Experimental Evaluation
of
Classical Automata Constructions™*

Deian TabakoVand Moshe Y. Vardi

Department of Computer Science, Rice University, Houstoq,
{dt abakov, vardi }@s. rice. edu

Abstract. There are several algorithms for producing the canonicah BBm

a given NFA. While the theoretical complexities of theseoalpms are known,
there has not been a systematic empirical comparison betilie. In this work
we propose a probabilistic framework for testing the perfance of automata-
theoretic algorithms. We conduct a direct experimentalgarnson between Hop-
croft’s and Brzozowski's algorithms. We show that while Hogft's algorithm
has better overall performance, Brzozowski's algorithmiqrens better for “high-
density” NFA. We also consider the universality problemethis traditionally
solved explicitly via the subset construction. We propasercoding that allows
this problem to be solved symbolically via a model-checWés.compare the per-
formance of this approach to that of the standard expligibddhm, and show that
the explicit approach performs significantly better.

1 Introduction

Over the last 20 years automata-theoretic techniques magsyed as a major paradigm
in automated reasoning, cf. [39]. The most fundamentalraata-theoretic model is
that of non-deterministic finite automata (NFA) [24]. (W&ithe focus in automated
reasoning is often on automata on infinite objects, automatinite words do play a
major role, cf. [28].) There are two basic problems relat@FA: finding the canon-
ical minimal deterministic finite automaton (DFA) that aptethe same language as
the original automaton (cf. [1] for an application in ver#t@on), and checking whether
a given automaton is universal (i.e., accepts all words:esponding to logical valid-
ity). Both problems have been studied extensively (eg.440),and several algorithms
for their solution have been proposed. For the canonizatioblem, two classical al-
gorithms are by Hopcroft [23], which has the best asympteticst-case complexity
for the minimization step, and by Brzozowski [10], which igitg different than most
canonization algorithms. The standard way to check forens@lity is to determinize
the automaton explicitly using the subset constructiod, emeck if a rejecting set is
reachable from the initial state. We call this teeplicit approach. In addition to the

* Work supported in part by NSF grants CCR-9988322, CCR-0124CCR-0311326, IIS-
9908435, 11S-9978135, EIA-0086264, and ANI-0216467, byFRfsant 9800096, by Texas
ATP grant 003604-0058-2003, and by a grant from the IntepGation.

explicit approach, we introduce in this paper a novel methddch reduces the univer-
sality problem to model checking [17], enabling us to appiynbolicmodel checking
algorithms [12]. These algorithms use Binary Decision Baags (BDDs) [8], which
offer compact encoding of Boolean functions.

The complexities of Brzozowski’'s and Hopcroft's algoriterare known [40], but
there has not been a systematic empirical comparison betivem. (A superficial eval-
uation in [20] claimed superiority of Hopcroft's algorithjrSimilarly, the universality
problem is known to be PSPACE-complete [35], but a symbgdjmaach to universal-
ity has not been pursued. The comparison is complicated dyeitt that there are no
really good benchmarks for automata-theoretic algoritantit is not even clear what
types of automata should be included in such benchmarks.

We propose here evaluating automata-theoretic algorithased on their perfor-
mance on randomly generated NFA. This is inspired by recenkwn randomly gen-
erated problem instances [14], for example random 3-SAT. |88 can vary the hard-
ness of the instances by controlling their density. In theecaf NFA, there are two
densities to control: the density of the accepting states, (atio of accepting states to
total states) and the density of transitions (i.e., derdityansitions per input letter to
total states). For both densities we are interested in aahsttios, which yields linear
densities. This is analogous to the model used in randomB@ablems [37]. (For
simplicity here we assume a unique initial state.)

Itis not a priori clear that the linear-density model is atenesting model for study-
ing automata-theoretic algorithms. We show empiricallgttthis probability model
does yield an interesting problem space. On one hand, thebildy of universality
does increase from 0 to 1 with both acceptance density anditi@n density. (Unlike
the situation with random 3-SAT, the probability here chesin a smooth way and no
sharp transition is observed.) On the other hand, the sizheotanonical DFA does
exhibit a (coarse) phase transition with respect to thesttiom density of the initial
NFA, peaking at density 1.25. (It is interesting to note tlaatdom directed graphs with
linear density are known to have a sharp phase transitidnnegpect to connectivity at
density 1.0 [26].) The scaling of the size of the canonicahRIEpends on the transi-
tion density, showing polynomial behavior for high derestibut super-polynomial but
subexponential behavior for low densities.

Once we have established that the linear-density modeliistaresting model for
studying automata-theoretic algorithms, we go on to stirdydanonization and uni-
versality problems for that model. We first compare Hopcsathd Brzozowski's can-
onization algorithms. Both algorithms’ running times dispcoarse phase transitions
that are similar to that for the size of the canonical DFAetestingly, however, while
Brzozowski's algorithm peaks at transition density 1.26pkroft’'s algorithm peaks an
density 1.5. We show empirically that while Hopcroft's afijlom generally performs
better than Brzozowski’s, the latter does perform bettérigth transition densities.

The universality problem can be solved both explicitly agchbolically. The ex-
plicit approach applies the classical subset construétieterminization) and then searches
for a rejecting reachable set, i.e. a reachable set thanht@emtain an accepting state
[35]. To solve universality symbolically, we observe thhe tdeterminized automa-
ton can be viewed as a synchronous sequential circuit. Taehebility-of-rejecting-

set condition can be expressed as a temporal property ofdibital system. Thus,
the universality problem can be reduced to a model-chegiinblem and solved by
a symbolic model checker; we used two versions of SMV-Cagle$dV [13] and
NuSMV [15]. To get the best possible performance from the ehatiecker, we con-
sidered several optimization techniques, including theoding of the determinized
automata as a digital system, the representation of theitimmrelation, and the order
of the BDD variables. In our experiments we used the confiipdhat led to the best
performance.

The conventional wisdom in the field of model checking is gyahbolic algorithms
typically outperform explicit algorithms on synchronoystems, while the latter out-
perform on asynchronous systems. In view of that, we expemieoptimized symbolic
approach to outperforms the explicit, rather straightmvapproach. Surprisingly, our
empirical results show that the conventional wisdom doéspply to the universality
problem, as the explicit algorithm dramatically outpenf@d the symbolic one.

The paper is organized as follows. In Section 2 we describeghdom model and
examine its properties. In Section 3 we compare the perfocmaf Hopcroft's and
Brzozowski's algorithms for the canonization problem. lecBon 4 we compare the
performance of the explicit and symbolic algorithms for thréversality problems. Our
conclusions are in Section 5.

2 TheRandom M odd

We briefly introduce the notation used throughout this papetrA = (X, S, S, p, F)
be a finite nondeterministic automaton, whéreds a finite nonempty alphabet, is a
finite nonempty set of stateS? C S is a non-empty set of initial state, C S is the
set of accepting states, apd= S x X x S is a transition relation. Recall that has a
canonical, minimal DFA that accepts the same language T2# canonizatiorprob-
lem is to generate this DFA is said to be universal if it accepis*. Theuniversality
problem is to check ifd is universal.

In our model the set of initial state%’ is the singletor{so} and the alphabe¥ is
the sef{0, 1}. For each lettes € X we generate a random directed grdphon .S with
k edges, corresponding to transitiofaso, s’). Hereafter, we refer to the ratio= %
as thetransition density fow (intuitively, r represents the expected outdegree of each
node fore). In our model the transition density éf, and D, is the same, and we refer
to it as the transition density of. The idea of using a linear density of some structural
parameter to induce different behaviors has been quitelpofately, most notably in
the context of random 3-SAT [37].

Our model forD,, is closely related to Karp’s model of random directed grg@b$
for each positive integet and eactp with 0 < p < 1, the sample space consists of all
labeled directed graph®,, , with n vertices and edge probabiliy Karp shows that
whenn is large andhp is equal to a constant greater than 1, it is very likely thatgtaph
contains one large strongly connected component and $esgyasmall components.
Whennp < 1, the expected size of the set of reachable nodes is very.small

It is known that random graphs defined as in [26] in terms oif thége probability
or defined as here in terms of the number of edges display Esbethe same behavior

[7]. Thus, Karp’sap = 1 corresponds to density 1 in our model. While Karp’s consider
reachability, which would correspond to non-emptines§,[24 consider here canon-

ization and universality. Karp’s phase transition at dignkiseems to have no effect on
either canonization or universality. The density of theedied graphs underlying our

automata i®2r, but we see no interesting phenomenon at 0.5.

In our model the number of final statesis also a linear function of the total number
of states, and it is given byfaal state density = % The final states themselves are
selected randomly, except for the initial state, whichvgasls chosen to be an accepting
staté. This additional restriction avoids the cases when an aatomis trivially non-
universal because the initial state is not accepting. (OCaeatso consider a model with
a fixed number of accepting states rather than with a lineasite we found that such
a model behaves similarly to the one we consider here).

In Figure Z we present the probability of universality as a functionradnd f.

To generate each data point we checked the universality@f@&@dom automata with
|S| = 30. The behavior here is quite intuitive. As transition andegtence densities
increase, the automaton has more accepting runs and ifdferaore likely to be

universal. Note that even if all states are acceptifig=(1), the automaton is still not
guaranteed to be universal. This follows from the fact thatttansition relation is not
necessarily total, and the missing transitions are replagean implicit transition to a
rejecting sink state.

Probability of universal automata (|S| = 30) Size of the canonical mDFA (1S| = 30)

Probability of being universal
w
o
Number of states

0.2

0. 0.2
. . Transition density (r 0o Density of final states
Density of final states (f) v Y ®

Transition density (r) 0o

Fig. 2. Median number of states in the mDFA

Fig.1. Probability of universal automata
(5] = 30)

(IS] = 30)

A completely different pattern emerges when we look at the ef canonical mini-
mized DFA (MDFA) corresponding to the input NEA(Figure 2). For each data point
on the graph we determinized and minimized 200 random autoarad took the me-
dian of the size of the minimized DFA (we chose to report theliare rather than the
mean because the median is less affected by outlying poisyefer to the latter as
the canonical sizeWhile the effect of the acceptance density on the canosiealis
not too dramatic, transition density does have a dramafiacedn canonical size. The
latter rises and then falls with tradition density, peakaig = 1.25. We see that the
canonical size has a coarse phase transition at that density

1 We thank Ken McMillan for this suggestion.
2 We recommend viewing the figures in this paper online: wwiigs.edu-vardi/papers/

Finally, we investigated how the canonical seealeswith respect to the size of
the input NFA A. Since the values of do not have a large effect on the canonical
size, we fixedf = 0.5 here. Figure 3 shows that canonical size scales differexttly
different transition densities. The scaling curves extahiange of behaviors. Fer <
1.25 they grow super-polynomially but subexponentially (intfaa function of type

abV151 provides a very good approximation), for= 1.5 the growth is polynomial,

and for higher transition densities they remain almost tamtsinterestingly, though in
the worst case the canonical size may scale exponentid]y\i& do not observe such
exponential scaling in our probabilistic model.

10° Number of states in the mDFA at fixed f = 0.5

= r=1.0

r=125
4] | ¥ r=15
10F | <+ r=175

<> r=20
-/ r=2.25 75/5
. r=25 E/E/E'/E
107¢ JEu- S

States in the mDFA (log scale)

0 10 20 30 40 50 60 70 80 90 100
Number of states in the initial automaton

Fig. 3. Scaling of canonical size at different transition densitieg scale)

Based on these results we argue that our proposed modelditowinteresting”
behavior as we vary, f, and the size of the input NFA. In the next sections we use this
model to study the performance of algorithms for canon@asind universality.

3 Canonization

The canonizationproblem consists of constructing the minimal DFA that atsepe
same language as a given (possibly non-deterministicefimitomaton. In addition
to its theoretical appeal, this problem has an array of appiins, from compilers to
hardware circuit design to verification [40].

There are two different approaches to canonization. Thedjproach involves a
two-step process: first, determinize the NFA, and secondimize the resulting DFA.
To complete the first step, we use thebset constructigrwhich we present briefly
here (see eg. [31] for a detailed description). let= (X, S, S p, F') be an NFA.
We constructd, = (X,2% {S%}, pa, Fu), whereFy = {T € 25 : TN F # 0}
andpq(Th,a,Te) < Tp = {t2 € S : p(tl,a,ts) forsomet; € T1}. The subset
construction can be applied on the fly: starting with theiahgtateS°, we determine
the “next” state for each letter, and then recur. The automady; is deterministic and

accepts exactly the same languagelagor the second step, Watson [40] presents 15
algorithms that can be used to minimize a DFA, including ohthe simplest (Huff-
man’s [25]), and the one with the best known worst-case cerilyl (Hopcroft's [23]).
The second approach to canonization, due to Brzozowskj fi@]jds the minimization
step, but applies the determinization step twice. In outlystue compare the two ap-
proaches by evaluating the performance of Hopcroft's armbBowski's algorithms on
randomly generated automata.

We present briefly the idea of the two algorithms. LgtA(®)) be the language
accepted by the automatohstarting from the state. Given a DFA, Huffman’s and
Hopcroft's algorithms construct an equivalence relatib S x .S with the following
property:(p,q) € E < L(A®) = L(A), The equivalence relatioR is computed
as the greatest fixed point of the equation

(p,q) e E< (pe Feqe F)ANNYae X, (p,a,p)€p (q,a,d)ep:(p.¢)€E).

In Huffman’s algorithm all states are assumed equivaletit proven otherwise.
Equivalence classes are split repeatedly until a fixpoindéshed. The algorithm runs
in asymptotic timeO(|S|?). Hopcroft made several clever optimizations in the way
equivalence classes are split, which allowed him to achiegdowest known running
time O(|S| log |S]) [21, 23]. Hopcroft’s algorithm also significantly outpenfies Huff-
man’s algorithm in practice, so we can ignore Huffman’s atfon from this point on.
Strictly speaking, Hopcroft's algorithm is just the DFA rimimization algorithm, but we
take it here to refer to the canonization algorithm, withedigtinization in the first step
and minimization in the second step. Because the subsetrgotisn is applied in the
first step, the worst-case complexity of this approach ierntial.

Brzozowski’s algorithm is a direct canonization algorithemd it does not use mini-
mization, but, rather, two determinization steps. To désdhe algorithm, we introduce
some notation. Ifd is an automatoqy, S, S°, p, F), thenreverse(A) is the automaton
AR = (X,8 F, pft, S%), wherep? C S x X x S and(sq,a,s1) € p? < (s1,a,52) €
p- Intuitively, reverse switches the accepting and the initial states, and chahgedi+
rection of the transitions. Leteterminize(A) be the deterministic automaton obtained
from A using the subset construction, anddetichable(A) be the automatod with
all states not reachable from the initial states removed.

Theorem 1 (Brzozowski). Let A be an NFA. Then

A’ = [reachable o determinize o reverse]®(A)
is the minimal DFA accepting the same languagelas

It is not immediately obvious what the complexity of Brzozkis algorithm is.
The key to the correctness of the algorithm is, however, dfiewing lemma.

Lemmal. LetA = (X, S, {so}, p, F) be a DFA with the property that all states i
are reachable fromy. Thenreachable(determinize(reverse(A))) is a minimal-state
DFA.

Since the canonical size is at most exponential in the sizheninput automaton and
sincereachable and determinize can be combined to generate only reachable sets
(which is exactly what we do in Hopcroft's algorithm), it folvs that the worst-case
complexity of Brzozowski’s algorithm is also exponential.

For our experimental study we used the tool dk.brics.automgB2], developed by
Anders Mgller. All experiments were performed on the RiceaSeale Clustéy which
is a large Linux cluster of Itanium Il processors with 4 GB ofmmory each.

We first study performance on fixed-size automata. Againsauarple contains 200
random automata pér, f) pair, and median time is reported (as we mentioned earlier,
median time is less affected by outlying points than the ma&éese, and all subse-
quent timing data, refer to the median). To generate each plaint in Figure 4, we
determinized and then minimized with Hopcroft's algoritleach automaton; we mea-
sured combined running time for both steps. Note that Figugesimilar to Figure 2,
but the two peaks occur in different densities= 1.5 andr = 1.25, respectively). As
in Figure 2, for a fixed transition density, the impact of guteece density on running
time is not large.

Calculating the canonical mDFA with Hopcroft (S| = 30) Calculating the canonical mDFA with Brzozowski (|S| = 30)

H
N A o o O
8 &8 8 &8 8

Time to minimize (ms)

@
o
o

Time to determinize + time to minimize (ms)
o

0.6
04

1 0
- 05 5 04)
2 Density of final states (f) Transition density () 0 0 02 Density of final states ()

0.5
Transition density () 0 0

Fig. 4. Canonization using Hopcroft Fig. 5. Canonization using Brzozowski

For Brzozowski's algorithm, we measured the total time tdqren the tworeachable o
determinize o reverse steps. The results are presented in Figure 5. The peak for Brz
zowski’'s algorithm coincides with the peak of Figure2 1.25). For a fixed transition
density, the impact of acceptance density on running timaish more pronounced that
in Hopcroft's algorithm.

Our experiments indicate that neither Hopcroft's nor Baegki's algorithm dom-
inates the other across the whole density landscape. Ind-Bywe show the running
times of both algorithms for fixed = 0.5. In Figure 6(a) the areas under both curves
are 691 for Hopcroft and 995.5 for Brzozowski, and in Figuig)@he areas are 1900 for
Hopcroft and 5866 for Brzozowski, so Hopcroft's algorithrsta better overall perfor-
mance, but for > 1.5 Brzozowski’s algorithm is consistently faster. The corsodun is
that Hopcroft's algorithm is faster for low-density auto@avhile Brzozowski's algo-
rithm is better for high-density automata. It remains to éersif this conclusion applies
also for automata that arise in practical applications,[&]g

% http://support.rtc.rice.edu/

IS
S
S

Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

N w w
@ S g
S S =)

N
=}
S

o
@
S

Time to calculate mDFA (ms)
g
B

o
=

o
:]

—&— Brzozowski
T —o- Hopcroft

S S eaaaang

Time to calculate mDFA (ms)

3000

Hopcroft and Brzozowski's algorithms (|S| = 40, f = 0.5)

N
a
S
S

N
o
1=
S

-
a
S
S

1000f i |

o
o
=)

—=— Brzozowski
B —— Hopcroft

=
S
o

-

15
Transition density (r)

(a) Initial size 30

25

B o

0 05 1 15 2
Transition density (r)

(b) Initial size 40

Fig. 6. Comparison between Hopcroft's and Brzozowski's algorgHor fixed f = 0.5

25

Similar to the approach of [36], we also investigated how &foft's and Brzozow-
ski’s algorithms scale with automaton size. We fixed the ptaoece density af = 0.5,
because its effect on the running time is less dramatic thandf the transition den-
sity. The results (Figure 7) indicate that none of the althons scales better than the
other over the whole landscape. Brzozowski's algorithmarasdge over Hopcroft’s for
r > 1.5, and the opposite is true for the lower densities. At the pelpcroft's algo-
rithm scales exponentially, but generally the algorithweles subexponentially. Again
we see that Hopcroft's algorithm is better at low densitigkile Brzozowski's algo-

rithm is better at high densities.

:(l:éamparison of Hopcroft and Brzozowski's algorithms (|S| = 30, f = 0.5)

-5~ Hopcroft, r = 1.0
-7 Hopcroft, r = 1.25
- Brzozowski, r = 1.0
10° ¥ Brzozowski, r = 1.25

Time to canonize (ms)(log scale)
.
o

10

Time to canonize (ms)(log scale)

10 15 20 25 30
Initial size of the automaton (|S|)

Comparison of Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

=
S

-5~ Hopcroft, r=1.5

-7 Hopcroft, r = 1.75
Hopcroft, r = 2.0

-B- Brzozowski, r = 1.5

W- Brzozowski, r = 1.75
Brzozowski, r = 2.0

10

10 15 20 25 30 35
Initial size of the automaton (|S|)

Fig. 7. Scaling comparison of Hopcroft and Brzozowski's algorithm

4 Universality

The straightforward way to check for universality of an NBA= (X, S, S, p, F') is to
determinize it, using the subset construction, and theifywiat every reachable state
is accepting and that the transition relation is total. Werojze this by modifying the
subset construction algorithm slightly. When a “next” stest generated, the algorithm
first checks whether it is accepting, and if this is not theedag algorithm terminates
early, indicating that the automaton is not universal.

An alternative approach is to view the determinized automdt; = (3,25 {S°}, pg, Fu),
with F, = {T S 25 . TNF 75 @} andpd(Tl,a,Tg) — Ty = {tg e S
p(t1,a,t2) forsomet; € Ty}, as asequential circuit(SC). An SC [22] is a tuple
(I, L,6,«) wherel is a set of input signald, is a set of registers), : 2% x 2/ — 2&
is the next-state function, describing the next assignrogtiie of the registers given
their current assignment and an input assignment,cagd2” is an initial assignment
to the registers. (Usually we also have output signals anougput function, but this
is not needed here.) The alphatiet= {0, 1} corresponds here to a single input sig-
nal. The state sef can be viewed as the register geta set in2° can be viewed as a
Boolean assignment to the stateSnusing the duality between sets and their charac-
teristic functions. The intuition is that every stateSrcan be viewed as a register that
is either “active” or “inactive”. The initial state, correspond to an initial assignment,
assigningl to so and0 to all other registers, as onby is active, initially. Finally, the
transition relatiorpg, which is really a function, correspond to the next-statecfion,
whered(P, o) = Q whenpy(P, a,Q) holds (note that we view here subsetsés
Boolean assignments t8). Universality of A now correspond to an invariance prop-
erty of A, expressed in CTL adG(\/, . s). Thus, we can check universality using a
model checker.

In our evaluation we used two symbolic model checkers, befifrred to as SMV:
Cadence SMV [33] and NuSMV [15]. SMV is based on binary decisiliagrams
(BDDs) [8, 9], which provide a canonical representationBoolean functions. A BDD
is a rooted, directed acyclic graph with one or two terminades labeled® or 1, and
a set of variable nodes of out-degree two. The variablesertsp given linear order
on all paths from the root to a leaf. Each path represents sigranent to each of the
variables on the path. Since there can be exponentially pattes than vertices and
edges, BDDs are often substantially more compact expbgitasentations, and have
been used successfully in the verification of complex cisc[ii2]. To encode the SC
for Az in SMV, we use the states ifi as state variables, corresponding to the regis-
ters. The SC is defined via theit andnext statementsinit(s) = 1 iff s = so, and
next(s) = 1 iff Vp(t,a,s) t, when the input igr; we provide an example in Figure 8. We
use a Boolean array to encode the registers, and a vatiabilg to encode the input
symbol. The specification in the example is the universaityperty. The NFAA is
universal iff the sequential circuit corresponding4g satisfies the specification.

In order to improve the running time of the model checkers wasidered several
optimization techniques.

Sloppy vs. fussy encodingturns out that to check universality we need not deterngni
A. Instead, we can construct the non-deterministic automato= (X, 2%, {S°}, py., Fu),

MODULE mai n

VAR
state: array 0..3 of bool ean; input: bool ean;
ASSI GN
1

init(state[0]) := 1; init(state[1]) :
1 init(state[2]) :
next (state[0]) :
(state[2]

0
0; init(state[3]) :
@ next (state[1]) :
next (state[2]) :
next (state[3]) :

SPEC
Fig. 8. A simple automaton and its encoding in SMV

((state[1] & input) |

! input) | (state[3] & input));
(state[2] & ! input);
(state[3] & input);

(state[0] & ! input);

o een

©

AG (state[0] | state[3]);

with F, = {T S 25 . TNF 75 (Z)} andpn(Tl,a,Tg) — T, C {tg e S :
p(tl,a,ty) forsomet; € Ti}. It is easy to see thadl is universal iff every reach-
able state inA,, is accepting. Intuitively,4,, allows more states to be active in the
subset construction. Unlikd;, we cannot viewd,, as an SC, since it is not determin-
istic. SMV, however, can also model non-deterministic egst. Rather than require
thatnext(s) = 1iff \/ ., , ;) &, when the input i, we requite thaheat(s) = 1 if
Vp(t,a,s) t, when the input isr (the “iff” is replaced by “if"). We refer to the initial
encoding agussyand to this encoding adoppy In an explicit construction the sloppy
approach would generate more subsets, but in a symbolioappthe sloppy approach
uses “looser” logical constraints (ans, rather tharassi gn), which might result in
smaller BDDs. See Figure 9 for a sloppy encoding of the prevexample.

TRANS

((state[1] & input) | (state[2] & (! input)) |

(state[3] & input)) -> next(state[0]);
(state[2] & (! input)) -> next(state[1]);

(state[3] & input) -> next(state[2]);

(state[0] & (! input)) -> next(state[3]);

Fig. 9. Sloppy encoding of the automaton in Figure 8

Monolithic vs. conjunctive partitioningn [11] Burch, Clarke and Long suggest an
optimization of the representation of the transition rielabf a sequential circuit. They
note that the transition relation is the conjunction of sel/emall relations, and the
size of the BDD representing the entire transition relatizay grow as the product of
the sizes of the individual parts. This encoding is calleaholithic The method that
Burch et al. suggest represents the transition relation by a list of #mespwhich are
implicitly conjuncted. Burctet al. call their methoatonjunctive partitioningwhich has
since then become the default encoding in NuSMV and Cadekité S

Conjunctive partitioning introduces an overhead whenuwdating the set of states
reachable in the next step. The set of transitions has tomsdered in some order, and
choosing a good order is non-trivial, because each indalittansition may depend on
many variables. In large systems the overhead is negligitmiepared to the advantage

of using small BDDs [11]. However, in our models the tramsis are fairly simple, and
it is not immediately clear whether monolithic encoding isedter choice.

Variable ordering When using BDDs, it is crucial to select a good order of the-var
ables. Finding an optimal order is itself a hard problem, se loas to resort to different
heuristics. The default order in NuSMV corresponds to tlteom which the variables
are first declared; in Cadence SMV itis based on some intbmaistic. The orders that
we considered included the default order, and the ordeenddy three heuristics that
are studied with respect to tree decompositions: MaximundiGality Search (MCS),
LEXP and LEXM [27]. In our experiments MCS proved to be bettean LEXP and
LEXM, so we will only report the results for MCS and the defawuider.

In order to apply MCS we view the automaton as a graph whosesade the
states, and in which two nodes are connected iff there isrsitran between them.
MCS orders [38] the vertices from 1 {&| according to the following rule: The first
node is chosen arbitrarily. From this point on, a node thadgcent to a maximal
number of already selected vertices is selected next, amh sdies can be broken in
various ways (eg. minimize the degree to unselected nodew [Baximize it [5], or
select one at random), but none leads to a significant speé@dumur experiments,
when we used MCS we broke ties by minimizing the degree to tiselected nodes.

Traversal In our model the safety condition is of the forG: i.e. « is a property that
we want to hold in all reachable states. CTL formulas are radisnevaluated backwards
in NuSMV [16], via the greatest fixpoint characterization:

AGa = gfp,[a A AXZ]

This approach (“backwards traversal”) can be sometimete guéfficient. As an opti-
mization (only forAGa formulas), NuSMV supports another strategy: calculatestte
of reachable states, and verify that they satisfy the ptgpe(“forward traversal”). In
Cadence SMV, forward traversal is the default mode, but Wacls traversal is also
available. We considered forward and backwards traveosdddth tools.

Evaluating The Symbolic ApproacBenerally, running times of the various symbolic
approaches increase with both transition density and a&cep density. In Figure 10
we present the effect of the first three optimizations (f@s #et of experiments forward
traversal direction was used) to the running times of NuSM\ &adence SMV for
fixed size automata. No single configuration gives the bedbpeance throughout
the range of transition density. Nevertheless, we can ma¥eral conclusions about
the individual optimizations. Ordering the variables whCS is always better than
using the default ordering. Monolithic encoding is bettaarn conjunctive partitioning
for low transition density; the threshold varies dependingthe tool and the choices
for the other optimizations. Sloppy encoding is better thsssy when used together
with monolithic encoding; the opposite is true when usingjaactive partitioning. The
only exception to the latter is sloppy monolithic encodindduSMYV, which gives the
worst performance. Overall, for both tools, the best perfance is achieved by using
monolithic-MCS-sloppup tor = 1.3, andconjunctive-MCS« thereafter (the results
for sloppy and fussy are too close to call here).

Time to check universality (ms)(logscale)

Cadence SMV (|S| = 30, f = 0.5)

NuSMV (IS| = 30, f = 0.5)

—E— Mono-Default-Sloppy

- Mono-Default-Fussy
Mono-MCS-Sloppy

4| | &= Mono-MCS-Fussy

f| m Conj-Default-Sloppy

v Conj-Default-Fussy
Conj-MCS-Sloppy

A Conj-MCS-Fussy

T
—B5- Mono-Default-Sloppy
-7 Mono-Default-Fussy
6| Mono-MCS-Sloppy
-A- Mono-MCS-Fussy

<

B Conj-Default-Sloppy
Conj-Default-Fussy

v
107k Conj-MCS-Sloppy a/z/EB/B/D
A

=g

Conj-MCS-Fussy

Time to check universality (ms)(logscale)

0.5 1 15 2 25

10 .
0 05 Tra%silion dens}i)?(r) 2 25 Transition density (r)
(a) Nusmv (b) Cadence SMV

Fig. 10. Optimizing the running times of NuSMV and Cadence SMV

In order to fine-tune the two tools we next looked at theiriscgberformance (Fig-
ure 11). We considered automata wijth= 0.9 andr = 2.5 (our choice is explained
later). We fixed the transition encoding to conjunctive aadable order to MCS, and
varied traversal direction and sloppy vs. fussy encodira. Ifoth tools backwards
traversal is the better choice, not surprisingly, sif6&; of the states are accepting
and a fixed point is achieved very quickly. When using backlsaraversal, sloppy en-
coding gives better performance, and the opposite is trienwising forward traversal.
Overall, the best scaling is achieved by Cadence SMV wittklvaads traversal and
sloppy encoding, and this is what we used for comparison thighexplicit approach.

Comparing The Explicit and Symbolic Approaché& compared the performance of
the explicit and the symbolic approaches on a set of randa@omzata with a fixed initial
size. For each data point we took the median of all execuitioes (200 sample points).
Our results indicate that for small automata the expligjbathm is much faster than the
symbolic. In fact, even when using automata with initiaksig| = 100, the median of
the execution time is 0 almost everywhere on the landscaeeHigiure 12). In contrast,
even for automata withS| = 30 the symbolic algorithm takes non-negligible time
(Figure 10).

As before, we also investigated which algorithm scalesebets we increase the
initial size of the automata. For this set of experiments,fixed the densities of the
final states and the transitions At= 0.9 andr = 2.5 (i.e. on of the furthest edge of
the landscape). We chose this point because almost everywlse the median exe-
cution time of the explicit algorithm is 0 for small automatsie varied the initial size
of the automata between 5 and 600. The results are presemtédure 13. The sym-
bolic algorithm (Cadence SMV) is quite slower than the esipthroughout the whole
range. All algorithms scale sub-exponentially; howeuese, $ymbolic algorithm scales

Comparing the scaling of NuSMV and Cadence SMV (f=0.9, r = 2.5)
10 j j j j " | -3 Cadence-Sloppy-Backwd
Cadence-Sloppy-Forward
—7 Cadence-Fussy-Backwd
—©- Cadence-Fussy-Forward
M- NuSMV-Sloppy-Backwd
NuSMV-Sloppy-Forward
¥- NuSMV-Fussy-Backwd
@- NuSMV-Fussy-Forward
o
o ?
pe g
oy ¥

=
o
£
T

i
S)
%
T
[]
\
[]

o w ¥ - =

=
o
N
T

Time to check universality (ms)(log scale)

10 20 30 40 50 60 70 80 90 100
Initial size of the automaton (|S|)

Fig. 11. Optimizing NuSMV and Cadence SMV (scaling)

Checking for universality with the explicit algorithm (|S| = 100)

NN W Wb
o u o g o
o O O O O

150
100

a
o

Time to check universality (ms)

N
to

15 06
0.4

05 0.2

Transition density (r) Density of final states (f)

Fig. 12. Median time to check for universality with the explicit algbm

20(/15D worse than the explicit one (Figure 13(b)). We also presatd tbr NuSMV,
which scales the worst of the three algorithms and is theessofor|S| > 20. We note
that at lower transition and/or acceptance density, thamtge of the explicit approach
over the symbolic approach is much more pronounced.

5 Discussion

In this paper we proposed a probabilistic benchmark foirtgstutomata-theoretic al-
gorithms. We showed that in this model Hopcroft's and Brzesgki’'s canonization al-
gorithms are incomparable, each having an advantage int@rceegion of the model.
In contrast, the advantage of the explicit approach to usality over the symbolic
approach is quite clear.

Time to check universality (ms)(log scale)

Scaling of the symbolic and the explicit algorithms (f = 0.9, r = 2.5)

Scaling of the symbolic and the explicit algorithms (f = 0.9, r = 2.5)

) —k— Explicit algorithm
§ —&— NuSMV (op:imized)_ .
2 1047 Cadence SMV (optimized) il
@
£
210°}"‘,
[
4
g e
c /!'_
32 10° T
I S
[}

10+ —— Explicit algorithm °

—=— NuSMV (optimized) o 10t
Cadence SMV (optimized) E
100 L L L L L
0 100 200 300 400 500 600 10" 10°
Initial size of the automaton (|S|) Initial size of the automaton (ISI) (loa scale)
(a) Logarithmic plot (b) Log-log plot

Fig. 13. Scaling comparison of the symbolic and the explicit aldons

An obvious question to raise is how “realistic” our probadtit model is. There
is no obvious answer to this question; partly because we reakstic benchmarks of
finite automata. Since automata represent finite-stateaoittis hard to see why ran-
dom directed graphs with linear density do not provide aiséalmodel. Hopefully,
with the recent increase in popularity of finite-state folisras in industrial temporal
property specification languages (c.f., [4, 6]), such bematks will become available in
the not-too-far future, enabling us to evaluate our findiogsuch benchmarks. While
our results are purely empirical, as the lack of successfwitjanalyzing related prob-
abilistic models indicates (cf. [19, 18, 2]), providing eigus proof for our qualitative
observations may be a very challenging task. At any ratejiiggia deeper understand-
ing why one method is better than another method is an impoctzallenge. Another
research direction is to consider minimization on the flyfasexample, in [30].

Our most surprising result, we think, is the superiority lo¢ texplicit approach to
universality over the symbolic approach. This runs agaihstconventional wisdom
in verification [12]. One may wonder whether the reason fag th the fact that our
sequential circuits can be viewed as consisting of “purdroinwith no data compo-
nent, unlike typical hardware designs, which combine adreind data. This suggests
that perhaps in model checking such designs, control aredaiaght to be handled by
different techniques. Another possible explanation i tha sequential circuits corre-
sponding to the determinized NFA have registers with lasgeif, while realistic cir-
cuits typically have small-fan-in registers. We believattthese point deserve further
study.

In future work we plan to extend the comparison between tipfi@xand symbolic
approaches to universality to automata on infinite wordsoblpm of very direct rel-
evance to computer-aided verification [29]. It is known tbaplementation of such
automata is quite intricate [29], challenging both expleid symbolic implementation.

Acknowledgments. We are grateful to Andreas Podelski for raising the questid
comparing Hopcroft's and Brzozowski's algorithms.

References

1. Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. VEtd. FoCs - automatic gener-
ation of simulation checkers from formal specifications. AV, Proc. 12th International
Conferencevolume 1855 of. NCS pages 538-542. Springer-Verlag, 2000.

2. D. Achlioptas. Setting two variables at a time yields a h@wer bound for random 3-SAT.
In Proc. of 32nd Annual ACM Symposium on Theory of Compufiego.

3. A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDO$e plot thickens
further. InPrinciples and Practice of Constraint Programmijmpges 121-136, 2001.

4. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. i, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. THeSpec temporal logic: A
new temporal property-specification logic. Rroc. 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systewisime 2280 oL NCS pages
296-211, Grenoble, France, April 2002. Springer-Verlag.

5. D. Beatty and R. Bryant. Formally verifying a microprosesusing a simulation methodol-
ogy. InProc. 31st Design Automation Conferenpages 596—602. IEEE Computer Society,
1994.

6. |. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringaum® Y. Rodeh. The temporal
logic sugar. InProc. 13th International Conference on Computer Aidedfi¢aiion volume
2102 ofLNCS pages 363-367, Paris, France, July 2001. Springer-\erlag

7. B. Bollobas.Random GraphsCambridge University Press, January 2001.

8. R.E. Bryant. Graph-based algorithms for boolean-fumctnanipulation.IEEE Trans. on
ComputersC-35(8), 1986.

9. R.E. Bryant. Symbolic boolean manipulation with ordelbo@tary-decision diagramsACM
Computing Survey24(3):293-318, 1992.

10. J. A. Brzozowski. Canonical regular expressions andmahstate graphs for definite events.
In Mathematical theory of Automatpages 529-561. Polytechnic Press, Polytechnic Insti-
tute of Brooklyn, N.Y., 1962. Volume 12 of MRI Symposia Setie

11. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic modetatting with partitioned
transition relations. IProc. IFIP TC10/WG 10.5 International Conference on Verygea
Scale Integrationpages 49-58, 1991.

12. J.R.Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and 1. Hwang. Symbolic model check-
ing: 10%° states and beyondnformation and Computatiqrd8(2):142—170, June 1992.

13. Cadence. SMV. http://www.cadence.com/company/aadias research.html.

14. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where tHly feard problems are. IRICAI
'91, pages 331-337, 1991.

15. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,. Ristore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV Version 2: An OpenSource Tool for $piic Model Checking.
In Proc. International Conference on Computer-Aided Verifa@a(CAV 2002)volume 2404
of LNCS Copenhagen, Denmark, July 2002. Springer.

16. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. RoveriU$MV: A new symbolic model
checker. International Journal on Software Tools for Technology rister, 2(4):410-425,
2000.

17. E.M. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

18. Olivier Dubois, Yacine Boufkhad, and Jacques Mandlgmical random 3-SAT formulae
and the satisfiability threshold. BODA pages 126-127, 2000.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.
30.
31.
32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

E. Friedgut. Necessary and sufficient conditions forpsitaresholds of graph properties,
and the k-SAT problemJournal of the A.M.$12:1017-1054, 1999.

James Glenn and William I. Gasarch. Implementing WSa3inite automata: Performance
issues. InWorkshop on Implementing Automageges 75-86, 1997.

D. Gries. Describing an algorithm by Hopcroftcta Informatica 2:97-109, 1973.

G.D. Hachtel and F. SomenZiogic Synthesis and Verification Algorithm&luwer Aca-
demic Publishers, Norwell, Massachusetts, 1996.

J. E. Hopcroft. Am log n algorithm for minimizing the states in a finite automaton. In
Z. Kohavi, editor,The Theory of Machines and Computatippages 189-196. Academic
Press, 1971.

J.E. Hopcroft and J.D. Ullmarintroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

D. A. Huffman. The synthesis of sequential switchingwits. In E. F. Moore, editor,
Sequential Machines: Selected Papékddison-Wesley, 1964.

R. M. Karp. The transitive closure of arandom digrapandom Struct. Algorithm4(1):73—
94, 1990.

A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van HoeSetewidth: Computational
experiments. ZIB-Report 01-38, Konrad-Zuse-Zentrum Ififormationstechnik Berlin,
Berlin, Germany, 2001. Also available as technical repdd-0S-2001-49 (Utrecht Uni-
versity) and research memorandum 02/001 (Universiteitdwaznt).

O. Kupferman and M.Y. Vardi. Model checking of safety gedies. Formal methods in
System Desigri9(3):291-314, November 2001.

O. Kupferman and M.Y. Vardi. Weak alternating automataret that weak ACM Trans.
on Computational Logic2001(2):408-429, July 2001.

D. Lee and M. Yannakakis. Online minimization of traiegitsystems. IfProc. 24th ACM
Symp. on Theory of Computinoages 264—-274, Victoria, May 1992.

P. Linz. An introduction to formal languages and automat®. C. Heath and Company,
Lexington, MA, USA, 1990.

A. Mgller. dk.brics.automaton. http://www.brics.ditomaton/, 2004.

K.L. McMillan. Symbolic Model Checkind<luwer Academic Publishers, 1993.

A.R. Meyer and M.J. Fischer. Economy of description bipmata, grammars, and formal
systems. IrProc. 12th IEEE Symp. on Switching and Automata Thepages 188-191,
1971.

A.R. Meyer and L.J. Stockmeyer. The equivalence prolfl@mregular expressions with
squaring requires exponential time. Pnoc. 13th IEEE Symp. on Switching and Automata
Theory pages 125-129, 1972.

G. Pan and M.Y. Vardi. Search vs. symbolic techniqueatisfiability solving. INSAT 2004
LNCS, Aalborg, May 2004. Springer-Verlag.

Bart Selman, David G. Mitchell, and Hector J. LevesqueendBating hard satisfiability
problems.Artificial Intelligence 81(1-2):17-29, 1996.

R. E. Tarjan and M. Yannakakis. Simple linear-time &thans to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reducebcyhypergraphsSIAM J. Comput.
13(3):566-579, 1984.

M.Y. Vardi and P. Wolper. An automata-theoretic apphotizautomatic program verifica-
tion. In Proc. 1st Symp. on Logic in Computer Scierpages 332—-344, Cambridge, June
1986.

B. W. Watson. A taxonomy of finite automata minimizatitégoaithmes. Computing Science
Note 93/44, Eindhoven University of Technology, The Nelgmaals, 1993.

B. W. Watson. Taxonomies and Toolkits of Regular Language Algorithr®hD thesis,
Eindhoven University of Technology, the Netherlands, 1995

