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Abstract. Many applications of computer vision requires segmenting
out of an object of interest from a given image. Motivated by unlevel-sets
formulation of Raviv, Kiryati and Sochen [8] and statistical formulation
of Leventon, Grimson and Faugeras [6], we present a new image segmen-
tation method which accounts for prior shape information. Our method
depends on Ambrosio-Tortorelli approximation of Mumford-Shah func-
tional. The prior shape is represented by a by-product of this functional,
a smooth edge indicator function, known as the “edge strength func-
tion”, which provides a distance-like surface for the shape boundary.
Our method can handle arbitrary deformations due to shape variability
as well as plane Euclidean transformations. The method is also robust
with respect to noise and missing parts. Furthermore, this formulation
does not require simple closed curves as in a typical level set formulation.

1 Introduction

In many vision applications, one searches an object of interest whose pose may
vary and whose shape may exhibit variability. Deliniating the object boundary
correctly and estimating the pose becomes particularly challenging when cor-
rupting influences due to missing regions and noise appear. As a remedy, use
of prior shape models are considered. During the last five years, quite interest-
ing works addressing shape prior integration directly into segmentation process
appeared [4-6,8,9,11].
These methods differ in terms of

— How they represent shape prior;

— Boundary detection rule which forms the backbone;

— Extension of the boundary detection rule to allow the influence of the prior;
— Computation.

In Cremers et.al. [5], a variational framework is used for the integration of
shape statistics and segmentation. Shape boundaries are represented explicitly
as spline curves. Aligned shape variability is captured by a Gaussian distribution
model whose mean and covariance matrix are computed from a group of splines.
A shape energy that maximizes the shape probability is combined with Mumford-
Shah [7] segmentation energy and minimized by applying gradient descent.



In Leventon et.al. [6], a shape boundary is embedded as the zero level curve of
a level set function (distance function). Shape prior is represented via coefficients
of the principal components computed from a group of distance functions whose
zero-levels correspond to the various appearances of a shape of interest. A two
step procedure is employed. First, the level set function is evolved such that
its zero level curve converges to the shape boundary. Second, pose and shape
variables are computed via MAP estimation on the Gaussian probability space.

In Tsai et.al. [11], a shape based curve evolution technique is proposed. The
implicit shape representation proposed by Leventon et.al. [6] is embedded into
region-based active contour models as in [3]. Again a two step procedure is
employed. However, pose and shape variables are computed by applying gradient
descent.

In Chen et. al. [4], prior shape is represented by the average of aligned con-
tours. A shape term which measures the similarity between evolving and prior
contours is added into a variational active contours framework. Hence, evolu-
tion of the active contour is controlled by a force which depends on both image
gradients and prior shape.

In Rousson et.al. [9], a probabilistic approach to generate shape priors using
level set representations which can also handle local shape variability is proposed.
From a set of training samples, represented as level sets, a probability density
function is constructed by maximum likelihood estimation. A shape energy is
defined and incorporated into a level set based segmentation method depending
on the proposed model.

In Raviv et.al. [8], shape variability is ignored. Quite elegant formulation
is obtained by utilizing a generalized cone whose cross sections are the various
appearances of a given object under pose changes. This cone also functions as a
level set function which evolves according to a constraint derived from the prior.
The cost function is an extension of Chan-Vese approximation [3] of Mumford-
Shah functional with a shape prior term.

Inspired by Raviv et.al. [8] and Leventon et.al. [6], we present a new method
for shape prior incorporation into segmentation process. Backbone of our method
is Ambrosio-Tortorelli [1] approximation (AT) of Mumford-Shah functional. We
employ a by-product of this functional, a smooth edge indicator function which
is known as the “edge strength function” as a distance-like surface which embeds
the shape boundary. Shape similarity term which is a normalized difference be-
tween “deformed” shape prior and the evolving edge strength function is added
to Ambrosio-Tortorelli functional.

The edge strength function has some nice properties which makes it a quite
versatile tool for different vision tasks. Despite its shortcomings as a segmen-
tation tool, it has been proven to be quite useful in capturing essential shape
characteristics [10] and recently applied to object recognition very successfully
[2]. An interesting property of the edge strength function is that it encodes the
local symmetry information [10]. This makes possible the integration of bound-
ary and local symmetry information and design shape energies which will force
morphological equivalence. As an example, it is possible to change the shape en-



ergy by simply adding a weight that is proportional to local symmetry strength.
Furthermore, the embedding provided by the edge strength function does not
require simple closed curves as in a typical level set formulation.

The paper is organized as follows. Section 2 is on Ambrosio-Tortorelli func-
tional. Representation of a set of prior shapes is explained in Section 3. In Section
4, the combined energy and its minimization is discussed. Experimental results
are presented in Section 5. Finally, Section 6 is the summary.

2 Ambrosio-Tortorelli Segmentation Functional

A prototype for energy based minimization is Mumford and Shah [7] approach.
In this approach, image segmentation problem is formulated as a functional
minimization via which a piecewise smooth approximation of an image and a set
of discontinuity locus corresponding to object boundaries are to be recovered.
The energy to be minimized is:
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where R C R? is connected, bounded, open subset representing the image do-
main, g(z,y) is an image, I" is a curve segmenting R, u(z,y) is the smoothed

image, o and (3 are the weights. Let o0 = % Then, ¢ may be interpreted

as the smoothing radius in R\I'. With o fixed, the higher the value of «, the
lower the penalty for length(I"), hence the more detailed is the segmentation.
Unknown edge set I" makes the minimization mathematically difficult. A conve-
nient approximation is suggested by Ambrosio and Tortorelli in [1] where they
introduce a smooth edge indicator function v(x,y) which is more convenient
than the original edge indicator. On the edges, v(z,y) — 1 and on the smooth
regions v(z,y) — 0. Ambrosio-Tortorelli functional
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is shown to converge to the original functional as p — 0.

3 Representation of the Prior Shape

For the proper choice of p, edge strength function provides a smooth embedding
surface whose one-level curve correspond to shape boundary which is not nec-
essarily a simple closed curve(Fig. 1). Prior edge strength function v,(x,y) can
be computed from a binary prior image as the minimizer of the following energy
[10]



(a) (b)
() (d)
Fig. 1. (a) An airplane silhoutte. (b) Corresponding edge strength function com-

puted with p = 32. (¢) a line drawing with self intersections. (d) Corresponding
edge strength function computed with p = 16.
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subject to v = 1 on the shape boundary.

A quite curious property of the edge strength function computed with large
p is that the local symmetry information is encoded via differential properties.
Consider Fig. 2 which displays the quantity 1 — |- ||Vov||| where
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If a shape does not exhibit variations other than pose, v,(x,y) captures the
prior information. Suppose we are given an ensemble of pose and scale aligned
shapes! whose boundaries are given by the curves I}, ,- -, I}, respectively. Fol-
lowing an idea presented by Leventon et.al. [6] and later adopted in [11], we
use coefficients of the principal components as shape variability parameters.
Specifically, let vy, (z,y), -, vp, (2,y) be an ensemble of prior edge strength
functions. The mean edge strength function @(z,y) is the ordinary average of
Up, (2, 9), -+, vp, (x,y). Let Pq,---, P, be the principal components computed
by Karhunen-Loeve Transformation, then a possible shape from this ensemble
has

! The alignment algorithm proposed in [11] is used in the experiments.



Fig. 2. Differential properties of v capture local symmetry strength.
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as its edge strength function. Fig. 3 illustrates the concept for the edge
strength functions computed from the set of images shown in Fig. 4.

Fig. 3. (a) Mean edge strength function extracted from the set of airplane images
shown in Fig. 4. (b) Corresponding level curves. (¢)-(e) 1-level curves of @y, for
three different choices of w.
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Fig. 4. Set of airplane shapes taken from [11].

4 Shape Energy: Similarity of the embedding surface

In the previous section, a representation for the shape prior in terms of a mean
edge strength function and principle components is developed. Now we will dis-
cuss how this representation captured by equation (4) can be used to integrate
prior shape information into Ambrosio-Tortorelli functional. The simplest solu-
tion is adding two energies to arrive at a combined energy:

E= EAT + MEshape (5)

where p is the parameter which enforces the shape similarity of the embed-
ding surface in the overall segmentation process.
A straight forward choice for shape energy is simply
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where the pose transformation function 7" applied to the shape prior @y, is
defined as follows:
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However, we observed that such a straight forward choice may cause segmen-
tation process to trap into local minima. Hence we considered the normalized
difference:
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Upon casting the problem into a discrete setting, we arrive to the following
minimization problem:
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where u,,uy,v;,v, are the central difference approximations for z and y
derivatives of u; ; and v; ; respectively:
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Our algorithm recovers both pose transformation parameters t,t,,0,h and
shape variability parameters w simultaneously along with a piecewise smooth
approximation of the image v and the corresponding edge strength function v.
These parameters are evaluated via gradient descent equations obtained by min-
imizing the energy functional with respect to each parameter. These equations
are given in the appendix.

We can summarize our overall algorithm as follows:

1. Take an input image g and a set of pose and scale aligned prior edge strength

functions vy, , -+, vp,, - -
2. Using vp,, -+, vp, , determine mean edge strength function ¢ and the prin-
cipal components &1, ---,P,,.

3. Initialize evolving image u with g.
4. Initialize the edge strength function using the following equation:
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5. Set initial values for pose transformation parameters t;,t,,0, h.
6. Set initial values of shape variability parameters wy, - -, ws,.
7. Update u according to the gradient descent equation (10).
8. Update v according to the gradient descent equation equation (11).
9. Update t, and t, using the equations (12) and (13) respectively.
10. Update h using equation (14).
11. Update € using equation (15).
12. Compute the new shape variability parameters wq,---,w, using equation
(16).
13. Repeat steps 7-12 until convergence.



5 Segmentation Results

We demonstrate the segmentation results of our algorithm on various images. If
the image to be segmented contains a shape that does not exhibits variations
other than pose, we can use a single edge strength function of the shape as the
shape prior. Otherwise, to capture the shape variability, we perform Karhunen-
Loeve Transform on a set of edge strength functions generated from pose and
scale aligned shapes of similar type. In our experiments, we use y = 1 unless
otherwise stated. In order to prevent over-smoothing, we use a small smoothing

radius, i.e. % = 0.1. Typical p values are 8, 16, 32.

Consider the ‘hand’ shape shown in Fig. 5(a), its edge strength function
computed with p = 8 (given in Fig. 5(b)) is used as shape prior. Fig. 6(a)
is generated from the grayscale ‘hand’ image by performing some translation,
rotation and scaling. While the initial 1-level curve of the prior edge strength
function is shown in Fig. 6(b), the final segmentation result is presented in Fig.
6(c). The recovered transformation parameters are t, = 4.4492, ¢, = —7.3222,
0 = 24.6474°, h = 1.2513.

(a) (b)

Fig. 5. (a) Prior hand shape. (b) Corresponding edge strength function com-
puted with p = 8.

(a)

Fig. 6. Segmentation of a hand image. (a) Input image. (b) Initial 1-level curve
of prior edge strength function. (c¢) Segmentation result.



We next consider a case with both occlusion and missing part. Fig. 7(a) is
generated from the ‘hand’ image shown in Fig. 6(a). The thumb is occluded by a
ring type shape and some part of the pointer finger is cut off. Fig. 7(b) shows the
initial 1-level curve of the prior edge strength function, Fig. 7(c) shows the final
segmentation result. The recovered transformation parameters are t, = 4.2945,
ty, = —5.9638, 0 = 25.3761°, h = 1.2810. Instead of taking p constant and equal
to 1, if we increase its value throughout the iterations, we can speed up the
recovery process of the transformation parameters. The missing and occluded
parts become apparent in the evolving edge strength function in less number of
iterations(see Fig. 8).

O

(a)

Fig. 7. Segmentation of a hand image with both occlusion and missing part.
(a) Input image. (b) Initial 1-level curve of prior edge strength function. (c)
Segmentation result.

Fig. 9(a) is generated from the ‘hand’ image shown in Fig. 6(a) by adding a
noise. While Fig. 9(b) shows the initial 1-level curve of the prior edge strength
function, Fig. 9(c) show the final segmentation result. The recovered transfor-
mation parameters are t, = 4.3475, t, = —6.4416, 0 = 24.9079°, h = 1.2719.

To demonstrate that our algorithm can handle shape variability in segmen-
tation process, we have used the set of ‘airplane’ shapes shown in Fig. 4. After
extracting the edge strength functions of each image in this data set, the mean
edge strength function(see Fig. 3(a)) and the principal components are com-
puted which are used to define the shape prior. For the ‘airplane’ images shown
in Fig. 10(a) and 11(a), initial estimates of the boundary obtained from the
mean edge strength function and segmentation results are shown in 10(b)-(c)
and 11(b)-(c) respectively. For the first ‘airplane’ image the recovered param-
eters are ¢, = —3.6578, ¢, = —3.3881, 6 = 22.9083°, h = 0.9522 and coefi-
cients of the principle components, w = [—0.4094, —0.1463, —0.4080, —0.0919,
0.1621, 0.0832, 0.1295, 0.2282, 0.0556, 0.0264, 0.0390, 0.0053]. For the second
one t, = 16.8324, t, = —3.7704, 0 = 10.7317°, h = 1.5759 and coefficients of
the principle components, w = [—0.3846, —0.0776, —0.1361, 0.3473, —0.1117,
—0.0737, —0.0053, —0.1174, 0.0958, —0.1269, 0.1143, —0.1388.

Fig. 1(c)-(d) illustrates a case where the prior is given in the form of a line
drawing with junctions. Since the curve I, is no longer a simple closed curve,
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Fig. 8. Evolution of the edge strength function of the hand image given in Fig.
7(a) throughout iterations. (a) t = 0. (b) ¢t = 32. (¢) t = 36. (d) t = 40. (e)
t=44. (f) t = 48. (g) t = 52.

(a)

Fig. 9. Segmentation of a noisy hand image. (a) Input image. (b) Initial 1-level
curve of prior edge strength function. (c) Segmentation result.



(a)

Fig. 10. Segmentation of an airplane image. (a) Input image. (b) Initial estimate
of the boundary obtained from the mean edge strength function. (¢) Segmenta-
tion result.

(a)

Fig. 11. Segmentation of another airplane image. (a) Input image. (b) Initial
estimate of the boundary obtained from the mean edge strength function. (c¢)
Segmentation result.



a level set formulation can not be devised. As Fig. 12 illustrates, the algorithm
is able to extract both blobs simultaneously. The recovered transformation pa-
rameters are ¢, = —1.5529, t, = 6.3731, § = —30.6071°, h = 1.1079.

-
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(a) (b) (c)

Fig. 12. (a) Input image. (b) Initial 1-level curve of prior edge strength function.
(c) Segmentation result.

6 Summary

We have demonstrated the potential use of Ambrosio-Tortorelli edge strength
function as an aid for incorporating shape priors into image segmentation. For
large p values the edge strength function v provides a representation equivalent to
level set representation without explicitly requiring 2 phases(inside and outside).
Differential properties such as the cross derivative 4| Vvl| captures the local
symmetry information and 1 — |d%||Vv|H may be interpreted as the symmetry
strength and may be used as a weight to force the equivalence of the evolving
v and transformed prior more on local symmetry points. These issues will be
studied further.
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A Gradient Descent Equations

The piecewise smooth image u, the edge strength function v, the translation pa-
rameters t,, t,, rotation angle 6, scale factor h, and shape variability parameters
w are to be recovered as the minimizers of equation (9) by applying gradient
descent:
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where

width height
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