
Reachability analysis of multithreaded software with
asynchronous communication

Ahmed Bouajjani1, Javier Esparza2, Stefan Schwoon2, and Jan Strejček2

1 LIAFA, University of Paris 7, abou@liafa.jussieu.fr
2 Institute for Formal Methods in Computer Science, University of Stuttgart�

esparza,schwoosn,strejcek � @informatik.uni-stuttgart.de

Abstract. We introduce asynchronous dynamic pushdown networks (ADPN), a
new model for multithreaded programs in which pushdown systems communi-
cate via shared memory. ADPN generalizes both CPS (concurrent pushdown sys-
tems) [QR05] and DPN (dynamic pushdown networks) [BMOT05]. We show
that ADPN exhibit several advantages as a program model. Since the reachability
problem for ADPN is undecidable even in the case without dynamic creation of
processes, we address the bounded reachability problem [QR05], which consid-
ers only those computation sequences where the (index of the) thread accessing
the shared memory is changed at most a fixed given number of times. We provide
efficient algorithms for both forward and backward reachability analysis. The al-
gorithms are based on automata techniques for symbolic representation of sets of
configurations.

1 Introduction

In recent years a number of formalisms have been proposed for modelling and analyz-
ing procedural multithreaded programs. A well-known result states that, if recursion is
allowed, checking assertions for these programs is undecidable, even if all variables are
boolean (see for instance [Ram00]).

Due to this undecidability result, approximate analysis techniques have been con-
sidered. In [BET03,BET04] it is shown how to compute overapproximations of the set
of reachable states. In [QR05], Qadeer and Rehof present the first nontrivial technique
to compute underapproximations. In this paper we build on the ideas of [QR05], which
we now describe in some more detail. Qadeer and Rehof introduce concurrent push-
down systems (CPS) as a model of multithreaded programs. In a nutshell, a CPS is a set
of stacks with a global finite control; at each step, the CPS reads the current control state
and the topmost symbol of (exactly) one of the stacks, can change the control state and
replace the stack symbol by a word, like in a pushdown automaton. A dynamic CPS (or
DCPS) can also, optionally, create a new stack as the result of a transition. Each stack
of a CPS corresponds to a thread. Communication between threads is modelled through
the common set of global control states. A context is defined as a computation in which
all transitions act on the same stack. In [QR05] it is shown how to compute, given a
fixed number k, the set of states that can be reached by k-bounded computations, i.e.,
by computations consisting of the concatenation of at most k contexts. Obviously, this
set constitutes an underapproximation of the set of all reachable states.

Dagstuhl Seminar Proceedings 06081
Software Verification: Infinite-State Model Checking and Static Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/726

In this paper, we show that with the help of a refined model it is possible to general-
ize and improve the results of [QR05] in a number of ways. We propose a generalization
of CPS called asynchronous pushdown networks (APN); we also introduce the dynamic
version of the model, called ADPN. Loosely speaking, the stacks of an APN have an
additional set of local control states, different from the common global finite control;
transitions are either local (dependent only on the local control), or global (depending
on both the global and local control states). We also propose a new, more liberal, defi-
nition of context: a context is now a computation in which all global transitions act on
the same stack, possibly interspersed with local transitions acting on arbitrary stacks.

In the first part of the paper (Section 2) we observe that, while the APN and CPS
formalisms are equally expressive, APN can model programs more succinctly than CPS.
In the dynamic case we show that, while ADPN can naturally model value passing from
a called procedure to its caller, DCPS cannot.

In the second part of the paper (Section 3), we study the forward and backward k-
bounded reachability problem for APN. Comparing [QR05], we propose a more general
and asymptotically faster algorithm for forward reachability. We introduce a backward
reachability algorithm as well.

In the third part of the paper (Sections 4 and 5), we consider the k-reachability prob-
lem for the ADPN model. We show that, due to the more liberal notion of context, the
set of configurations of an ADPN reachable by k-bounded computations may be non-
regular, contrary to the case of DCPSs. Using results of [BMOT05], we show that the
set is always context-free and provide an algorithm to compute a context-free gram-
mar that generates it. We then observe that the set of backwards k-bounded reachable
configurations is regular, and, relying on results from [EHRS00], provide an efficient
algorithm to compute it.

2 The model

2.1 Asynchronous dynamic pushdown networks

An asynchronous dynamic pushdown network (ADPN) is a tuple N � �
G � P� Γ � ∆l � ∆g � ,

where G is a finite set of global states, P is a finite set of local states, Γ is a finite stack
alphabet, and

– ∆l is a finite set of local rules of the form pγ � � p1w1 or pγ � � p1w1 � p2w2, where
p � p1 � p2 � P, γ � Γ, and w1 � w2 � Γ � .

– ∆g is a finite set of global rules of the form
�
g � pγ � � � �

g	
� p1w1 � or
�
g � pγ � � ��

g 	 � p1w1 � � p2w2, where g � g 	 � G, p � p1 � p2 � P, γ � Γ, and w1 � w2 � Γ � .
The rules with a suffix of the form � p2w2 are called dynamic. A configuration
of an ADPN is a pair

�
g � α � � G � �

PΓ � �
� of a global state g and a word α �
p1w1 p2w2 �
�
� pnwn, where each subword piwi � PΓ � represents a configuration of (a
pushdown corresponding to) one component. A word piwi is called component config-
uration. The set of all configurations is denoted by C .

The transition relation ��� C � C is defined as follows:
�
g � u � � �

g	�� v � if there is

– pγ � � p1w1 in ∆l such that u � u1 pγu2, v � u1 p1w1u2, and g � g 	 , or

2

– pγ � � p1w1 � p2w2 in ∆l such that u � u1 pγu2, v � u1 p2w2 p1w1u2, and g � g 	 , or
–

�
g � pγ � � � �

g 	�� p1w1 � in ∆g such that u � u1 pγu2 and v � u1 p1w1u2, or
–

�
g � pγ � � � �

g 	�� p1w1 � � p2w2 in ∆g such that u � u1 pγu2 and v � u1 p2w2 p1w1u2,

where u1 � �
PΓ � � � and u2 � Γ � � PΓ � � � . We say that the transition has been performed

by the component whose local state changes from p to p1. The transitions generated by
global and local rules are called global and local transitions respectively. A dynamic
rule creates a new component starting in component configuration p2w2.

2.2 Subclasses of ADPNs

ADPNs are an extension of several other models. An ADPN with only global states and
global rules is a dynamic concurrent pushdown systems (DCPS). Formally, a DCPS is
an ADPN

�
G � P� Γ � ∆l � ∆g � satisfying �P � � 1 and ∆l � /0. The DCPS model is studied

in [QR05]. The subclasses of ADPN and DCPS without dynamic rules are called APN
and CPS, respectively. Notice that in an APN or CPS all configurations reachable from
an initial configuration have the same number of components. Finally, both APNs and
CPSs are extensions of pushdown systems (PDS). Formally, a PDS is a CPS in which
the initial configuration only has one component.

An ADPN without global variables or global rules is called a DPN. DPNs have been
introduced and studied in [BMOT05]. Notice that in a DPN there is no communication
between different threads.

2.3 Reachability and bounded reachability

Given an ADPN N and a set S � C , we denote by post �N
�
S � and pre �N

�
S � the sets

of forward and backward reachable configurations from S. The forward and backward
reachability problem consists of, given sets I and F of initial and final configurations,
determining if post �N

�
I ��� F � /0 or pre �N

�
F ��� I � /0, respectively. Both problems are

undecidable, even when I and F are singletons. This is a consequence of the fact that
APNs (even without dynamic rules) are Turing powerful. For instance, it is straightfor-
ward to encode a 2-counter Minsky machine into an APN.

Following [QR05], we define a notion of bounded reachability. A context is a tran-
sition sequence where all global transitions are performed by the same component. We
say that this component controls the context. Notice that within a context local transi-
tions can be performed by arbitrary components. For k � 1, a sequence of transitions is
k-bounded if it is a concatenation of at most k contexts. We denote by post �k �N

�
S � the set

of all configurations reachable from S by k-bounded sequences. By analogy, pre�k �N
�
S �

denotes the set of all configurations from which a configuration from S is reachable by
a k-bounded sequence. We talk about forward and backward k-bounded reachability,
respectively. Further, by post �0 �N

�
S � and pre �0 �N

�
S � we denote the sets of configurations

that are forward and backward reachable only by local transitions, respectively.

2.4 APN as program model

The following example illustrates how to model programs with APNs (for simplicity,
we omit thread creation here). We consider a program with procedures m � n � lock � unlock

3

0

1

2

3

4

5

y=call lock

if y==tt

call m

else

call
unlock

use the
resource

m: n:

2

3

4

1

return

use the
resource

call
unlock

z=call lock else

lock:

3

if z==tt

else

return ff

1

l=1

2
return tt

0 0

1

2

l=0

return

unlock:0

5
return

if l==0

���m0 � b ��� � � lock0
�m1 � b �

tt �m1 � b ��� � ���m2 � tt �
ff �m1 � b ��� � ���m4 � ff ����m2 � b ��� � ���m3 � b ����m3 � b ��� � � unlock0

�m5 � b ����m4 � b ��� � ���m0 �
	 � �m5 � b ����m5 � b ��� � � ε
where b ranges over � 	�� tt � ff

��� n0 � b ��� � ��� n1 � b ���� n0 � b ��� � ��� n5 � b ���� n1 � b ��� � � lock0
� n2 � b �

tt � n2 � b ��� � ��� n3 � tt �
ff � n2 � b ��� � ��� n1 � ff ���� n3 � b ��� � ��� n4 � b ���� n4 � b ��� � � unlock0

� n5 � b ���� n5 � b ��� � � ε

���
0 � � lock0 � � � �

0 � � lock1 ����
1 � � lock0 � � � �

1 � � lock3 ����
0 � � lock1 � � � �

1 � � lock2 ����
1 � � lock1 � � � �

1 � � lock2 �� lock2 � � ttε� lock3 � � ff ε���
0 � � unlock0 � � � �

0 � � unlock1 ����
1 � � unlock0 � � � �

0 � � unlock1 �� unlock1 � � � ε

Fig. 1. A program with four procedures and two threads.

described by the flow graphs of Figure 1; y and z are local variables of the procedures
m and n, respectively, and can take the values undefined (�), true (tt), or false (ff).
The procedures m and n call procedures lock and unlock to get exclusive access to a
shared resource. The lock action is nonblocking; it returns true if it succeeds to lock the
resource, false otherwise. The variable l occurring in the procedures lock and unlock
is global and ranges over � 0 � 1 � . The system consists of two concurrent threads, one
starting with the execution of m, the other with the execution of n.

We model this program by the APN N � �
G � P� Γ � ∆l � ∆g � as follows: Global states

model the value of the global variable l, i.e. G ��� 0 � 1 � . Local states are used to pass
a potential return value from a callee back to the caller: The callee stores the value
in the local state of the thread, from where it is read by the caller.3 As a procedure
cannot return the undefined value (�), we set P ��� tt � ff �
��� , where tt and ff are used to
return the corresponding values, and � is used elsewhere. The set Γ of stack symbols
contains all program locations (pl denotes the symbol for location l of procedure p),
together with the actual values of the local variables for procedures m � n. The local and
global rules corresponding to each procedure are given directly in the figure; global
rules (marked with �) correspond to transitions dealing with the global variable l.

The techniques developed in the next sections can show that the program does not
satisfy its basic specification: exclusive access to the resource. More precisely, they

3 In general, local states can be also used to hold values of variables that are global to a thread
(if such a variable type is supported in the modeled system).

4

show that the program can reach a configuration of the form
�
0 �
���m2 � b � w1 ��� n3 � b 	 � w2 �

from the initial configuration
�
0 �
���m0 � ��� ��� n0 � ��� � , and in fact within 3 contexts.

2.5 A(D)PN versus (D)CPS

As we have seen, local states are used to model value-passing from a callee to its caller.
In the CPS model there is no notion of local state of a thread, and so value passing must
be simulated through a global variable. Clearly, this amounts to simulating an APN by
a CPS. We show that this is possible, but involves a blow-up in size. Moreover, the
translation has to fix the number n of components that the CPS can work upon. Let
N � �

G � P� Γ � ∆l � ∆g � be an APN. We construct a CPS N 	 � �
G 	�� Γ 	 � ∆ 	g � such that the

configuration graphs of N and N 	 , defined in the usual way, are isomorphic. We take
G 	 � G � Pn, Γ 	 � Γ � � 1 � � �
� � n � , and add to ∆ 	g rules
� �

g1 � p1 � �
� � � pi � 1 � p � pi � 1 � � �
� � pn � � q � γ � i �
� � � �
�
g2 � p1 � � �
� � pi � 1 � p 	 � pi � 1 � � �
� � pn � � q �w � i � �

for every
�
g1 � pγ � � � �

g2 � p 	 w � in ∆g, 1 � i � n, p1 � �
� � � pi � 1 � pi � 1 � �
�
� � pn � P, and rules
� �

g � p1 � �
� � � pi � 1 � p � pi � 1 � � �
� � pn � � q � γ � i �
� � � �
�
g � p1 � � �
� � pi � 1 � p 	 � pi � 1 � � �
� � pn � � q �w � i � �

for every pγ � � p 	 w in ∆l , g � G, 1 � i � n, and p1 � � �
� � pi � 1 � pi � 1 � �
� � � pn � P.
Here, q is the only local state of N 	 . Further, for w � w1w2 � �
� wm, �w � i � stands for�
w1 � i � � w2 � i � � �
� � wm � i � . Observe that the size of N 	 may be larger than that of N by a

factor of n � �G �	� �P � n � 1.
Observe also that the transformation APN � CPS cannot be naturally extended to

a transformation ADPN � DCPS. The straightforward idea of taking G � P � as set of
global states does not work, and not only because this set is infinite, but also because
in order to simulate a change of local state a stack has to know its position in the
current state

�
g � p1 p2 �
� � pn � , which now changes as the computation proceeds because

of thread creation. Currently we do not know if an ADPN can be translated into an
equivalent DCPS, and we do not see any elegant way of modelling value-passing and
thread creation in the DCPS formalism.

We finish with an advantage of our more liberal notion of context. In a k-bounded
computation, at most k components can execute global transitions, and this has the
following consequence when comparing ADPN and DCPS: While a k-bounded com-
putation of a DCPS can create an arbitrary number of components, at most k of them
can execute a transition at all. For ADPN the constraint is weaker: arbitrarily many pro-
cesses can execute transitions, but at most k of them can execute global transitions. So
an algorithm for exploring k-bounded computations of ADPN searches ‘deeper’ as the
same algorithm for DCPS.

3 Reachability analysis for APN

We now consider k-bounded reachability for the APN model, i.e. the restriction of
ADPN to non-dynamic rules. Let us fix an APN N � �

G � P� Γ � ∆l � ∆g � and k ��
 for
the rest of this section. We investigate the case where the initial or final configurations
are given by so-called aggregates:

5

Definition 1. An aggregate is a tuple M � �
g � C1 � �
� � � Cn � , where g � G, n � 1 is the

number of concurrent processes, and C1 � �
� � � Cn � P � Γ � are regular sets of component
configurations. M is used to denote the set � g � � �

C1 � � � � �Cn � , where � is the concatena-
tion of the component configurations.

We now fix an aggregate M � �
g � C1 � �
�
� � Cn � for the rest of the section, and we will

present solutions for computing post �k �N
�
M � as well as pre �k �N

�
M � .

For the CPS model, k-bounded reachability was considered in [QR05]. The algo-
rithms presented in this section follow the same general idea as the solutions in [QR05]
(but applied to APN). Moreover, the new solution has these benefits:

– Our algorithm avoids repeating partial computations of reachable component con-
figurations. Even if we consider only CPSs, the algorithm runs asymptotically faster
than the one presented in [QR05].

– The APN model distinguishes between local and global states, and our algorithm
exploits this difference. Therefore, it is faster than a translation of a given APN to
CPS (see Section 2.5) followed by the application of an algorithm for CPS.

– Some details in our algorithm are different from [QR05] and would lead to time
and memory savings in an implementation. These are discussed in Section 3.3.

– We provide algorithms for both forward and backwards reachability, whereas
[QR05] only covered forward reachability. The two algorithms are fairly similar
– in fact we will present them as one algorithm – but their complexity analysis is
a little more involved. The algorithm makes use of a procedure called CLOSURE,
which stands for the post � or pre � procedure on PDSs [EHRS00] in case of forward
and backwards reachability, respectively.

3.1 Reordering of Transitions

Our algorithms are based on the following observation: Let c be a configuration reach-
able from M � �

g � C1 � �
� � � Cn � by a k-bounded computation, and let σ be this computa-
tion. Then the transitions in σ can be rearranged to another k-bounded computation σ 	
that also leads from M to c. Moreover, σ 	 can be partitioned into n

�
k phases, where in

each phase all rules are applied to the same component:

– In the i-th phase, 1 � i � n, component i executes all its local steps in σ up to, but
not including, its first global step (or all steps, if it never executes a global rule).

– In the n
�

i-th phase, 1 � i � k, the component controlling the i-th context executes
the first global step of the i-th context in σ, followed by all its global and local steps
up to, but not including, the first global step in the next context controlled by the
same component (all its remaining steps, if it does not control any more contexts).

Notice that this rearrangement only requires to swap the ordering of local transitions
of some component with local or global transitions of other components; but as the
application of a local rule does not depend on the global state, these reorderings do not
alter the final configuration of the computation.

6

3.2 Reduction to PDS

We now show that all n
�

k phases reduce to reachability problems on PDS. In the
following, CLOSUREP

�
C � denotes the set post �P

�
C � or pre �P

�
C � , depending on whether

forward or backward reachability is of interest.

– Let P 1
N : � �

P� Γ � ∆l � , i.e. P 1
N simulates the local moves of N . Thus, the results of

the first n phases are obtained by CLOSUREP 1
N

�
Ci � for i � 1 � �
�
� � n.

– For the remaining phases, we create a PDS in which the global and local states are
merged. Let P 2

N � �
G � P� Γ � ∆ 	 � , where ∆ 	 contains all

�
g1 � p1 � γ � � �

g2 � p2 � w such

that either
�
g1 � p1γ � � � �

g2 � p2w � in ∆g, or p1γ � � p2w in ∆l and g1 � g2. Thus, P 2
N

computes the possible operations of one component in a single context. More pre-
cisely, we define LIFT

�
g � C � : ��� �
� g � p � � w � � � p � w � � C � and RESTRICT

�
C � g � : �

� � p � w � � �
� g � p � � w � � C � . Now, if a component starts a context in global state g and
with component configurations C, the reachable configurations within this context
that end in global state g 	 are RESTRICT

�
CLOSUREP 2

N

�
LIFT

�
g � C � � � g 	 � .

Recall that the initial sets C1 � �
� � � Cn are regular and can be represented by finite
automata. Regular sets are closed under the CLOSURE operation, and algorithms for
these have been provided in [EHRS00]. It is easy to see that LIFT and RESTRICT can
also be implemented as operations on finite automata.

3.3 The algorithm

Figure 2 shows our algorithm, which directly implements the ideas outlined before.
Line 2 computes the local phases 1 � �
� � � n of the computations, whereas the lines from
line 3 onwards implement phases n

�
1 � � �
� � n �

k. Essentially, the algorithm explores
a ‘tree’ of depth k, where each node corresponds to an aggregate, and its successors
are the aggregates reachable by executing one context. Each iteration of the while loop
picks an aggregate and computes its successors. As hinted at before, the operations on
the sets of component configurations are carried out by operations on finite automata.
The algorithm uses the following data structures:

todo is a list with information on those aggregates whose successors still need to be
computed. The first part of each entry in todo indicates the depth of the aggregate
in the tree, the second is the index of the component that has controlled the previous
context; the rest is the aggregate itself.

aut is a hash table. An entry aut � g � B � remembers the result of applying the closure on
LIFT

�
g � B � . The motivation for this table is that, for a pair

�
g � B � , the computation

of CLOSUREP 2
N

�
LIFT

�
g � B � � may be required in multiple branches of the ‘tree’;

therefore we would like to reuse the result. Notice that actually hashing over (an
automaton accepting) the language B could be very time consuming. In order to
achieve the desired time-saving effect (see Subsection 3.4), it suffices to approx-
imate this effect, e.g. by giving a unique identifier to each automaton that arises
from an application of CLOSURE.

reachable collects the aggregates that represent reachable configurations.

7

Input: An APN N , an aggregate M � � g � C1 �������
� Cn � , and k ��� .
Output: The set post �

k �N
�
M � (or pre �

k �N
�
M �) given by union of the aggregates in reachable.

1 reachable 	 /0;
2 todo 	 � � 0 � 0 � g � CLOSUREP 1

N

�
C1 � ������� � CLOSUREP 1

N

�
Cn �
�
 ;

3 while todo
� /0 do
4 pop

�
level � last � g � B1 �������
� Bn � with minimal level from todo;

5 if level � k then
6 reachable 	 reachable � � � g � B1 �������
� Bn �
 ;
7 else
8 for all i � 1 �������
� n such that i
� last do
9 if aut � g � Bi � undefined then

10 aut � g � Bi ��	 CLOSUREP 2
N

�
LIFT

�
g � Bi �
� ;

11 for all g
 � G do
12 todo 	 todo � � � level � 1 � i � g
 � B1 �������
� Bi � 1 � RESTRICT

�
aut � g � Bi � � g
 � � Bi � 1 �������
� Bn �
 ;

Fig. 2. Algorithm computing k-bounded reachability on APN.

The basic idea of exploring a tree of depth k is similar to the CPS algorithm
in [QR05]. However, the algorithm in Figure 2 also contains some improvements:

– When adding a new item to todo, the algorithm reuses all previous local automata
except for Bi (unlike [QR05], where all n automata are changed in every step). This
makes the algorithm more memory-efficient, because the automata that have not
changed from one context to another can be shared.

– Using aut allows to reuse results of computations made in other parts of the tree.
– A trivial improvement is that no component is allowed to execute two contexts in a

row (the second context would yield nothing new due to closure properties).
– Another simple, but important optimization (not shown) is that line 11 should only

be executed for those global states g 	 such that aut � g � Bi � accepts at least one con-
figuration of the form � g	�� w � for some w � Γ � .

3.4 Complexity analysis

We now examine the complexity of our algorithm for both directions. Recall that the set-
theoretic operations in Figure 2 are implemented using operations on finite automata.
We first state some facts about these:

Definition 2 ([EHRS00]). Let P � �
P 	�� Γ 	�� ∆ � be a pushdown system. A quintuple A ��

Q � Γ 	 � δ � P 	�� F � is called a P -automaton if A is a finite automaton where the set of states
Q subsumes P 	 , and where the elements of P 	 are the initial states of the automaton. We
say that A accepts a set C � P 	 � Γ � , where C consists of the pairs

�
p � w � such that w is

accepted in A by a path starting at p.

8

Notice that we can equivalently represent M � �
g � C1 � �
� � � Cn � by a tuple�

g � A1 � � �
� � An � , where all Ai (i � 1 � �
� � � n) represent the configurations of a single com-
ponent. In other words, Ai is a P 1

N -automaton accepting Ci, for i � 1 � �
�
� � n.
All operations required by the algorithm can be efficiently implemented on regu-

lar sets of languages using automata. Using the algorithms from [EHRS00], automata
accepting the sets post �P

�
L
�
A �
� and pre �P

�
L
�
A �
� can be efficiently computed, with the

following complexities:

Theorem 1 ([EHRS00]). Let P � �
P 	�� Γ � ∆ � be a PDS and A � �

Q � Γ � δ � P 	 � F � be a
P -automaton.

(a) An automaton accepting post �P
�
L
�
A � � can be constructed in time O

� �P 	 � � �∆ � �� �Q0 � � �∆ � � � �P 	 �	� � δ0 � � , where Q0 � Q � P 	 and δ0 � δ is the set of all transitions
leading from states in Q0. Moreover, the automaton has at most �Q � � �∆ � states and
at most � δ0 � � �∆ �	� � �∆ � � �Q0 � � transitions leading from states that are not in P 	 .

(b) An automaton accepting pre �P
�
L
�
A �
� can be constructed in time O

� �Q � 2 �∆ � � and
with �Q � states.

Moreover, we need the following operations:

– Given a P 1
N -automaton A, we can generate a P 2

N -automaton accepting the set
LIFT

�
g � A � by modifying A as follows: Change the name of every state p � P to

a pair
�
g � p � and add initial states

�
g 	 � p � � �

G � � g � � � P.
– Given a P 2

N -automaton A, we can create a P 1
N -automaton accepting

RESTRICT
�
A � g � by making all states in

�
G � � g � � � P non-initial and renaming

every state of the form
�
g � p � to p.

Looking at the algorithm in Figure 2, it is straightforward to see that the bulk of the
work is done in the cycle starting at line 3. The number of iterations of this cycle equals
the number of different tuples in todo. Let t j denotes the number of these tuples with
j as the first component. Then t0 � 1, t j � t j � 1 � �G �	� � n � 1 � , or t j �

�
n � 1 � j � �G � j, for

j � 1. Line 6 is thus executed tk � �
n � 1 � k � �G � k times, while the number of executions

of the else branch starting at line 7 is

t �
k � 1

∑
j � 0

t j �
�
n � 1 � k � �G � k � 1�
n � 1 � � �G � � 1 � O

�
nk � 1 � �G � k � 1 � �

Let us compute the number of times line 10 is executed. Thanks to the aut structure,
this number is less than t.

Lemma 1. Let Slev � j be the set of pairs
�
g � B j � such that some element of the form�

lev � last � g � B1 � �
� � � B j � � �
� � Bn � is added to todo during the algorithm run. Then the num-
ber of distinct pairs in Slev � j, denoted � Slev � j � , is O

� �G � lev � .
We prove Lemma 1 by induction on lev.

Base lev � 0. Obvious, because there is exactly one tuple (produced in line 2) with
lev � 0.

9

Induction step. Assume � Slev � j � � O
� �G � lev � holds. Let us see what happens in lines 8

to 12. For all executions with i
�� j, the additions in line 12 only change the global

states, but not the automaton for component j, resulting in at most �G �	� � Slev � j � dif-
ferent contributions to Slev � 1 � j. Every execution with i � j results in up to �G � con-
tributions, i.e.

�
g 	�� RESTRICT

�
A � g 	 �
� for all g 	 � G, if A is the result of the closure.

Thus, � Slev � 1 � j � � O
� �G � lev � 1 � .

It is easy to see that the number of times line 10 is executed is

k � 1

∑
lev � 0

n

∑
j � 1

� Slev � j � � O
�
n � �G � k � 1 � �

Line 12 is executed t � � n � 1 � � �G � times. However, it is sufficient to execute the
RESTRICT operation only �G � times for every aut � g � Bi � (and store the result for later
use). The cost of RESTRICT operation is linear in the number of states of the automaton
it is executed on. If C

�
A � is the maximal cost of computing the closure and �A � is the

maximal number of states of an automaton arising in the computation, then the overall
time required by the computation can be bounded by

O
�
nk � �G � k �

n � �G � k � 1 � � C �
A � � �G �	� �A � � � � (1)

We are now ready to state the main result of this section. Let A1 � �
� � � An be automata
representing C1 � �
� � � Cn.

Theorem 2. Let M � �
g � C1 � �
� � � Cn � be an aggregate of an APN N � �

G � P� Γ � ∆l � ∆g �
and let k �
 be a number. Then there exist aggregates M0 � �
� � � Mm such that post �k �N

�
M �

(or pre �k �N
�
M � , resp.) has the form M0 � M1 � � �
� � Mm and all these aggregates are

effectively computable. Moreover,

(a) computing post �k �N
�
M � takes O

�
nk � �G � k �

n � �G � k � �P � � � d � �∆ � � k � q � �∆ � 2 � k2 � �
time, where �∆ � � �G � � �∆l � � �∆g � and q � d are the largest numbers of non-initial
states and transitions leading out of non-initial states in A1 � �
� � � An, respectively;

(b) pre �k �N
�
M � can be computed in time O

�
nk � �G � k �

n � �G � k � 1 � � q �
k � �P �	� �G � � 2 � �∆ � �

where �∆ � � �G �	� �∆l � � �∆g � and q is the maximal number of states in A1 � � �
� � An.

Proof: Equation 1 provides the basis for the theorem; all we need is to determine the
parameters C

�
A � and �A � for both forward and backward reachability.

(a) Forward reachability: Notice that �∆ � � �G � � �∆l � � �∆g � and �P 	 � � �P � � �G � in line 10.
Let q be the largest number of non-initial states and d be the largest number of
transitions leading out of non-initial states in any of the initial automata Ai (1 �
i � n). Each application of LIFT adds �P �	� � �G � � 1 � states. Recall that these added
states are initial. The subsequent application of RESTRICT makes the same number
of added states non-initial, and (since the post � construction ensures that they do
not have any incoming transitions) unreachable, so they can be removed, and each
iteration grows the automaton only by �∆ � states. A component can control at most�
k � 2 � contexts, so the maximal size of Q0 will be q

� �
k � 2 ��� �∆ � . Moreover, the

10

post � algorithm adds �∆ � � � �∆ � � �Q0 � � transitions leading out of non-initial states.
Due to the bound on �Q0 � , the maximal size of δ0 is O

�
d

� �∆ � � k � q � �∆ � 2 � k2 � . The
maximal number of all states in an is �A � � �Q0 � � �P � � �G � . Plugging these results
into Theorem 1(a) and into Equation 1 yields the result stated in part (a) of the
theorem.

(b) Backward reachability: Again, we have �∆ � � �G �	� �∆l � � �∆g � in line 10. This time,
let q be the largest number of states and d be the largest number of transitions in
any of the initial Ai (1 � i � n) automata. For each application of LIFT, we need
to add �P �	� � �G � � 1 � states, so the automaton size for every component grows with
every context it controls. Again, each component controls at most

�
k � 2 � contexts,

so the maximal size of Q is O
�
q

� �
k � 2 � � �P � � �G � � . This estimate in combination

with Theorem 1(b) and Equation 1 prove part (b) of the theorem. �

Note that the complexity given for k-bounded forward CPS reachability in [QR05]
has (among others) the factors k3 and �G � k � 5. Seeing as APNs are an extension of CPSs,
Theorem 2 provides a better upper bound for k-bounded reachability even on CPSs.
(This issue should not be confused with the fact that APN can also be a more compact
model than CPS, as has been pointed out in Section 2.5.)

4 Forward reachability analysis of ADPN

Even in the DPN case, the post � image of a regular set of configurations is not always
regular [BMOT05]. However, it can be shown that this image is always context-free,
and [BMOT05] provides a construction that, given a DPN and an initial configuration
p0γ0, computes a context-free grammar G such that L

�
G � � post � � p0γ0 � .

In this paper we show how to compute post �k �N
�
c0 � for an ADPN N , a configuration

c0 � �
g0 � p0γ0 � and an arbitrary k � 0. (The algorithm can be extended from one con-

figuration c0 to a regular set of configurations.) The key of the result is a construction
which, given a sequence σ � g1 � �
� gk of global states of N , constructs a DPN Nσ, a
configuration c, a regular set S, and a homomorphism π (as we shall see, S, c, and π are
independent from σ) such that:

post �k �N
�
c0 � � π

�
S �

�

σ � g1 � � � gk � Gk

�
gk � post �Nσ

�
c �
� �

By the result of [BMOT05], the sets post �Nσ

�
c � are effectively context-free, and so

post �k �N
�
c0 � is effectively context-free as well.

Informally, given σ � g1 �
�
� gk the DPN Nσ is able to simulate those execution se-
quences of N in which, for every 1 � i � k, the i-th context-switch occurs at a con-
figuration of N with global state gi. During the simulation, each pushdown component
of Nσ maintains a guess about the index of the current context. (Notice that, due to
the lack of communication between components of a DPN, a component cannot know
how many context-switches have occurred). The component can at any point increase
its guess, but cannot decrease it. A wrong guess leads to an unfaithful simulation (see
below how to ‘filter them away’). Moreover, the component can at any point decide to

11

control the current context (more precisely, the context it guesses is the current one). In
such a case, the current global state is mantained as a part of the corresponding local
state. Since components cannot communicate, this may lead to an unfaithful simulation,
where zero, two or more different components claim to control the same context.

The problem of the unfaithful simulations is solved with the help of the set S and
the homomorphism π. We define Nσ so that if a component completes the simulation
of a context it claims to have controlled, then it must create an inactive ‘marker’ (a new
component that can do nothing) witnessing this claim. At the end of the simulation we
can inspect the inactive markers, and check if every context was indeed controlled by
one and at most one component. If this is so, the simulation is faithful, otherwise it is
unfaithful. The set S is the set of configurations where every marker appears exactly
once, and so intersection with S ‘filters out’ all the configurations reached by unfaithful
simulations. The homomorphism π is used to ‘clean up’ the configurations so obtained
by disposing of the markers and other auxiliary symbols used along the simulation.

Formally, let N � �
G � P� Γ � ∆l � ∆g � be an ADPN, and let σ � g1 � �
� gk � Gk. The DPN

Nσ � �
Pσ � Γ 	�� ∆σ � is defined as follows. The set Pσ contains:

– a state � p � i � for every p � P, and 1 � i � k
�

1;
– a state � g � p � i � for every g � G, p � P, and 1 � i � k;
– a state i for every 1 � i � k.

The set of stack symbols Γ 	 � Γ � ��� � contains a fresh symbol � denoting a bottom of
a stack. This added symbol enables us to rewrite a state even if the correponding stack
is empty.

Intuitively, a component in state � p � i � guesses that the simulation is currently in the
i-th context. In addition, a component in state � g � p � i � claims to be in control of the i-th
context by global state g. The configuration c is given by c � � g0 � p0 � 1 � γ0 � .

The rules ∆σ follow easily from the intended meaning of � p � i � and � g � p � i � .
– � p � i � γ � � � p � i �

1 � γ for every p � P, 1 � i � k, γ � Γ;
(a component increase its guess on the current context)

– � p � i � γ � � � gi � 1 � p � i � γ for every p � P, 2 � i � k, γ � Γ, where gi � 1 is given by σ;
(a component claims control of the i-th context)

– � gi � p � i � γ � � � p � i �
1 � γ � i for every p � P, 1 � i � k, γ � Γ 	 , where gi is given by σ;

(a component claiming to control the i-th context signals a context-switch leaving
a marker)

– the rules corresponding to the original rules of ADPN N :
� � g � p � i � γ � � � g � p1 � i � w1 and � p � i � γ � � � p1 � i � w1 for every pγ � � p1w1 � ∆l , 1 �

i � k, g � G;
� � g � p � i � γ � � � g � p1 � i � w1 � � p2 � i � w2 � and � p � i � γ � � � p1 � i � w1 � � p2 � i � w2 � for every

pγ � � p1w1 � p2w2 � ∆l , 1 � i � k, g � G;
� � g � p � i � γ � � � g 	
� p1 � i � w1 for every

�
g � pγ � � � �

g 	�� p1w1 � � ∆g, 1 � i � k;
� � g � p � i � γ � � � g 	
� p1 � i � w1 � � p2 � i � w2 � for every

�
g � pγ � � � �

g 	�� p1w1 � � p2w2 � ∆g,
1 � i � k.

We still have to define the set S and the homomorphism π. The set S consistss of all
words without any letter of the form � g � p � i � and in which each of the markers 1 � �
�
� � k

12

appears exactly once. This means that exactly one component claimed control of each
context. Since in principle there are no restriction on the order in which the markers
may appear in a configuration of Nσ at the end of a faithful simulation, the size of an
automaton accepting S is O

�
2k � . Finally, the homomorphism π is defined by π

� � p � i � � � p
for every p � P, and 1 � i � k

�
1, π

�
i � � π

�
� � � ε for every 1 � i � k, and π

�
γ � � γ

otherwise.
Nσ has O

� �P � � �G � � k � states and O
�
k � � �P � � �Γ � � �∆l � � �G � � �∆g � �
� rules. The construc-

tion shown in [BMOT05] takes as input a DPN N � �
P� Γ � ∆ � and yields a context-free

grammar with O
� �P � 2 � �∆ � � productions. So we obtain a context-free grammar of size

O
�
� �∆l � � �∆g � � � �P � 3 � �G � 3 � k3 � � Γ � � �G � k � accepting the set � σ � g1 � � � gk � Gk

�
gk � post �Nσ

�
c �
� .

From these grammars and the automaton accepting S we obtain the final context-free
grammar accepting post �k �N

�
c0 � by means of standard constructions. So we have the

following result:

Theorem 3. Let N � �
G � P� Γ � ∆l � ∆g � be an ADPN and let c0 � �

g0 � p0γ0 � be a config-
uration of N . The set post �k �N

�
c0 � is context-free. A context-free grammar generating it

can be constructed in time O
�
k3 � �G � k � 3 � �P � 3 � �Γ �	� � �∆l � � �∆g � �
� .

5 Backward reachability analysis of ADPN

We consider here the problem of constructing the pre �k images of a regular set of con-
figurations, under the assumption of at most k contexts. We provide a reduction of this
problem to the problem of computing pre � images in the case of DPNs (or in other
words to the problem of computing pre �1 images), and we provide and efficient algo-
rithm for solving the latter problem. This algorithm improves the complexity of the
basic saturation-based procedure proposed in [BMOT05] for symbolic backward reach-
ability analysis of DPN.

5.1 Regular symbolic representations

Our algorithms use a class of automata-based representations for regular sets of con-
figurations (mass configurations) which have been introduced in [BMOT05] for DPN
analysis. These representations are finite-state automata in a special form defined below.

Let N � �
G � P� Γ � ∆l � ∆g � be an ADPN. Then, a finite-state automaton A ��

Q � Σ � δ � q0 � F � is called N -automaton if and only if it satisfies the following conditions:

– Σ � P � Γ,
– Q can be partitioned into three mutually disjoint subsets Q0 � Q1 � Q2 such that for all

q � Q0 � p � P there exists a unique state qp � Q1,
– transition relation δ can be partitioned into three disjoint relations δ0 � δ1 � δ2 such

that δ0 � � � q � p � qp � � q � Q0 � p � P� qp � Q1 � , δ1 � �
Q1 � Q2 � � Γ � Q2, and δ2 ��

Q1 � Q2 � � � ε � � Q0,
– q0 � Q0, and F � Q1 � Q2.

13

PSfrag replacements

Q0 Q1 Q2

δ0
δ1

δ1

δ2

Fig. 3. An automaton in the special form.

An automaton in the above special form is schematically depicted in Figure 3. No-
tice that N -automata recognize languages which are regular subsets of

�
PΓ � � � . It is

easy to see that, conversely, every finite-state automaton over the alphabet Σ � P � Γ
recognizing a language included in

�
PΓ � �
� can be transformed into a language equiva-

lent N -automaton. Notice also that this definition depends obviously on the model N
under consideration, but only on his set of control states P and his stack alphabet Γ and
not on the fact whether global variables and rules are considered.

Following the common habit, we write q
a� � δ q 	 meaning

�
q � a � q 	 � � δ. We also

extend this notation to finite words in standard way: for every q � q	 � Q, a � Σ and u � Σ �
we set q

ε� � δ q and q
au� � δ q 	 iff there is q 	 	 � Q such that q

a� � δ q 	 	 and q 	 	 u� � δ q 	 .

5.2 Computing pre � images for DPN

Let N � �
P� Γ � ∆ � be a DPN and A � �

Q � Σ � δ � q0 � F � be an N -automaton. We describe a
simple procedure proposed in [BMOT05] for computing a finite-state automaton Apre �
satisfying L

�
Apre � � � pre �N

�
L
�
A �
� . The automaton is defined as Apre � � �

Q � Σ � δ 	 � q0 � F � ,
where δ 	 is the smallest relation δ 	 � δ satisfying the following two conditions.

– If pγ � � p1w1 � ∆ and q
p1w1� � � � δ � q 	 for q � q 	 � Q then

�
qp � γ � q 	 � � δ 	 .

– If pγ � � p1w1 � p2w2 � ∆ and q
p2w2 p1w1� � � � � � � δ � q 	 for q � q 	 � Q then

�
qp � γ � q 	 � � δ 	 .

The construction of the automaton Apre � terminates since it corresponds to adding
iteratively new transitions to the original automaton A without modifying the number
of its states. The construction can be proved to be sound and complete [BMOT05].

It can be seen that this construction is polynomial but a naive implementation of it
can be of a prohibitive cost, similarly to the basic algorithm of [BEM97] for pushdown
systems with respect to its efficient implementation of [EHRS00]. Following the prin-
ciples used in [EHRS00], we define an efficient algorithm implementing the saturation-
based procedure above.

We assume without loss of generality that for every rule of the considered DPN
which is of the form pγ � � p1w � � p2u � , we always have �w � � 2 and � u � � 1.

Then, our algorithm is shown in Figure 4. Let us explain informally the intuition
behind the algorithm and the role of each of the used data structures.

14

Input: A DPN N � � P� Γ � ∆ � , and an N -automaton A � � Q � Σ � δ � q0 � F � .
Output: The set of transitions rel1 of the automaton Apre � � � Q � Σ � rel1 � q0 � F � .

1 rel1 � rel2 � ∆1 � ∆2 	 /0;
2 W 	 � w � Γ � Γ2 �

pγ � � p
 w � p

 γ
 � ∆ for some p � p
 � p

 � P and γ � γ
 � Γ
 ;
3 trans1 	 δ;
4 trans2 	 � � q � w� q
 � � δ � δ2 �

q � Q1 and w � W
 ;
5 for all s � Q0 and pγ � � p
 ε � ∆ do
6 trans1 	 trans1 � � � sp � γ � sp � �
 ;
7 while trans1 � trans2
� /0 do
8 if trans1
� /0 then
9 pop t � � q � γ � q
 � from trans1;

10 if t
� rel1 then
11 rel1 	 rel1 � � t
 ;
12 for all sp1 γ1 � � qγ � ∆1 do
13 trans1 	 trans1 � � � sp1 � γ1 � q
 �
 ;
14 if q � sp

� Q1 then
15 if γ � W then
16 trans2 	 trans2 � � t
 ;
17 for all

�
q
 � γ
 � q

 � � rel1 such that γγ
 � W do

18 trans2 	 trans2 � � � sp � γγ
 � q

 �
 ;
19 for all

�
sp � � γ
 � q � � rel1 such that γ
 γ � W do

20 trans2 	 trans2 � � � sp � � γ
 γ � q
 �
 ;
21 for all p1γ1 � � pγ � ∆ do
22 trans1 	 trans1 � � � sp1 � γ1 � q
 �
 ;
23 for all p1γ1 � � pγγ2

� ∆ do
24 ∆1 	 ∆1 � � sp1 γ1 � � q
 γ2
 ;
25 for all

�
q
 � γ2 � q

 � � rel1 do

26 trans1 	 trans1 � � � sp1 � γ1 � q

 �
 ;
27 for all p1γ1 � � p2w � pγ � ∆ do
28 ∆2 	 ∆2 � � sp1 γ1 � � �

q
 � p2w �
 ;
29 for all

�
s
p2 � w� q

 � � rel2 such that

�
q
 � ε � s
 � � δ do

30 trans1 	 trans1 � � � sp1 � γ1 � q

 �
 ;
31 if trans2
� /0 then
32 pop t � � s
p � w � q � from trans2;
33 if t
� rel2 then
34 rel2 	 rel2 � � t
 ;
35 for all sp1 γ1 � � �

q
 � pw � � ∆2 such that
�
q
 � ε � s
 � � δ do

36 trans1 	 trans1 � � � sp1 � γ1 � q �
 ;
37 return rel1

Fig. 4. Algorithm for DPN backward reachability analysis.

15

Each time a transition is known to belong to A �pre, it is added to the set trans1. Then,
the algorithm examines each transition in trans1 precisely once and put it in rel1. The
examination of a transition allows to (1) discover new transitions which must be added
to trans1, and (2) store informations which will be used later to speed up the discovery
of further transitions to be added to trans1. The basic idea to speed up this discovery is
as follows. Consider the local rule p1γ1 � � pγγ2. If we see in the current set of transitions
trans1 a transition of the form

�
sp � γq 	 � , then we know that for all transitions of the form�

q 	 � γ2 � q 	 	 � which have been stored in rel1 so far, we can add the transition
�
sp1 � γ1 � q 	 	 �

to trans1. But, for transitions
�
q 	
� γ2 � q 	 	 � which will be discovered only later (which

have not yet entered rel1 or even trans1), we should store some information allowing to
apply the saturation rule when they will be examined. For that, we store in ∆1 a rule of
the form sp1γ1 � � q 	 γ2 meaning that we are waiting for a transition

�
q 	�� γ2 � q 	 	 � for some

arbitrary state q 	 	 , and when such a transition will be found (i.e., it will be popped from
trans1 for examination), we will generate a new transition

�
sp1 � γ1 � q 	 	 � to trans1.

Now, concerning the dynamic rules, we can adopt the same idea, but we must take
care of some technical details. Consider a rule p1γ1 � � p2w � pγ � ∆ where w � γ2γ3

(the case w � γ2 is similar). Assume that we have a transition
�
sp � γ � q 	 � in the set trans1.

Then, we need to look for transition sequence q 	 p2γ2γ3��� � � � q 	 	 , more precisely for a tran-
sition

�
q 	�� ε � s 	 � � δ (note that our algorithm does not add any ε-transition) and for tran-

sitions
�
s 	p2

� γ2 � t � � � t � γ3 � q 	 	 � � rel1. If such transitions exist, then we must add the tran-
sition

�
sp1 � γ1 � q 	 	 � to trans1. Like in the previous case of local rules, we also need to

store informations which will be used later for saturation when other such transitions
will be discovered. For that, we store in ∆2 the rule sp1γ1 � � �

q 	�� p2γ2γ3 meaning that

whenever a path s 	p2

γ2γ3� � � � q 	 	 will be added to the automaton for some s 	 � Q0 satisfying�
q 	 � ε � s 	 � � δ and some state q 	 	 , we must add a transition

�
sp1 � γ1 � q 	 	 � to trans1.

To make the saturation of dynamic rules effectively, we maintain a set trans2 of
transition sequences which starts from states in Q1 and which are labelled by a word
w appearing in the right-hand-side of the dynamic rules (the set W we define in the
beginning of the algorithm corresponds precisely to the set of such words w). Note
that these sequences consists of at most 2 transitions due to the considered restriction
�w � � 2. These sequences are examined and transfered to the set rel2. The examination
of such a sequence allow to apply the saturation rule using informations stored in ∆2 as
explained above and in a similar way as for the case of local rules.

The correctness and complexity of the algorithm are proved along the lines of the
algorithms of [EHRS00,ERS00] for the computation of pre � in pushdown systems and
in context-free grammars, respectively. In fact, the complexity is the same as that of the
context-free grammar case. The reason is that in DPNs the move from a configuration to
the next involves a rewriting step that can take place at any component of a configuration
p1w1 p2 �
�
� pnwn. This is similar to the context-free case, where a production can be
applied to any occurrence of the variable of its left-hand-side.

Theorem 4. Given a DPN N � �
P� Γ � ∆ � and an N -automaton A � �

Q � Σ � δ � q0 � F � , it
is possible to construct in O

� �Q � 3 � �∆ � � time and O
� �Q � 2 � �∆ � � space an automaton Apre �

such that L
�
Apre � � � pre � � L � A �
� .

16

5.3 Computing pre �k images for ADPN

Let N � �
G � P� Γ � ∆l � ∆g � be an ADPN, and let k � 1. Roughly speaking, the compu-

tation of a pre �k �N image is decomposed into k successive steps of pre �1 �N image com-
putation, each of them consisting basically in a pre � image computation in a (suitably
defined) DPN. To define in more details the construction, we need some notations and
definitions. A mass configuration is a pair M � �

g � A � . It represents the set of configura-
tions

�
g � u � where u � L

�
A � . Given a mass configuration M � �

g � A � , let local
�
M � denote

the automaton A. We generalize this notation to finite collections of mass configurations
by taking the union of their N -automata.

Then, given a mass configuration
�
g � A � , the computation of pre�k �N

�
g � A � is per-

formed as follows: first we compute the set pre�1 �N
�
g � A � corresponding to all predeces-

sors of
�
g � A � without context switch. For every global state g 	 , let

�
g 	�� A 	 � be the set

of all configurations in pre�1 �N
�
g � A � having g 	 as global state. Then, the second step

constists in computing the pre �1 �N images of all the pairs
�
g 	 � A 	 � , for all global states

g 	 , and so on. More precisely, given an N -automaton A and a sequence of global states
σ � G � , we define inductively the set REACHσ

�
A � :

REACHg
�
A � � pre �1 �N

�
g � A �

REACHg1g2σ �
�
A � � REACHg2σ �

�
local

�
REACHg1

�
A � � �

g2 � � PΓ � � � �
�
�
where g � g1 � g2 � G and σ 	 � G � . Then, the following fact holds.

Lemma 2. Given an ADPN N , a global state g, an N -automaton A, and an integer
k � 1, we have pre �k �N

�
g � A � � � g1 � � � � � gk � 1 � Gk � 1 REACHgg1

� � � gk � 1

�
A � .

Therefore, we only have to show how to construct pre �1 �N images. For that, we can
actually use our algorithm of Theorem 4 which allows to perform backward analysis
for DPN. Given an N -automaton A and a global state g, we proceed as follows:

– we construct an automaton
�

A such that for every word u of component configu-
rations which is accepted by A, the automaton

�

A accepts all words arising from u
by embedding the global state g into a local state of one of the components. More
precisely,

�

A accepts a word w if and only if there is a word u1 pu2 � L
�
A � such that

u1 � �
PΓ � � � , p � P, u2 � Γ � � PΓ � � � , and w � u1

�
g � p � u2.

– we transform the sets ∆l and ∆g into a set of local rules ∆ which are applicable to
local states (with an embedded global state). The set of obtained rules has a size
O
� �G �	� �∆l � � �∆g � � .

– we use the algorithm for DPN of Theorem 4 to build an automaton
�

Apre � .
– then,

pre �1 �N
�
g � A � �

�

g � � G

�
g 	 � � w � �

PΓ � � � : w � upu 	 and
�

u
�
g 	 � p � u 	 � L

� �

Apre � � � � �

An automata-based representation for this set can be straightforwardly obtained from�

Apre � using intersection and projection. Then, we have the following result.

17

Theorem 5. Given an ADPN N � �
G � P� Γ � ∆l � ∆g � , k � 1, g � G, and an N -automaton

A � �
Q � Σ � δ � q0 � F � , it is possible to construct a finite-state automata-based representa-

tion of the set pre �k �N
�
g � A � in O

�
k4 � �Q � 3 � � �G � k � �∆l � � �G � k � 1 � �∆g � �
� time.

Proof: (Sketch) The justification of the complexity is as follows. For every given
sequence σ � g1 � � � gk � Gk � 1, by Lemma 2, our algorithm consists in running k
times the algorithm of Figure 4. The latter does not increase the size of its input
automaton. However, the automata have to be transformed in special form after
each step, which has the effect of adding at most a new copy of the states at each
step. Therefore, by Theorem 4, the time complexity for computing pre �k �N

�
g � A �

is in O
�
Gk � 1 � ∑k

i � 1
�
i � �Q � � 3 � � �G � � �∆l � � �∆g � � � , which implies that it is indeed in

O
�
k4 � �Q � 3 � � Gk � �∆l � �

Gk � 1 � �∆g � � � . �

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In Proceedings of CONCUR’97, LNCS 1243, pages
135–150, 1997.

[BET03] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. In Proceedings of POPL’2003, pages 62–73.
ACM Press, 2003.

[BET04] A. Bouajjani, J. Esparza, and T. Touili. Reachability analysis of synchronized PA-
systems. In Proceedings of Infinity 2004, 2004. To appear.

[BMOT05] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown processes. In Proceedings of CONCUR 2005, LNCS 3653,
pages 473–487, 2005.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model
checking pushdown systems. In Proceedings of CAV’2000, LNCS 1855, pages 232–
247, 2000.

[ERS00] J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for problems on
context-free grammars. EATCS Bulletin, 72:169–177, October 2000.

[QR05] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
Proceedings of TACAS’2005, LNCS 3440, pages 93–107, 2005.

[Ram00] G. Ramalingam. Context-sensitive synchronisation-sensitive analysis is undecidable.
ACM Transactions on Programming Languages and Systems, 22:416–430, 2000.

18

