Skip to main content

Color Correction of Underwater Images for Aquatic Robot Inspection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

In this paper, we consider the problem of color restoration using statistical priors. This is applied to color recovery for underwater images, using an energy minimization formulation. Underwater images present a challenge when trying to correct the blue-green monochrome look to bring out the color we know marine life has. For aquatic robot tasks, the quality of the images is crucial and needed in real-time. Our method enhances the color of the images by using a Markov Random Field (MRF) to represent the relationship between color depleted and color images. The parameters of the MRF model are learned from the training data and then the most probable color assignment for each pixel in the given color depleted image is inferred by using belief propagation (BP). This allows the system to adapt the color restoration algorithm to the current environmental conditions and also to the task requirements. Experimental results on a variety of underwater scenes demonstrate the feasibility of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ȧhlén, J., Sundgren, D.: Bottom reflectance influence on a color correction algorithm for underwater images. In: Proc. SCIA, pp. 922–926 (2003)

    Google Scholar 

  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Royal Statistics Society B 36, 192–326 (1974)

    MATH  MathSciNet  Google Scholar 

  3. Boult, T.: DOVE: Dolphin omni-directional video equipment. In: Proc.Int. Conf. Robotics and Automation, pp. 214–220 (2000)

    Google Scholar 

  4. Dera, J.: Marine Physics. Elsevier, Amsterdam (1992)

    Google Scholar 

  5. Dubes, R.C., Jain, A.K., Nadabar, S.G., Chen, C.C.: Mrf model-based algorithms for image segmentation. In: Proc. of IEEE Intl. Conf. on Pattern Recognition (ICPR), pp. 808–814 (1990)

    Google Scholar 

  6. Foresti, G.L.: Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Trans. Syst. Man and Cyber., Part B 31, 691–795 (2001)

    Article  Google Scholar 

  7. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 20(1), 25–47 (2000)

    Article  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  9. Georgiades, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim, R., Torres-Méndez, L.A., Zhang, P., Buehler, M., Dudek, G., Jenkin, M., Milios, E.: AQUA: an aquatic walking robot. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE/RSJ, Sendai, Japan, September 2004, vol. 3, pp. 3525–3531. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  10. Harsdorf, S., Reuter, R., Tonebon, S.: Contrast-enhanced optical imaging of submersible targets. In: Proc. SPIE, vol. 3821, pp. 378–383 (1999)

    Google Scholar 

  11. Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. IEEE J. Oceanic Engineering 15, 101–111 (1990)

    Article  Google Scholar 

  12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  13. Poynton, C.: A Technical Introduction to Digital Video. Wiley, New York (1996)

    MATH  Google Scholar 

  14. Schechner, Y.Y., Karpel, N.: Clear underwater vision. In: Proc. of Intt. Conference of Vision and Pattern Recognition, vol. 1, pp. 536–543 (2004)

    Google Scholar 

  15. Weiss, Y.: Belief propagation and revision in networks with loops. Technical report, Berkeley Computer Science Dept. (1998)

    Google Scholar 

  16. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York (1982)

    Google Scholar 

  17. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical report, Mitsubishi Electrical Research Laboratories, Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres-Méndez, L.A., Dudek, G. (2005). Color Correction of Underwater Images for Aquatic Robot Inspection. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_5

Download citation

  • DOI: https://doi.org/10.1007/11585978_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics