
On Counting the Number of Consistent
Genotype Assignments for Pedigrees

Jǐŕı Srba?

BRICS??, Department of Computer Science, Aalborg University
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

srba@brics.dk

Abstract. Consistency checking of genotype information in pedigrees
plays an important role in genetic analysis and for complex pedigrees
the computational complexity is critical. We present here a detailed
complexity analysis for the problem of counting the number of com-
plete consistent genotype assignments. Our main result is a polynomial
time algorithm for counting the number of complete consistent assign-
ments for non-looping pedigrees. We further classify pedigrees according
to a number of natural parameters like the number of generations, the
number of children per individual and the cardinality of the set of al-
leles. We show that even if we assume all these parameters as bounded
by reasonably small constants, the counting problem becomes computa-
tionally hard (#P-complete) for looping pedigrees. The border line for
counting problems computable in polynomial time (i.e. belonging to the
class FP) and #P-hard problems is completed by showing that even for
general pedigrees with unlimited number of generations and alleles but
with at most one child per individual and for pedigrees with at most two
generations and two children per individual the counting problem is in
FP.

1 Introduction

Pedigrees are fundamental structures used in genetics. A pedigree describes fam-
ily relations among generations of individuals. Genealogists study pedigrees in
connection with the genotype information associated to the individuals at a par-
ticular locus. A genotype of a given individual is a pair of alleles in its genome
(allele is one of the possible forms a gene may have). Due to different reasons,
for a given pedigree the genotype information of its individuals can be known
only partially. In order to complete the missing genotype information or to filter
out erroneous input data, genealogists need to verify that the given partial infor-
mation is consistent with the classic Mendelian laws of inheritance (see e.g. [5]),
which means that every individual in the pedigree has to inherit exactly one
? The author is supported in part by the research center ITI, project

No. 1M0021620808
?? Basic Research in Computer Science,

Centre of the Danish National Research Foundation.



allele from each of its parents. This process is called consistency checking and
as argued in [9], in many real-life cases a manual consistency check is very diffi-
cult, time-consuming and sometimes unsuccessful. For an accessible overview of
further biological aspects we refer the reader to [1].

To the best of our knowledge only algorithmic issues of consistency and likeli-
hood checking for pedigrees have been studied in the literature so far (see e.g. [6,
10, 12, 2, 1]). In this paper we shall focus on a more general problem of counting
the total number of complete genotype assignments consistent with the input
data. This approach can provide a deeper insight and generalize the algorithms
already developed for pure consistency checking. Moreover, knowing the total
number of complete genotype assignments consistent with the input data can
answer several additional questions. For example the fact that the number of
assignments is 1 tells us that the missing information can be uniquely recon-
structed from the available data. On the other hand, knowing that there are too
many possibilities how to interpret the input data indicates that more genotype
sampling is needed in order to reduce uncertainty.

Our contribution. We introduce characterization of pedigrees according to a
number of natural parameters that describe their shapes. Apart for the stan-
dard notion of looping/non-looping pedigrees we further distinguish the number
of generations, number of children per individual and the cardinality of the set
of alleles. We describe a polynomial time algorithm that counts the number of
complete genotype information for a given partial genotype data in non-looping
pedigrees. We use this result to show that the counting problems for general pedi-
grees with at most 2 generations and 2 children per individual and for pedigrees
with at most 1 child per individual are also solvable in polynomial deterministic
time. We complete the results by demonstrating two parsimonious reductions
(i.e. reductions that preserve the number of solutions) from #Bpos-2Sat to the
counting problems for pedigrees with (i) 3 generations, 2 children per individual
and 2 alleles, and (ii) 2 generations, 3 children per individual and 2 alleles. To-
gether with an obvious containment in #P this proves #P-completeness of the
problems.

Related work. For the case of pure consistency checking the following results
are known. The problem for non-looping pedigrees is decidable in polynomial
time using a genotype elimination algorithm proposed by Lange and Goradia [7]
and further optimized and extended by O’Connell and Weeks [10], and Du and
Hoeschele [2]. For general pedigrees there is a recent work by Aceto et al. [1]
showing that consistency checking is NP-complete for pedigrees with marriage
loops. They prove the result by reduction from 3SAT, however, their reduction is
not parsimonious (does not preserve the number of solutions). It also works only
for pedigrees with at least 5 generations, 3 children per individual and 3 alleles
but under the assumption that there is either a complete or no knowledge about
the genotype of single individuals. Another related result is NP-completeness of
marginal probability and maximum likelihood by Piccolboni and Gusfield [12].



As discussed in [1], although the problems are closely connected to consistency
checking, they cannot be used to imply hardness results for our problem.

Full version will appear as a technical report in BRICS research series.

2 Basic Definitions

2.1 Pedigrees and Genotype Information

In order to reason about pedigrees and the genotype information that they con-
tain, we need to introduce a formal model. Several formalizations of the notion
of pedigree have been presented in the literature on computational genetics (see
e.g. [1, 8, 12]). The definition that we provide is equivalent to the ones mentioned
above.

Definition 1 (Pedigree). A pedigree is a triple P = (M,F, φ) where

– M and F are finite disjoint sets of male, resp. female, individuals,
– φ : M × F −→ 2(M∪F ) is a function called family function satisfying:

1. φ(f) ∩ φ(f ′) = ∅ for all f, f ′ ∈ M × F such that f 6= f ′,
2. the transitive closure of the parental relation ≺⊆ (M ∪ F )× (M ∪ F ) is

irreflexive, where ≺ is defined by u ≺ v iff there is a w ∈ M ∪ F such
that u ∈ φ(v, w) if v ∈ M , or u ∈ φ(w, v) if v ∈ F .

We define a set of families in P given by φ as F(φ) def= {f ∈ M ×F | φ(f) 6= ∅}.
Let us also define p(f) def= {u, v} for any family f = (u, v) ∈ F(φ); we call u and
v the parents in the family f .

Here is an informal explanation of the definition. Given a male u ∈ M and a
female v ∈ F , φ(u, v) is the set of all children they have. Condition 1. says that
every child belongs to exactly one family and condition 2. guarantees that no
individual can be its own ancestor.

The maximal elements from M ∪ F w.r.t. ≺ are called founders of the pedi-
gree. Individuals that are not founders are called non-founders. The length of
a longest chain (counting the number of nodes) w.r.t. ≺ is called the number
of generations. The set of children of an individual u ∈ M ∪ F is defined by
∪f∈F(φ),u∈p(f)φ(f) and the number of children per individual is the largest car-
dinality of this set over all individuals in the pedigree.

Example 1. Let M
def= {x, y, z} and F

def= {u, v, w}. We define a pedigree P

by φ(x, u) def= {v} and φ(y, v) def= {w, z}. In all other cases φ( , ) def= ∅. This
is graphically depicted as follows (male individuals are represented by squares,
female individuals by circles and families with parental relation by lines).

x GFED@ABCu

GFED@ABCv y

GFED@ABCw z



The founders of the pedigree are the individuals x, u and y. The pedigree
has 3 generations and 2 children per individual. ut

For each individual u ∈ M ∪ F we define a community C(u) as a collection
of all families where u is a parent, i.e., C(u) def= {f ∈ F(φ) | u ∈ p(f)}. Maximal
community size is the largest cardinality over all communities in the pedigree,
i.e., maxu∈M∪F |C(u)|.

Remark 1. In any pedigree, the number of children per individual is at least the
maximal community size.

We shall now introduce formal definitions of a mating graph and (non-)looping
pedigrees. The following definitions are equivalent to the ones in [10] and [1].

Definition 2 (Mating Graph, Connected Pedigrees). Let P = (M,F, φ)
be a pedigree. We define an undirected bipartite graph G(P ) def= (M∪F,F(φ),↔),
also called the mating graph of P , by stating that for all u ∈ M ∪ F and for all
f ∈ F(φ) we have {u, f} ∈↔ iff u ∈ p(f), or u ∈ φ(f). We say that a pedigree
P is connected iff G(P ) is a connected graph.

From now on we shall consider only non-empty and connected pedigrees. All
results presented in the paper can be extended also to unconnected pedigrees in
a straightforward manner.

Definition 3 ((Non-)Looping Pedigree). We say that a pedigree P is loop-
ing if there is a loop in the mating graph G(P ). Otherwise we call P a non-looping
pedigree.

Consistency checking of a pedigree is based on its associated genotype infor-
mation; intuitively, the pedigree defines the structure of the family relationships
that are being modelled, and the genotype information is the data which must
be consistent with the structure. Let A be a finite and non-empty set of alleles.
A particular genotype information associated to every individual is represented
by an element from A2 modulo the least equivalence on A2 satisfying xy ≡ yx
(the order of alleles in a genotype does not play any role).

Definition 4 ((Partial) Genotype Information). Let P = (M,F, φ) be a
pedigree. A (partial) genotype information for P is a function G : M∪F −→ 2A

2

that associates a set of possible genotype data to the individuals in the pedigree,
s.t. G(u) 6= ∅ for all u ∈ M ∪ F .

The intuition is that G(u) = {AB} means that the genotype of the individual
u is known to be exactly AB. If e.g. G(u) = {AB,AC} then we have only a partial
information about the individual u (we know that its genotype can be either AB
or AC). If only one allele (let us say A) from the pair is know then we model it
by G(u) = {AX | X ∈ A}. In case that nothing is known about the genotype of
u then G(u) = A2.



Definition 5 (Specialization). Let G and G′ be two partial genotype informa-
tion. We say that G specializes into G′ iff G′(u) ⊆ G(u) for all u ∈ M ∪ F .

Definition 6 (Complete Genotype Information). A genotype information
G is called complete if |G(u)| = 1 for every u ∈ M ∪ F , i.e., every individual is
assigned exactly one genotype.

Verifying the consistency for a specific gene amounts to checking whether the
pedigree and the genotype information are consistent according to the Mendelian
law of segregation (see e.g. [5]). The law of segregation implicitly defines the
following constraint on consistent genotype assignments:

Each individual inherits exactly one allele from both of its parents.

Our order of business will now be to formalize this constraint, and what it means
that a genotype information is consistent with respect to a pedigree. Given
two genotypes AB and CD, we define zygote(AB,CD) def= {AC,AD,BC,BD}
as the set of all possible combinations of the given genotypes. Note that due
to the commutativity introduced on A2 we get that e.g. zygote(AB,AB) =
{AA,AB, BB} and zygote(AA,AB) = {AA,AB}.

Definition 7 (Consistent Genotype Information).

1. A complete genotype information G is consistent if for all (u, v) ∈ F(φ)
such that G(u) = {AB}, G(v) = {CD} for some A,B, C, D ∈ A and for all
w ∈ φ(u, v) it is the case that G(w) ⊆ zygote(AB,CD).

2. A partial genotype information G is consistent if there is a complete consis-
tent genotype information G′ such that G specializes into G′.

Let P be a pedigree and G a genotype information for P . By #(P,G) we
denote the number of complete and consistent genotype information into which
G specializes (or simply the number of solutions). A natural algorithmic problem
is that of computing #(P,G) and we call it the counting problem for a pedigree
P and a genotype information G.

2.2 Counting Problems and Complexity Classes FP and #P

The complexity classes FP and #P for counting problems play a similar role
as the complexity classes P and NP in case of decision problems. Let R be a
polynomially balanced ((x, y) ∈ R implies |y| ≤ |x|k for some constant k >
0) and polynomial time decidable binary relation [11]. The counting problem
#R is for a given input x to count how many different y there are such that
(x, y) ∈ R. To provide the answer to such a problem is generally considered as
a hard computational task. #P is the class of all such problems. Alternatively,
#P can be defined as the class of functions that can be computed by counting
the number of accepting paths of a polynomial time nondeterministic Turing
machine. On the other hand, the complexity class FP is the class of functions
that are computable by a deterministic Turing machine in polynomial time (also



called the class of feasible functions, i.e., those solvable by computers). We can
easily notice that FP ⊆ #P and it is widely conjectured that the inclusion is
strict.

In order to show #P-hardness of a counting problem, we often use the notion
of parsimonious reduction. Let #R and #S be two counting problems. We say
that there is a parsimonious reduction from #R to #S if there is a polynomial
time transformation f from the instances of #R to the instances of #S which
preserves the number of solutions, i.e., for all x we have that |{y | (x, y) ∈ R}| =
|{y | (f(x), y) ∈ S}|.

Remark 2. This notion of reduction is little too restrictive so sometimes one
defines that #R reduces to #S if there is a polynomial time algorithm for #R
given an oracle that solves #S. Nevertheless, all the reductions presented in this
paper are parsimonious.

As noted in [11] p. 439: “Even in cases in which the decision problem is
polynomial, counting the solutions may be highly nontrivial.” An example of
such a problem is e.g. counting the number of perfect matchings in a bipartite
graph. This is a #P-complete problem, while the decision variant of the problem
is in P. On the other hand, showing that a counting problem is in FP immediately
gives a polynomial time algorithm for the corresponding decision problem. Hence
proving that the counting problem for a certain subclass of pedigrees (e.g. non-
looping pedigrees) is in FP provides a stronger claim than only showing that the
decision problem of consistency checking is in P.

3 Pedigrees with the Counting Problem in FP

In this section we demonstrate that for an arbitrary non-looping pedigree P
and a given genotype information G, the number #(P,G) can be computed in
polynomial time on a deterministic Turing machine. Hence we generalize the
result by Lange and Goradia [7] where they showed that the decision version of
the problem is solvable in polynomial time using a genotype elimination algo-
rithm. In our approach, we provide a different solution which exploits dynamic
programming and enables us to count (and list if necessary) the total number
of complete and consistent genotype information. We also show how to count
in polynomial time the number of consistent pedigree assignments for pedigrees
with 2 generations and maximal community size 2, and for pedigrees with at
most one child per individual.

Let us consider a pedigree P = (M,F, φ) with a partial genotype information
G over the alleles from A. When counting #(P,G) we will use the techniques of
dynamic programming and store the intermediate results in the following table.

T : (M ∪ F )×A2 → N

We shall often denote a table element T (u, XY ) where u ∈ M ∪F and XY ∈ A2

by Tu(XY ). The main idea of the algorithm is that we shall process all families



(and the corresponding individuals) of the pedigree in a particular order such
that the number assigned to the table position Tu(XY ) stands for the number
of solutions in a subpedigree that was already processed and is connected to u,
all under the assumption that the genotype information of u is fixed to XY .

The procedure initialize in Figure 1 initializes the table T for all individuals
from M ∪ F .

Let (x, y) ∈ F(φ), u ∈ M ∪ F s.t. u ↔ (x, y) and XY ∈ G(u). The function
update in Figure 1 returns the number of solutions in the already processed
subpedigree connected (in the mating graph) to the individual u, under the
assumption that the genotype information for u is fixed to XY and that the
table T v is fully computed for all the individuals v connected to the family
(x, y) except for u.

Finally, the function count in Figure 1 computes the number #(P,G) where
the notion of a mediator for f ∈ F(φ) and Z ⊆ F(φ) is defined as follows: an
individual u ∈ M ∪ F is a mediator for f w.r.t. Z iff u ↔ f and there is some
f ′ ∈ Z such that f 6= f ′ and u ↔ f ′. In other words a mediator is an individual
that connects two different families in the mating graph. The function count first
initializes the table T to its initial values and creates a set Z, which represents
the set of families to be processed. It then removes the families from Z one by
one in a particular order which ensures that the table Tu for a mediator u can
be easily computed. Finally, when Z contains only one family, the final number
of solutions is computed and returned.

Theorem 1. The counting problem for non-looping pedigrees is in FP.

Proof. (Sketch) It is easy to see that the algorithm runs in polynomial time. We
have to argue that for a given pedigree P and a genotype information G the
function count(P , G) returns the number #(P,G). The requirement that P is
non-looping (and connected) ensures that we can always select a family f ∈ Z
with exactly one mediator u with respect to Z. Moreover, whenever a value
is assigned to Tu(XY ) the following assertion holds: “Tu(XY ) is the number
of solutions in the subpedigree generated by u and the families in F(φ) r Z
(together with their children) that are connected to u in the mating graph”. ut
Example 2. We shall demonstrate the algorithm for counting the number of
solutions on the following pedigree.

GFED@ABCu1 u2 GFED@ABCu3 u4

{AA, BB} {AB} {AA, BB} {AB}

GFED@ABCu5 u6 GFED@ABCu7 u8

{AA, BB} {AA, BB} {AA, BB} {AA, BB}

GFED@ABCu9 GFED@ABCu10 GFED@ABCu11

{AB} {AB} {AB}

The pedigree consists of 11 individuals u1, . . . , u11 and 5 families (u2, u1),
(u4, u3), (u6, u5), (u6, u7) and (u8, u7). The genotype information for each indi-
vidual is depicted in the picture (e.g. G(u5) = {AA,BB} and G(u2) = {AB}).



initialize =
for all v ∈ M ∪ F do

for all XY ∈ A2 do

T v(XY ) :=


1 if XY ∈ G(v)
0 otherwise

end for
end for

update((x, y), u, XY ):int =
if u = x then

*** u is a male parent in the family ***
let {w1, . . . , w`} = φ(x, y) be all children in the family (x, y)
return

P
AB ∈ G(y)

X1Y1, . . . , X`Y` ∈ zygote(XY , AB)

T y(AB) · T w1(X1Y1) · · · · · T w`(X`Y`)

else if u = y then
*** u is a female parent in the family ***
let {w1, . . . , w`} = φ(x, y) be all children in the family (x, y)
return

P
AB ∈ G(x)

X1Y1, . . . , X`Y` ∈ zygote(AB, XY )

T x(AB) · T w1(X1Y1) · · · · · T w`(X`Y`)

else
*** u ∈ φ(x, y) is a child in the family ***
let {w1, . . . , w`} = φ(x, y) r {u} be all the children except for u
return

P
AB ∈ G(x) and CD ∈ G(y)
s.t. XY ∈ zygote(AB, CD)

X1Y1, . . . , X`Y` ∈ zygote(AB, CD)

T x(AB) · T y(CD) · T w1(X1Y1) · · · · · T w`(X`Y`)

end if

count(P = (M, F, φ), G : M ∪ F → 2A
2
):int =

Z := F(φ)
initialize
while |Z| > 1 do

select f ∈ Z s.t. f has exactly one mediator u w.r.t. Z
for all XY ∈ G(u) do

T u(XY ) := T u(XY )·update(f , u, XY )
end for
Z := Z r {f}

end while
let f = (x, y) where {f} = Z;
let {w1, . . . , w`} = φ(x, y) be all children in the family (x, y)
return

P
AB ∈ G(x) and CD ∈ G(y)

X1Y1, . . . , X`Y` ∈ zygote(AB, CD)

T x(AB) · T y(CD) · T w1(X1Y1) · · · · · T w`(X`Y`)

Fig. 1. Algorithm for computing the number #(P,G)



During the call of the function count we first for all individuals initialize
the table T to either 0 and 1 according to the given genotype information. Next
we start eliminating the families in the pedigree. Let us assume that the first
selected family in the while-loop is (u2, u1) and the mediator u is equal to u5.
As u5 is a child in the family (u2, u1) we compute Tu5(AA) = 1 · 1 = 1 and
Tu5(BB) = 1 · 1 = 1 according to the third case in the function update. The
family (u2, u1) is then removed from Z. Next assume that the second selected
family is (u6, u5) with a mediator u6 and we compute Tu6(AA) = Tu6(BB) =
1 · 1 = 1 by using the first case in the function update. The family (u6, u5) is
removed from Z. Assume that the third selected family is (u4, u3) where u7 is the
mediator and we compute Tu7(AA) = Tu7(BB) = 1 · 1 = 1. The family (u4, u3)
is removed from Z. Now we can select e.g. the family (u8, u7) with the mediator
u7 and compute Tu7(AA) = Tu7(BB) = 1 · 1 = 1 while removing (u8, u7) from
Z. Finally, only the family (u6, u7) remains in Z and we return the final value

Tu6(AA) · Tu7(BB) · Tu10(AB) + Tu6(BB) · Tu7(AA) · Tu10(AB) = 1 + 1 = 2.

Indeed, there are exactly two possibilities for the assignment of a genotype to
u1 and this uniquely determines the assignments in the rest of the pedigree. In
particular, one can see that u3 has to be assigned exactly the same genotype as
u1 in order to preserve consistency. ut

Theorem 2. If a pedigree P = (M,F, φ) has at most one child per individual
then it is non-looping.

Corollary 1. The counting problem for pedigrees with at most one child per
individual is in FP.

Let us now consider pedigrees with 2 generations only and the maximal
community size at most 2. We can demonstrate that the counting problem for
this subclass is also in FP by applying the observations about “loop-breakers”
from [4].

Theorem 3. The counting problem for pedigrees with 2 generations and maxi-
mal community size 2 (and an arbitrary number of alleles) is in FP.

Corollary 2. The counting problem for pedigrees with 2 generations and at most
two children per individual (and an arbitrary number of alleles) is in FP.

Proof. Directly from Theorem 3 and Remark 1. ut

4 Pedigrees with #P-Complete Counting Problem

In this section we shall argue that the counting problems in all other pedi-
grees except for those considered in Section 3 are computationally hard. We will
demonstrate #P-hardness (with respect to parsimonious reduction) for pedigrees
with 3 generations, 2 children per individual and 2 alleles, and for pedigrees with



2 generations, 3 children per individual and 2 alleles. Even for general pedigrees
one can easily see that the problems are in #P, which together with the hardness
results implies #P-completeness. This completes the full picture of the compu-
tational complexity of counting problems for pedigrees.

Let us consider the #Bpos-2Sat counting problem [3]. We are given two
disjoint sets of variables {x1, . . . , xn} and {y1, . . . , ym} and a formula C1 ∧C2 ∧
. . .∧Ck where for every `, 1 ≤ ` ≤ k, the clause C` is of the form xi∨yj such that
1 ≤ i ≤ n and 1 ≤ j ≤ m. Counting the number of satisfying truth assignments
of such a formula is a #P-complete problem [3]. Note that the corresponding
decision problem is trivial as any #Bpos-2Sat formula is satisfiable.

We shall reduce #Bpos-2Sat to the counting problem for pedigrees of par-
ticular shapes such that the reduction preserves the number of solutions (i.e.
it is a parsimonious reduction). In our reductions we shall use only two alleles
A def= {A,B} such that AA represents true and BB represents false.

Theorem 4. The counting problem for pedigrees with 3 generations, 2 children
per individual and 2 alleles is #P-complete.

Proof. (Sketch) Containment in #P is easy. We shall argue for #P-hardness of
the problem. Let C1 ∧C2 ∧ . . .∧Ck be a given instance of #Bpos-2Sat. We shall
construct a pedigree P as follows.

First, for every variable xi, 1 ≤ i ≤ n, we create k of its copies by constructing
the following pedigree part.

GFED@ABCx1
i

GFED@ABCx2
i · · · GFED@ABCxk

i

{AA, BB} {AB} {AA, BB} {AB} {AA, BB} {AB}

GFED@ABC GFED@ABC · · · GFED@ABC
{AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB}

GFED@ABC GFED@ABC GFED@ABC
{AB} {AB} {AB}

Next we create a similar structure for every variable yj , 1 ≤ j ≤ m.

y1
j

GFED@ABC y2
j

GFED@ABC · · · yk
j

GFED@ABC
{AA, BB} {AB} {AA, BB} {AB} {AA, BB} {AB}

GFED@ABC GFED@ABC · · · GFED@ABC
{AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB}

GFED@ABC GFED@ABC GFED@ABC
{AB} {AB} {AB}

As argued in Example 2, we can now see that the pedigrees for xi (resp. yj)
have exactly two solutions so that x1

i , . . . , x
k
i (resp. y1

j , . . . , yk
j ) can simultane-

ously take the assignment AA or BB, hence representing the truth value true
or false.



Now for every `, 1 ≤ ` ≤ k, such that C` ≡ xi ∨ yj we will add the fol-
lowing pedigree part where the individuals x`

i and y`
j are identified with the

corresponding nodes in the pedigrees above.

GFED@ABCx`
i y`

j

GFED@ABC
{AA, AB}

We can now easily verify that at least one of x`
i and y`

j has to be set to true (i.e.
takes the value AA) in order to achieve a consistent assignment. It is a routine
exercise to check that the number of satisfying truth assignments of the formula
is the same as the number of complete genotype information for the constructed
pedigree. The construction ensures that the pedigree has 3 generations, at most
2 children per individual and uses only 2 alleles. ut

Theorem 5. The counting problem for pedigrees with 2 generations, 3 children
per individual and 2 alleles is #P-complete.

Proof. (Sketch) As in the previous proof, the reduction goes from #Bpos-2Sat.
We modify the way in which we generate the truth assignments. We shall use
only 2 generation pedigrees at the expense of 3 children per individual.

GFED@ABCx1
i

GFED@ABCx2
i · · · GFED@ABCxk

i

{AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB}

GFED@ABC GFED@ABC GFED@ABC · · · GFED@ABC
{AB} {AB} {AB}

y1
j

GFED@ABC y2
j

GFED@ABC · · · yk
j

GFED@ABC
{AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB} {AA, BB}

GFED@ABC GFED@ABC GFED@ABC · · · GFED@ABC
{AB} {AB} {AB}

It is easy to see that x1
i , . . . , x

k
i (resp. y1

j , . . . , yk
j ) can simultaneously take the

assignment AA or BB and after adding the pedigree parts for all clauses C` as
in the construction above, the reduction preserves the number of solutions. The
final pedigree has 2 generations and at most 3 children per individual. As before,
the containment in #P is easy. ut

5 Conclusion

We have studied counting problems for genotype assignments in pedigrees and
found a delicate borderline between tractable and intractable instances of the
problem. The following table summarizes the main results achieved in the paper.



type # generations # children # alleles complexity
non-looping ∞ ∞ ∞ in FP (Thm. 1)

looping ∞ ∞ 1 in FP (trivial)
looping 1 ∞ ∞ in FP (trivial)
looping ∞ 1 ∞ in FP (Cor. 1)
looping 2 2 ∞ in FP (Cor. 2)
looping 3 2 2 #P-complete (Thm. 4)
looping 2 3 2 #P-complete (Thm. 5)

The table provides a complete characterization of the computational com-
plexity of counting problems with respect to the selected parameters. Moreover,
the hardness results use only marriage loops [12] and contain no inbreeding loops.

In [1] it is shown that consistency checking for general pedigrees with 2 alleles
only is in P, provided that for each individual we either know precisely his/her
genotype information or we know nothing at all, i.e., for every individual u we
have either |G(u)| = 1 or G(u) = A2. It would be interesting to see whether
the counting problem is in FP under this restriction. The future research will
also focus on investigating possible ways of tackling the counting problem for
pedigrees with loops (here some ideas from [10] seem to be applicable) and on
the complete complexity characterization of the consistency checking problems.

References

1. L. Aceto, J.A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The com-
plexity of checking consistency of pedigree information and related problems. J.
of Computer Science and Technology, 19(1):42–59, 2004.

2. F.X. Dua and I. Hoeschele. A note on algorithms for genotype and allele elimi-
nation in complex pedigrees with incomplete genotype data. Genetics, 156:2051–
2062,2000.

3. M.O. Ball J.S. Provan. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. on Comp., 12(4):777–788, 1983.

4. K. Lange K and R.C. Elston. Extensions to pedigree analysis i. likehood calcula-
tions for simple and complex pedigrees. Human Heredity, 25(2):95–105, 1975.

5. William S. Klug and Michael R. Cummings. Concepts of Genetics. Prentice Hall,
5th edition, 1997.

6. K. Lange and T. Goradia. An algorithm for automatic genotype elimination.
American J. of Human Genetics, 40:250–256, 1987.

7. Kenneth Lange and Tushar Madhu Goradia. An algorithm for automatic genotype
elimination. American J. of Human Genetics, 40:250–256, 1987.

8. Jing Li and Tao Jiang. Efficient rule-based haplotyping algorithms for pedigree
data. In Proceedings of RECOMB’03, pages 197–206. ACM, 2003.

9. J.R. O’Connell and D.E. Weeks. Pedcheck: A program for identification of genotype
incompatibilities in linkage analysis. Am. J. of Human Genetics, 63:259–266, 1998.

10. J.R. O’Connell and D.E. Weeks. An optimal algorithm for automatic genotype
elimination. American J. of Human Genetics, 65:1733–1740, 1999.

11. Ch.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
12. A. Piccolboni and D. Gusfield. On the complexity of fundamental computational

problems in pedigree analysis. J. of Computational Biology, 10(5):763–773, 2003.


