,

and st ∈ Rn, t = 1, . . . , N is a vector of shape coefficients. Similarly,

ρkt (x) = ρk0(x) + P k(x)αt (8)

where ρk0 : Ωk → R and P k(x) : Ωk → Rn is a vector of principal components, and αt ∈ Rn a

vector of appearance parameters. Note that the functions P k and W k have to satisfy orthogonality

constraints, and these have to be enforced during the inference of the bases. The model (1) does

not impose such restrictions, and render the problem well-posed by generic regularization instead.

Finally, by virtue of the regularization imposed on ρ, our scheme relates to image inpainting,

except that we perform inpainting both by layer transfer from multiple images and by regulariza-

tion. The advantage of our method is that it can exploit whatever information is there: If multiple

views are available, their contribution is weighted relative to the harmonic interpolation term. If

only one image is available, then intensity regularization dictates the filling process.

4 Inference

Minimizing the cost functional in (2) is a tall order. It depends upon each domain Ωk and it’s

boundary (a closed planar contour), its deformation (a flow of planar diffeomorphisms) wk
t , the

radiance (a piecewise smooth function) ρk, all of which are infinite-dimensional unknowns. In
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addition, it depends on a group action per layer per instant, gkt , and on the occlusion model, which

is represented by the discrete-valued function l(x) = max{k | x ∈ Ωk}, and all of this for each

layer k = 1, . . . , L.

The first simplification is to notice that, as long as each layer is a compact region bounded by

a simple smooth curve, there is no loss of generality in assuming that Ωk are fixed. This is because

each diffeomorphism wkt will act transitively on it. Therefore, we assume that each region Ωk is a

circle in some of the examples. While there is no loss of generality, there is a loss of energy, in that

if we were allowed to also optimize with respect to the initial regions we would be able to reach

each deforming layer faster and with less energy. This, however, does not enhance the generality

of the model, hence we will forgo it for some examples (see Figure ?? for an illustration of this

effect).

Apart from this simplification, we proceed by minimizing the functional (2) using simultaneous

gradient flows with respect to the groups (motion), the radiances (appearance) and the diffeomor-

phisms (deformation). The detailed evolution equations are a bit complicated depending upon the

number of layers and the occlusion structure between layers. To help avoid excessive subscript-

ing and superscripting and multiple-case definitions according to occlusion relationships, we will

outline some of the key properties of the various gradient terms for the case of a background layer

Ω0, a single image I , and a single foreground layer Ω1. We will also, to help keep the illustration

simple, assume that the group action g0 and the warp w0 for the background layer are simply the

identity transforms. This is the simplest possible scenario that will allow us to still show the key

properties of the gradient flows.
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Let x̂ = g1(w1(x)) and Ω̂1 = g1(w1(Ω1)). With this notation, we may write the image-

dependent terms in our energy functional as follows.

E =

∫

Ω̂1

(
I(x̂)− ρ1(x)

)2
dx̂+

∫

Ω0\Ω̂1

(
I(x)− ρ0(x)

)2
dx (9)

If g denotes any single parameter (e.g. horizontal translation) of the group g1, then differentiating

yields

∂E

∂g
=

∫

∂Ω̂1

〈
∂x̂

∂g
, N̂

〉((
I(x̂)−ρ1(x)

)2−
(
I(x̂)−ρ0(x̂)

)2
)
dŝ+ (10)

+2

∫

Ω̂1

(
I(x̂)−ρ1(x)

)〈
∇ρ(x), inv

[(
w1
)′] ∂

∂g
inv[g1](x̂)

〉
dx̂

where N̂ and dŝ denote the outward unit normal and the arclength element of ∂Ω̂1 respectively.

We are able to note two things. First, the update equations for the group involve measurements

both along the boundary of its corresponding layer (first integral) as well as measurements within

the layer’s interior (second integral). Notice that this latter integral vanishes if a constant radiance

ρ is utilized for the layer. We also see that it is not necessary to differentiate the image data I .

Derivatives land on the estimated smooth radiance ρ instead, which is a significant computational

perk of our model that results in considerable robustness to image noise.

A similar gradient structure arises for the case of the infinite dimensional warp w (boundary-

based terms and region-based terms for each layer are similar to previous integrals). However,

additional terms arise in the gradient flow equations for w depending upon the choice of regular-

ization terms in the energy functional (smoothness penalties, magnitude penalties, etc.).
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The curve evolution is also similar to the boundary-based term for the evolution of g:

∂C

∂t
= −

((
I(x̂)−ρ1(x)

)2−
(
I(x̂)−ρ0(x̂)

)2
)
N̂ (11)

Finally, the optimality conditions for the smooth radiance functions ρ0 and ρ1 are given by the

following Poisson-type equations.

∆ρ1(x) = λ
(
ρ1(x)− I(x̂)

)
, x ∈ Ω1 (12)

∆ρ0(x) =





0, x ∈ Ω̂1

λ
(
ρ0(x)− I(x)

)
, x ∈ Ω0 \ Ω̂1

(13)

Notice that the background radiance ρ0 is “inpainted” in regions occluded by the foreground layer

Ω1 by harmonic interpolation from the boundary of Ω̂1, since ρ satisfies Laplace’s equation ∆ρ0 =

0. Once all the terms are put together we can generate a gradient flow that simultaneously evolves

all layer assignments, boundaries and intensities. In the next section we illustrate some of the

features of the model and the resulting optimization, as it compares with existing schemes.

5 Experiments

In the first experiment we illustrate the capability of our model to track deforming layers. In Figure

1 we show three sequences of an image where a deflating balloon is undergoing a rather erratic

motion while deforming from an initial waterdrop shape to a circular one, finally to a spermato-

zoidal shape. On the top row of Figure 1 we show the layer boundaries for a model that only
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allows for rigid deformations of the initial contour (a circle) using a single scaling term. This is

essentially a variational implementation of the model of [21]. As it can be seen, it captures the

gross motion of the balloon, but it cannot capture the subtler shape variations. The second row

shows the same three sample images with the boundary of the first layer superimposed, where the

layer is allowed to deform according to the model we have introduced. The data fidelity term used

is a Mumford-Shah term so the radiances representing each layer are smooth functions. As it can

be seen, the layer changes shape to adapt to the deforming balloon, all while capturing its rather

erratic motion. The average RMS error per image for the affine layer model is 30.87, whereas the

residual for the case of the deforming layers is 5.51. More importantly, the phenomenology of the

scene, visible in the figure, has been correctly captured.

Figure 1: Tracking a Balloon: Three sample views are shown from a sequence of a deflating balloon moving
with an erratic motion while changing its shape from a drop-like shape to a circle. In the top row we show
the boundary of the first layer as estimated by a rigid layer model with a single scaling term that does not
allow for layer deformation, akin to a variational implementation of traditional layer models. As it can be
seen, the model tracks the motion of the layer, but it fails to capture its deformation. On the bottom row
we show the same three images with the first layer superimposed, where the layer is allowed to both move
(rigidly) and deform (diffeomorphically), yielding 82% lower RMS residual error, and capturing the subtler
shape variations.

In the next experiment we illustrate all the features of our model by showing how it recovers

the background behind partially occluded layers while recovering their motion and deformation.
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In Figure 2 we show a few samples from a dataset where the silhouette of a moving hand forms

a victory sign while moving the relative position between the fingers. The background, which is

partially occluded, is a spiral. Here we use the average shape as the initial shape of the foreground

layer to find its affine motion, and then the diffeomorphic warp wi. Again we assume smooth

radiance within each layer, so when we recover the background layer we show a slightly smoothed

version of the spiral (of course we could further segment the black spiral from the background and

thus obtain sharp boundaries, but this is standard and would not help us illustrate the feature of the

model, therefore we do not illustrate it here.)

Figure 2: Victory sign, with deforming hand, moving in front of a partially occluded background portraying
a spiral. The goal here is to recover the radiance of each layer (the spiral in the background and the constant
black intensity of the hand), as well as the motion and deformation of the foreground layer. Note that current
layer models based only on affine motion would fail to capture the phenomenology of this scene by over-
segmenting the region into three regions, each moving with independent affine motion. Our model captures
the overall motion of the layer with an affine group, and then the relative motion between the fingers as a
deformation, as we illustrate in the next figure 3.

In Figure 3 we illustrate the results of this experiments, arranged to summarize the modeling

process. On the top row we show the recovered layers. Since we are assuming a smooth radiance

within each layer, we can only recover a smoothed version of the spiral. These layers are deformed

according to a diffeomorphism, one per layer, defined on the domain of the layer (second row) and
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then moved according to an affine motion. The third row shows the image generated by the model,

which can therefore be though of as a generative (although deterministic) model since it performs

comparison at the image level, not via some intermediate representation. The corresponding im-

ages are displayed in the last row, with the layers superimposed for comparison.

The first set of experiments, using standard sequences used for optical flow analysis, is designed

to illustrate the difference between our model and standard optical flow. A representative set of

results of the motion field estimated by optical flow (left) and our model (right) is reported in

Figure 5. Our model does not rely on global regularization, but only regularization within each

layer segmented in Figure 4. Therefore, the boundaries of the motion field are better resolved.

Naturally, our model is a superset of those commonly used for optical flow computation. We

illustrate this point by reducing the weight of the smoothness term for ρ in Figure 6, which yields

results closer to standard optical flow. In comparison to the ground truth vector field, the vector

field given by optical flow has an average angular error of 8.12. Deformotion with a smoothness

weight λ of 200 gives an average angular error of 9.99. Reducing the smoothness weight λ to 20

gives an average angular error of 8.11 which is closer to the result of optical flow.

A beneficial side-effect of having an explicit model of the scene, simple as it is (a regular

irradiance pattern, with smoothness controlled by λ), is the possibility of comparing individual

images to a (noiseless) model, rather than comparing noisy images to each other. The effects are

visible in Figure 8, where the flow field obtained with our model on artificially corrupted sequences

(Figure 7) is far closer to the cleaner version of the sequence than using standard optical flow.

The comparison with optical flow illustrates the necessity for partitioning the domain into in-
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dependently moving objects. This is a motion segmentation task. Therefore, here we compare our

model with more standard ones that partition the flow into affine segments, while still relying on

the brightness constancy constraint and without an explicit model of the appearance of the scene.

Such models can be obtained simply by increasing the regularization of the layer deformation (i.e.

the entire layer moves with the same finite-dimensional motion: translational, Euclidean or affine).

Figure 9 illustrates this effect.

Note that our model, by virtue of having an explicit representation of the appearance of each

layer, can automatically fill in the appearance of underlying layers, as we illustrate in Figure 10.

In Figure 11 we illustrate inpainting using our model. In this example there is some camera

jitter, which makes it so the whiteboards in the two images are not quite lined up. Also there

has been some corrpution of the images which is modeled as the foreground layer that is moved

around via an affine group. The whiteboard (background layer) is recovered with its own affine

registration and the inpainted whiteboard is shown.

The conclusion we would like to draw from these experiments is that our model, being a su-

perset of existing schemes (optical flow, motion segmentation, deformotion, inpainting), allows

the user to apply existing algorithms simply by proper choice of constants. Naturally the price to

pay for such flexibility and for the added power stemming from a richer model is computational

complexity. However, all the experiments we have shown have been run on a pentium M 2GHz

PC and takes five minutes per 1000 iterations.
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6 Discussion

We have presented a generative model of the appearance (piecewise smooth albedo), motion (affine

transformation) and deformation (diffeomorphism) of a sequence of images that exhibit occlusions.

We have used this model as a basis for a variational optimization algorithm that simultaneously

tracks the motion of a number of overlapping layers, estimates their deformation, and estimates

the albedo of each layer, including portions that were partially occluded. Where no information is

available, the layers are implicitly impainted by their regularizers.

This model generalizes existing layer models to the case of deforming layers. Alternatively,

one can think of our algorithm as a layered version of deformable tracking algorithms, or as a

generalized version of optical flow or motion segmentation where multiple layers are allowed to

occlude each other without disturbing the estimate of adjacent and occluded ones.

Our numerical implementation of the flow-based algorithm uses level set methods, and is real-

ized without taking derivatives of the image, a feature that yields significant robustness when com-

pared with boundary-based approach to estimating optical flow. We have illustrated our approach

on simple but representative sequences where existing methods fail to capture the phenomenol-

ogy of the scene by either over-segmenting it, or by failing to capture its deformation while only

matching its affine motion.
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Figure 3: Multiple Layers Mapping onto Multiple Images: The inference process returns an estimate of the
albedo in each layer (top). Since we are assuming smooth albedo, the spiral is smoothed. The deformation of
each layer is estimated (second row) together with its affine motion, to yield an approximation of the image
(third row). This is used for comparison with the measured images (bottom row) that drives the optimization
scheme.
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Figure 4: Rotating Sphere and segmentation obtained using deformotion
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Figure 5: Optical Flow vs. Ground Truth vs. Deformotion: Standard optical flow (left) imposes
global regularization, which results in errors at the boundary (the vector field is more spread out
than the model proposed, on the right). The ground truth is in the middle. The average angular
errors for optical flow and deformotion are 11.49◦ and 6.31◦ respectively. The standard deviation
for the angular errors are 1.37◦ and 1.44◦. The parameters and regularization constants used were
dt= 0.2, iterations= 10000, α = 10 (data fidelity), µ = 0.5, (smoothness ofw), λ = 5 (smoothness
of ρ).
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Figure 6: Optical flow (left) can be obtained from the general model (right) by allowing λ → 0.
Compare the results with parameters dt= 0.028, iterations= 71000, α = 20, µ = 0.55, λ = 20 on
the bottom row with 200 on the middle row. Note that the two models (left and right) are closer
on the bottom row. In comparison to the ground truth vector field, the vector field given by optical
flow has an average angular error of 8.12. Deformotion with a smoothness weight of 200 gives
an average angular error of 9.99. Reducing the smoothness weight to 20 gives an average angular
error of 8.11 which is closer to the result of optical flow.
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Figure 7: Yosemite Sequence with added Gaussian noise of zero mean and variance of 0.05 and
ground truth in the middle.

Figure 8: Flow Fields for Optical Flow, Ground Truth, and Deformotion: One of the beneficial
effects of having a model of the appearance of the scene is better robustness to noise. In standard
optical flow images are compared to each other directly, resulting in fragility to independent noise
sources. We show results with added Gaussian noise with zero mean and variance of 0.05. The
benefit or robustness to noise is offset by the added complexity of having to estimate a smooth
function to approximate scene radiance. (Parameters used for deformotion: dt= 0.2, iterations=
10000, α = 2, µ = 1.0, λ = 4.) (Parameters used for optical flow: dt= 0.083, iterations= 24000,
α = 2, µ = 2.) The parameters used provided the best solution for each method. The average
angular errors for optical flow and deformotion are 26.24 and 20.24 respectively.
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Figure 9: The model proposed can be used to perform motion segmentation by increasing the
regularization µ of the domain deformation for each layer (parameters used: dt= 0.2

4000
, iterations=

20000, α = 20, µ = 4000, λ = 2000).
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Figure 10: Our model yields “inpainted” layers. The top row shows the boundaries of layers, the
middle row the reconstructed appearance of the layers (ρ) and the bottom row the warpings (w). Pa-
rameters used: dt= 0.2, iterations= 2000, α = 20, µ = 1.0, λ = 0.8, ζ = 3.0 (arclength weight) .
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Figure 11: Image Inpainting with our model. First two images: corrupted images of a teacher’s
whiteboard with some camera jitter, Last image: Image inpainting result.
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