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Abstract. This paper presents a complete visual surveillance sysberaufto-
matic scene interpretation of airport aprons. The systemptises two main
modules — Scene Tracking and Scene Understanding. The $carieng mod-
ule is responsible for detecting, tracking and classifyihg semantic objects
within the scene using computer vision. The Scene Undetigtgrmodule per-
forms high level interpretation of the observed objects btedting video events
using cognitive vision techniques based on spatio-tenhpessoning. The per-
formance of the system is evaluated for a series of pre-dkfildeo events spec-
ified using a video event ontology.

1 Introduction

This paper describes work undertaken on the EU project AWCR. The main aim of
this project is to automate the supervision of commercialraft servicing operations
on the ground at airports (in bounded areas knowa@eng. A combination of vi-
sual surveillance and video event recognition algorithresagplied in a decentralised
multi-camera environment with overlapping fields of viewDW¥) to track objects and
recognise activities predefined by a set of servicing operat Each camera agent per-
forms per frame detection and tracking of scene objectstlamdutput data is trans-
mitted to a central server where fused object tracking ifopered. This tracking result
is fed to a video event recognition module where spatial antpbral events relating to
the servicing of the aircraft are detected and analysed sysieem must be capable of
monitoring and recognising the activities and interactbnumerous vehicles and per-
sonnel in a dynamic environment over extended periods @&, toperating in real-time
(12.5 FPS720 x 576 resolution) on colour video streams.

The tracking of moving objects on the apron has previousgnhgerformed using
a top-down model based approach [10] although such methedgeaerally computa-
tionally expensive when applied to real time tracking. Atealative approach, bottom-
up scene tracking, refers to a process that comprises thsuhb#processemotion de-
tectionandobject tracking the advantage of bottom-up scene tracking is that it is more
generic and computationally efficient compared to the togrdmethod.

Motion detection methods attempt to locate connected nsgib pixels that repre-
sent the moving objects within the scene; there are many teagshieve this including



frame to frame differencing, background subtraction andioncanalysis (e.g. optical
flow) techniques. Background subtraction methods [9, 7si@]e an estimate of the
static scene, learnt from an initial period of observatishich is subsequently applied
to find foreground (i.e. moving) regions that do not matchstagic scene.

Image plane based object tracking methods take as inpuesioét from the motion
detection stage and commonly apply trajectory or appearanalysis to predict, asso-
ciate and update previously observed objects in the cuiireatstep. One such method,
the Kanade-Lucas-Tomasi (KLT) feature tracker [8] combiadocal feature selection
criterion with feature-based matching in adjacent frarttés;method has the advantage
that objects can be tracked through partial occlusion winnasub-set of the features
are visible. Tracking algorithms have to deal with motioted&on errors and complex
object interactions; e.g. objects appear to merge togetbelude each other, fragment,
undergo non-rigid motion, etc. Apron analysis presentth@érchallenges due to the
size of the vehicles tracked (e.g. the aircraft siz&is 38 x 12 metres), therefore pro-
longed occlusions occur frequently throughout apron dpmra. The apron can also be
congested with objects; this enhances the difficulty of @ssiag objects with regions.

Video event recognition algorithms analyse tracking rissspatially and temporally
to automatically recognise the high-level activities atirig in the scene; for aircraft
servicing analysis such activities occur simultaneousir@xtended time periods in
apron areas. Recent work by Xiaagal [14] applied a hierarchical dynamic Bayesian
network to recognise scene events; however, such modeilscagable of recognising
simultaneous complex scene activities in real-time oveereded time periods. The
approach adopted for AVITRACK [12] addresses these problgsing cognitive vision
techniques based on spatio-temporal reasorangriori knowledgeof the observed
scene and a set of predefined video events corresponding sethicing operations to
recognise. Previous work was performed on primitive videsngs; here the focus is on
more complex video events corresponding to servicing dpeson apron area.

Section 2 details the Scene Tracking module comprisingparera motion detec-
tion, bottom-up feature-based object tracking and finalgefd object tracking using the
combined object tracking results from the camera agentsid®e3 describes the Scene
Understanding module including both the representationdso events and the video
event recognition algorithm itself applied to apron moriitg. Section 4 presents the
results, while Section 5 contains the discussion and ligtg¢ work.

2 Scene Tracking

The Scene Tracking module is responsible for the per-canmheection and tracking
of moving objects, transforming the image positions into8@rld co-ordinates, and
fusing the multiple camera observations of each objectdimgle world measurements.

2.1 Motion Detection

For detecting connected regions of foreground pixgtsmotion detection algorithms
were implemented for AVITRACK and evaluated quantitively warious apron se-
guences under different environmental conditions (suromditions, fog, etc.). The
evaluation process is described in more detail in [1]. OB¢halgorithms, the colour



mean and variance method was selected [13], after takiogaicdount processing ef-
ficiency and sensitivity. This motion detector has a backgdomodel represented by
a pixel-wise Gaussian distributia¥ (., %) over the normalised RGB colour space. In
addition, a shadow/highlight detection component basethemwork of Horpraserét

al [6], is used to handle illumination variability. The algthnin also employs a multi-
ple background layer technique to allow the temporary isiolu into the background
model of objects that become stationary for a short peridatred.

2.2 Object Tracking

Real-time object tracking can be described as a correspordaroblem of finding
which object in a video frame relates to which object in thgtrieame. As the time
interval between two frames is small, inter-frame changedimited, allowing the use
of temporal constraints and object features to simplifydbeespondence problem.

The KLT algorithm considers features to be independentiestand tracks each
of them individually. Therefore, it is incorporated into @lher-level tracking process
that groups features into objects, maintain associatiengden them, and uses the in-
dividual feature tracking results to track objects, takintp account complex object
interactions. For each obje€, a set of sparse featur@ss maintained, with the num-
ber of features determined dynamically from the object aizeé a configurable feature
density parametgs. The KLT tracker takes as input the set of observatighs } iden-
tified by the motion detector, wher; is a connected set of foreground pixels, with
the addition of a nearest neighbour spatial filter of clusteradiusr,, i.e., connected
components with gaps r.. A prediction P is then associated with one or more ob-
servations, through a matching process that uses the dudiviracking results of its
featuresS and their spatial and/or motion information, in a rule-lzhapproach.

The spatial rule-based reasoning method is based on ththiatdba feature belongs
to objectO; at timet — 1, then it should remain spatially within the foreground tegi
of O; at timet. A match functionf is defined which returns the number of tracked
features of predictiod®! that reside in the foreground region of observatMp

The use of motion information in the matching process, istam the idea that
features belonging to an object should follow approximetet same motion (assuming
rigid object motion). Affine motion models (solving far/ Fw;_ = 0 [15]) are fitted
to each group ok neighbouring features af;; then represented as points in a motion
parameter space and clustering is performed to find the ngrgfisant motion(s) of
the object. These motions are subsequently filtered tertiparad matched per frame
to allow tracking through merging/occlusion and identifjiing events.

2.3 Data Fusion

The data fusion module combines the tracking data seen bipdhgdual cameras to
maximise the useful information content of the scene bebsgoved and hence achieve
enhanced occlusion reasoning, a larger visible area angbireg@ 3D localisation. Spa-
tial registration of the cameras is performed using per caroeplanar calibration and
the camera streams are synchronised temporally acrosstivenk.

The method for Data Fusion is based on a nearest neighbounaafilter ap-
proach [3] with a constant velocity model. The measuremeigencovariance. is
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Fig. 1. (Left) Tracking results for 3 cameras for frame 9126 of seqee21. (Middle) shows

data fusion results on the ground-plane for the sequend&)(B&mes) with the vehicle track
shown in white. (Top-right) the fused observation (in blafdke the vehicle (frame 9126) using
the covariance accumulation method, (Middle-right) shtivesresult for covariance intersection.
(Bottom-right) shows the sensory uncertainty field measfwecamera 6.

estimated by propagating a nominal image plane uncertairgych that the measure-
ment uncertainty in the world co-ordinate system is givefdjy.e. R (2., Yuw, 2w) =
J(zc,ye) AT (., yC)T wherel is the Jacobian matrix found by taking the derivatives
of the two mapping functions between the image and worldrcinate systems. The
measurement uncertainty field is shown in Figure 1 for cariethis estimate of un-
certainty allows formal methods to be used to associateredtsens originating from
the same measurement, as well as providing mechanismsdiogfobservations into
a single estimated measurement. For each object the mesnirdcation and asso-
ciated uncertainty is also dependent on the object dimeas bias is incorporated
in the estimate using a heuristic method that includes theeca angle to the ground
plane, object category and the measured object size.

In the association step a validation gate [3] is appliedrtotlthe potential matches
between existing tracks and observations. Matched ohsgngaare combined to find
the fused estimate of the location and uncertainty of theaibghis is achieved us-
ing covariance accumulatioand covariance intersectianCovariance accumulation
estimates the fused uncertain;,s.q for N matched observations & f,scq =

Ry +...+ R;,l)_l. The covariance intersection method is conceptually aintd
the accumulation except that the observation uncertaionvgréances are weighted in
the summationR fyscq = (wiR7' +...+ wNRJ‘Vl)_l, wherew; = w)/ Zjv:l w)
andw, = 1/Tr (RS). R¢ is the measurement uncertainty of thh associated ob-
servation (made by camet Covariance intersection therefore weights in favour of
the sensors that have more certain measurements. Thérrgs$utied observations are
demonstrated in Figure 1; the covariance accumulation odetésults in a more lo-
calised estimate of the fused measurement than the coeariatersection approach.
Remaining unassociated measurements are fused into nels,tizgsing a validation



gate between observations to constrain the associatiofuaimh steps. The track cat-
egory is estimated as a weighted average over the fusedvalises; with each class
probability modelled using a supervised 2-D Gaussian MetModel, representing
object width and height in world co-ordinates.

3 Scene Understanding

The Scene Understanding module is responsible for the nétbmg of video events in
the scene observed through video sequences. This modéberpsia high-level inter-
pretation of the scene by detecting video events occurririy The method to detect
video events uses cognitive vision techniques based oiodeatporal reasoning
priori knowledge of the observed environment and a set of prededvesdt models. A
Video Event Recognition module takes the tracked mobileatbjfrom the previously
described modules as input, and outputs events that hane éesgnised.

The a priori knowledge is the knowledge about the observed empty scdne. T
includes the camera information, the vehicle models, tipeeted moving objects and
the empty scene model (also called the static environmesgrobd by the cameras)
containing the contextual objects (e.g. equipment, zohiggerest, walls, doors). Con-
textual objects are characterised by their 3D geometry (dwige an approximative
shape) and by their semantics (to describe how they intarigictmobile objects like
persons or vehicles). Thepriori knowledge also includes the set of event models de-
fined by the domain experts using a video event descriptioguage described in [5].

3.1 Video Event Representation

The video event representation corresponds to the speicificaf all the knowledge
used by the system to detect video events occurring in theesd® allow experts in
the aircraft activity monitoring to easily define and modihe video event models,
the description of the knowledge is declarative and intei{in natural terms). Thus,
the video event recognition uses the knowledge represdmytedperts through event
models. The proposed model of a video event E is composedegpéikts:

— a set of Physical Object variables corresponding to theipalysbjects involved in
E: any contextual object including static object (equiptmeane of interest) and
mobile object (person, vehicle, aircraft). The vehicle fit@bbjects can be of dif-
ferent subtypes to represent different vehicles (GPU, bgdkhnker, Transporter).

— a set of temporal variables corresponding to the compoifsuiisevents) of E

— a set of forbidden variables corresponding to the comparteat are not allowed
to occur during the detection of E

— a set of constraints (symbolic, logical, spatial and terapoonstraints including
Allen’s interval algebra operators [2]) involving theseiables

— a set of decisions corresponding to the tasks predefinedmresxthat need to be
executed when E is detected (e.g. activating an alarm olagisiy a message)

There are four types of video events: primitive state, cositpatate, primitive event
and composite event. A state describes a situation chasigteone or several physical
objects defined at time t or a stable situation defined ovena interval. A primitive



state (e.g. a person is inside a zone) corresponds to a yisierty directly computed
by the vision module. A composite state, as shown in Figuméresponds to a com-
bination of primitive states. An event is an activity coniag at least a change of state
values between two consecutive times (e.g. a vehicle leavese of interest : it is in-
side the zone and then it is outside). A primitive event, aswshin Figure 2, is a change
of primitive state values and a composite event is a comioimaf states and/or events.

CompositeState(Vehicle_Stopped_Inside_Zone, PrimitiveEvent(Enters_Zone,

PhysicalObjects((v1 : Vehicle), (z1 : Zone)) PhysicalObjects((m1 : MobileObject), (z1 : Zone))

Components( (c1 : PrimitiveState Inside_Zone(v1, z1)) Components( (c1 : PrimitiveState Outside_Zone(m1, z1))
(c2 : PrimitiveState Vehicle_Stopped(v1))) (c2 : PrimitiveState Inside_Zone(m1, z1))

Constraints{ (c2 during c1))) Constraints{ (c1 meet c2}))

Fig. 2. (Left) The model of the composite state for detecting wheelaale stops inside a zone
of interest. (Right) The model of the primitive event wherehiele enters a zone of interest.

3.2 Video Event Recognition

The video event recognition algorithm recognises whichme&are occurring in a stream
of mobile objects tracked by the vision module. The algonito recognise a primitive
state consists of two operations in a loop: (1) selectiong#taf physical objects; then
(2) verification of the corresponding atemporal constsinttil all combinations of
physical objects have been tested. Once a set of physicdisigatisfies all atemporal
constraints, the primitive state is said to be recogniseardler to facilitate primitive
event recognition, event templates are generated for eauitige event, the last com-
ponent of which corresponds to this recognised primitiagestThe event template con-
tains the list of physical objects involved in the primitis&ate. These physical objects
partially instantiate the event template.

To recognise a primitive event, given the event templatéghrinstantiated, the
recognition algorithm selects (if needed) a set of physibgcts matching the remain-
ing physical object variables of the event model. It therk®back in the past for
any previously recognised primitive state that matchegitsecomponent of the event
model. If these two recognised components verify the evedaiconstraints, the prim-
itive event is said to be recognised. In order to facilitatenposite event recognition,
after each primitive event recognition, event templatesgamerated for all composite
events, the last component of which corresponds to thigrésed primitive event.

The recognition of composite states and events usuallyineja search in a large
space composed of all the possible combinations of compgsiaen objects. To avoid
this combinatorial explosion, all composite states anchisvare simplified into states
and events composed of at most 2 components through a stagemgilation in a
preprocessing phase. Then the recognition of compostisséad events is performed
in a similar way to the recognition of primitive events. Thideo event recognition
algorithm is based on the method of ¥tial[12].

3.3 Video Event Recognition for Apron Monitoring

In the Video Event Recognition modula, priori knowledge corresponds to apron
zones of interest (access zones, stopping zones), aaomftehicle (e.g. GPU, Loader,
Tanker and Transporter) models. Even if the handling ojmraibn the apron are codi-
fied and controlled, some problems may occur while tryinguitdban accurate context



CompositeEvent(Unloading_ Operation,
PhysicalObijects( (p1 : Person), (v1 : Vehicle), (v2 : Vehicle), (v3 : Vehicle)
(21 : Zone), (22 : Zone),(z3 : Zone), (z4 : Zone))
Components( (c1 : CompositeEvent Loader_Arrivaliv1, z1, z2))
(c2 : CompositeEvent Transparter_Arrival(v2, z1, z))
(c3 : CompositeState Worker_Manipulating_Gontainer(p1, v3, v2, 23, z4)))
Constraints( (v1->SubType = LOADER)
(ve->SubType = TRANSPORTER)
(z1->Name - ERA)
N (z2->Name - RF_DoorC_Access)
¢ ¢ - (z3->Name = LOADER_BackZone)
e N TRANSPORTER 3 (z4->Name = TRANSPORTER_BackZone)
S — > (c1 before_meet c2)

: (c2 before_mest c3)))

Fig. 3. (Left) Two dynamic zones (in blue) linked with the Loader d@hd Transporter vehicles
involved in the event “WorkeManipulating Container” (event 26) detected. (Right) The Unload-
ing operation involving 8 physical objects and 3 compositeponents with 2 constraints on the
vehicle subtypes, 4 constraints on the zones of interes® aashporal constraints.

of the scene. For example, access zones to aircraft can lifeegict positions according
to the aircraft type. In some cases, one needs to detect apgetting out of a parked
vehicle which does not always stop exactly at the same placsolve these problems,
dynamic properties are added to theriori knowledge, by defining dynamic zones in
the local coordinate system of vehicles. In order to effetyiuse dynamic context, ac-
curate information is needed from the Scene Tracking maedalghe orientation when
a vehicle is parked. A transformation matrix is computeditocal to global scene co-
ordinate system and then dynamic zones are added to thext®his is illustrated in
Figure 3). This notion of dynamic context allows more com@eenarios to be defined
in which mobile objects can directly interact with each othe

3.4 Predefined Video Events

Currently a set of 21 basic video events has been defineddimg) 10 primitive states,
5 composite states and 6 primitive events; these are uskd definition of video events
representing the handling operations. The primitive stederespond to spatio-temporal
properties related to persons and vehicles involved inderes Some examplesinclude:
a person is located inside a zone of interest, a person ie tdas vehicle, a person has
stopped, a vehicle is located inside a zone of interest, &leels located outside a
zone of interest, a vehicle is close to another vehicle, &leehas stopped, a vehicle is
moving at a slow pace, and a vehicle is moving at a normal speed

Using these primitive states, the following compositeestdtave been modelled,
such as: a person stays inside a zone of interest, a vehislarhged in a zone of
interest, a vehicle has stopped in a zone of interest (asrsimowigure 2), a vehicle
stays inside a zone of interest, and a vehicle is exceedmgtked limitation. The
composite states have in turn been used to model primitigatsysuch as: a person
enters a zone of interest, a person changes from a zone wdshte another, a person
leaves a zone of interest, a vehicle enters a zone of inteaesthown in Figure 2), a
vehicle change from a zone of interest to another, and aledbives a zone of interest.
These states and events are used in the definition of the citmmeents (modelling
behaviours) representing the apron operations.



Current work has been performed on video events involvingh@ GPU (Ground
Power Unit) vehicle which operates in the aircraft arrivagmaration operation, (2) the
Tanker vehicle which operates in the refuelling operatiot @) the Loader and Trans-
porter vehicles which are involved in the baggages loadinigading operations.To
recognise these operations 28 composite video events wéred, including 8 video
events for the aircraft arrival preparation operation, @a events for the refuelling
operation, and 12 video events for the unloading operation.

The aircraft arrival preparation operation (event 8) inreslthe GPU, its driver and
4 zones of interest. The system recognises that the GPUlgdrigves in the ERA
Zone (event 1), respecting the speed limit (event 2); themters (event 3) and stops
(event 4) in the “GPU Access Area”, the driver gets out of tkehigle (event 5) and
deposits the chocks and stud at the location where the pldingtap (events 6 and 7).
This operation, and another modelled one, the refuellireyaton, are considered to be
basic operations because they involve only one person amdedricle.

The baggage unloading operation is more complex. It ingha@h a Loader and
a Transporter vehicle, the conductor of the Loader, and sopeworking in the area.
This operation is composed of the following steps: first, ltbader vehicle arrives in
the ERA zone (event 17), enters its restricted area (ev@raridBthen stops in this zone
(event 19); a dynamic zone is automatically added, at theofdhe Loader’s stop posi-
tion (“LoadetArrival”’, event 20), where the Transporter will enter andpstWhen the
Transporter enters (event 21) and stops (event 22) in time ¢@ransporteArrival”,
event 23), another dynamic zone is automatically addedetadintext. The back of the
Loader is then elevated (event 24) and the baggage cordanemunloaded from the
aircraft by the Loader conductor (event 25) one by one. Tmelgotor unloads these
containers into the dynamic zone of the Transporter wherer&av arrives (event 26)
and directs the containers (event 27) on to the Transporter.

4 Results

The Scene Tracking evaluation assesses the performartoe thiree core components
(motion detection, object tracking and data fusion) one@spntative test data. The per-
formance evaluation of the different motion detector atpons for AVITRACK is de-
scribed in more detail in [1]. It is noted that some objects @artially detected due to
the achromaticity of the scene and the presence of fog causgdatively high number
of foreground pixels to be misclassified as highlighted lgagknd pixels resulting in a
decrease in accuracy. Strong shadows also cause probligemsgetected as part of the
mobile objects. The performance evaluation of the tracllggrithm (representative
results shown in Figure 1), is described in more detail ij.[lklis noted that some ob-
jects can produce a ghost which remains behind the previgjestposition. An object
is integrated into the background when becomes statiowagnfextended time period.
In these cases, ghosts are created when stationary ol@ttsosmove again. Partial
detection of objects can result in fragmentation in traakgj@cts with similar colour as
the background. The Data Fusion module performs adequgitedy correctly detected
objects in the Frame Tracker (a representative result ignshio Figure 1). The Data
Fusion module incorporates uncertainty information inltdwation estimate of the ob-
servation and it is often an inaccurate location estimadéerésults in the failure of the



data association step; a significant proportion of the Isaibn problems that occur in
data fusion can be traced back to motion detection errarshadow, reflections etc.

The Scene Understanding evaluation has been performedjoersees for which
the Scene Tracking module gives good results. Video evengrétion has been tested
on sequences involving the GPU (aircraft arrival preparatiperation), the Tanker (re-
fuelling operation) and the Loader and the Transporteraleti(baggage unloading).
Video events 1 to 4, involving a GPU, have been tested on aefatd 4 scenes corre-
sponding to 2x4 video sequences (containing from 1899 td &&mes and including
one night sequence). These events are detected with afpEriecPositive rate. Video
events 4 to 8, also involving a GPU, have been tested on 2 saemeesponding to
2 video sequences because only one camera is availablee@oselibese events. The
video events involving the Tanker have been tested on ongesgeore than 15000
frames corresponding to about 30 minutes) showing the “daikrival” (event 13)
and the driver of the Tanker extending the refuelling pipéheaircraft (events 14 to
16). The “Unloading Baggage operation” involving the Loa@ents 17 to 20, 24 and
25) and the Transporter (events 21 to 23) have been testetemstene where the point
of view allows full observation of the vehicle movements ameractions between the
vehicles and people. Currently, the Scene Understandialg&ion is mainly qualita-
tive and performed manually; the results of the evaluatienshown in Table 2. The
goal is to give an idea of the performance of the Scene Uratedsig and to anticipate
potential problems in event detection for apron monitoritjvideo events are recog-
nised correctly (49 TPs) without false alarms (0 FPs) andletection (O FNs). These
results are very encouraging but one has to keep in mindithatisns where the vision
module misdetects or overdetects mobile objects were riyeaded.

Vehicle type Sequence TP|FP|FN
GPU

Events 1to 4 4 scenes *2 canB2 (0 (0
Events 4to 8 2scenes*1canB8 (0 (O
Tanker

Events 9 to 13 2scenes*1caml0|0 |0
Events 14 to 16 1scene*1lcam|3 |0 |0
Loader-Transporter

Events 17 to 28 1scenes*1canil2|0 |0

Table 1. Performance results of the Scene Understanding modulepfonamonitoring. TP =
“Event exists in the real world and is well recognised”, FNEvent exists in the real world but
is not recognised”, FP = “Event does not exist in the real avbtlt is recognised”.

5 Discussion and Future Work

The results are encouraging for both the Scene Tracking em@eSJnderstanding mod-
ules. The performance of multi-view object tracking pra@scadequate results; how-
ever, tracking is sensitive to significant dynamic and staliject occlusion within the
scene. Future work will address shadow supression anccéqaiclusion analysis.

The Scene Understanding results show that the proposedatpis adapted to
apron monitoring and can be applied to complex activity gaitoon. The main dif-
ficulty for apron monitoring is to model operations usiagriori expert knowledge



(49 video events already defined) and to recognise them alaiallel. The recogni-
tion of complex operations (e.g. “baggage unloading”) i@y people and vehicles
gives good results and encourages us to continue with monplea operations, more
interactions between people and vehicles. Another issinedsporating uncertainty to
enable recognition of events even when the Scene Trackirdulmaives unreliable
output.
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