
Experimental Evaluation
of

Classical Automata Constructions ⋆

Deian Tabakov1 and Moshe Y. Vardi1

Department of Computer Science, Rice University, Houston,TX
{dtabakov,vardi}@cs.rice.edu

Abstract. There are several algorithms for producing the canonical DFA from
a given NFA. While the theoretical complexities of these algorithms are known,
there has not been a systematic empirical comparison between them. In this work
we propose a probabilistic framework for testing the performance of automata-
theoretic algorithms. We conduct a direct experimental comparison between Hop-
croft’s and Brzozowski’s algorithms. We show that while Hopcroft’s algorithm
has better overall performance, Brzozowski’s algorithm performs better for “high-
density” NFA. We also consider the universality problem, which is traditionally
solved explicitly via the subset construction. We propose an encoding that allows
this problem to be solved symbolically via a model-checker.We compare the per-
formance of this approach to that of the standard explicit algorithm, and show that
the explicit approach performs significantly better.

1 Introduction

Over the last 20 years automata-theoretic techniques have emerged as a major paradigm
in automated reasoning, cf. [39]. The most fundamental automata-theoretic model is
that of non-deterministic finite automata (NFA) [24]. (While the focus in automated
reasoning is often on automata on infinite objects, automataon finite words do play a
major role, cf. [28].) There are two basic problems related to NFA: finding the canon-
ical minimal deterministic finite automaton (DFA) that accepts the same language as
the original automaton (cf. [1] for an application in verification), and checking whether
a given automaton is universal (i.e., accepts all words, corresponding to logical valid-
ity). Both problems have been studied extensively (eg. [40,41]) and several algorithms
for their solution have been proposed. For the canonizationproblem, two classical al-
gorithms are by Hopcroft [23], which has the best asymptoticworst-case complexity
for the minimization step, and by Brzozowski [10], which is quite different than most
canonization algorithms. The standard way to check for universality is to determinize
the automaton explicitly using the subset construction, and check if a rejecting set is
reachable from the initial state. We call this theexplicit approach. In addition to the

⋆ Work supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-
9908435, IIS-9978135, EIA-0086264, and ANI-0216467, by BSF grant 9800096, by Texas
ATP grant 003604-0058-2003, and by a grant from the Intel Corporation.

explicit approach, we introduce in this paper a novel method, which reduces the univer-
sality problem to model checking [17], enabling us to applysymbolicmodel checking
algorithms [12]. These algorithms use Binary Decision Diagrams (BDDs) [8], which
offer compact encoding of Boolean functions.

The complexities of Brzozowski’s and Hopcroft’s algorithms are known [40], but
there has not been a systematic empirical comparison between them. (A superficial eval-
uation in [20] claimed superiority of Hopcroft’s algorithm.) Similarly, the universality
problem is known to be PSPACE-complete [35], but a symbolic approach to universal-
ity has not been pursued. The comparison is complicated by the fact that there are no
really good benchmarks for automata-theoretic algorithmsand it is not even clear what
types of automata should be included in such benchmarks.

We propose here evaluating automata-theoretic algorithmsbased on their perfor-
mance on randomly generated NFA. This is inspired by recent work on randomly gen-
erated problem instances [14], for example random 3-SAT [37]. We can vary the hard-
ness of the instances by controlling their density. In the case of NFA, there are two
densities to control: the density of the accepting states (i.e., ratio of accepting states to
total states) and the density of transitions (i.e., densityof transitions per input letter to
total states). For both densities we are interested in constant ratios, which yields linear
densities. This is analogous to the model used in random 3-SAT problems [37]. (For
simplicity here we assume a unique initial state.)

It is not a priori clear that the linear-density model is an interesting model for study-
ing automata-theoretic algorithms. We show empirically that this probability model
does yield an interesting problem space. On one hand, the probability of universality
does increase from 0 to 1 with both acceptance density and transition density. (Unlike
the situation with random 3-SAT, the probability here changes in a smooth way and no
sharp transition is observed.) On the other hand, the size ofthe canonical DFA does
exhibit a (coarse) phase transition with respect to the transition density of the initial
NFA, peaking at density 1.25. (It is interesting to note thatrandom directed graphs with
linear density are known to have a sharp phase transition with respect to connectivity at
density 1.0 [26].) The scaling of the size of the canonical DFA depends on the transi-
tion density, showing polynomial behavior for high densities, but super-polynomial but
subexponential behavior for low densities.

Once we have established that the linear-density model is aninteresting model for
studying automata-theoretic algorithms, we go on to study the canonization and uni-
versality problems for that model. We first compare Hopcroft’s and Brzozowski’s can-
onization algorithms. Both algorithms’ running times display coarse phase transitions
that are similar to that for the size of the canonical DFA. Interestingly, however, while
Brzozowski’s algorithm peaks at transition density 1.25, Hopcroft’s algorithm peaks an
density 1.5. We show empirically that while Hopcroft’s algorithm generally performs
better than Brzozowski’s, the latter does perform better athigh transition densities.

The universality problem can be solved both explicitly and symbolically. The ex-
plicit approach applies the classical subset construction(determinization) and then searches
for a rejecting reachable set, i.e. a reachable set that doesn’t contain an accepting state
[35]. To solve universality symbolically, we observe that the determinized automa-
ton can be viewed as a synchronous sequential circuit. The reachability-of-rejecting-

set condition can be expressed as a temporal property of thisdigital system. Thus,
the universality problem can be reduced to a model-checkingproblem and solved by
a symbolic model checker; we used two versions of SMV–Cadence SMV [13] and
NuSMV [15]. To get the best possible performance from the model checker, we con-
sidered several optimization techniques, including the encoding of the determinized
automata as a digital system, the representation of the transition relation, and the order
of the BDD variables. In our experiments we used the configuration that led to the best
performance.

The conventional wisdom in the field of model checking is thatsymbolic algorithms
typically outperform explicit algorithms on synchronous systems, while the latter out-
perform on asynchronous systems. In view of that, we expected our optimized symbolic
approach to outperforms the explicit, rather straightforward approach. Surprisingly, our
empirical results show that the conventional wisdom does not apply to the universality
problem, as the explicit algorithm dramatically outperformed the symbolic one.

The paper is organized as follows. In Section 2 we describe the random model and
examine its properties. In Section 3 we compare the performance of Hopcroft’s and
Brzozowski’s algorithms for the canonization problem. In Section 4 we compare the
performance of the explicit and symbolic algorithms for theuniversality problems. Our
conclusions are in Section 5.

2 The Random Model

We briefly introduce the notation used throughout this paper. Let A = (Σ, S, S0, ρ, F)
be a finite nondeterministic automaton, whereΣ is a finite nonempty alphabet,S is a
finite nonempty set of states,S0 ⊆ S is a non-empty set of initial states,F ⊆ S is the
set of accepting states, andρ ⊆ S × Σ × S is a transition relation. Recall thatA has a
canonical, minimal DFA that accepts the same language [24].Thecanonizationprob-
lem is to generate this DFA.A is said to be universal if it acceptsΣ∗. Theuniversality
problem is to check ifA is universal.

In our model the set of initial statesS0 is the singleton{s0} and the alphabetΣ is
the set{0, 1}. For each letterσ ∈ Σ we generate a random directed graphDσ onS with
k edges, corresponding to transitions(s, σ, s′). Hereafter, we refer to the ratior = k

|S|

as thetransition density forσ (intuitively, r represents the expected outdegree of each
node forσ). In our model the transition density ofD0 andD1 is the same, and we refer
to it as the transition density ofA. The idea of using a linear density of some structural
parameter to induce different behaviors has been quite popular lately, most notably in
the context of random 3-SAT [37].

Our model forDσ is closely related to Karp’s model of random directed graphs[26];
for each positive integern and eachp with 0 < p < 1, the sample space consists of all
labeled directed graphsDn,p with n vertices and edge probabilityp. Karp shows that
whenn is large andnp is equal to a constant greater than 1, it is very likely that the graph
contains one large strongly connected component and several very small components.
Whennp < 1, the expected size of the set of reachable nodes is very small.

It is known that random graphs defined as in [26] in terms of their edge probability
or defined as here in terms of the number of edges display essentially the same behavior

[7]. Thus, Karp’snp = 1 corresponds to density 1 in our model. While Karp’s considers
reachability, which would correspond to non-emptiness [24], we consider here canon-
ization and universality. Karp’s phase transition at density 1 seems to have no effect on
either canonization or universality. The density of the directed graphs underlying our
automata is2r, but we see no interesting phenomenon atr = 0.5.

In our model the number of final statesm is also a linear function of the total number
of states, and it is given by afinal state densityf = m

|S| . The final states themselves are
selected randomly, except for the initial state, which is always chosen to be an accepting
state1. This additional restriction avoids the cases when an automaton is trivially non-
universal because the initial state is not accepting. (One may also consider a model with
a fixed number of accepting states rather than with a linear density; we found that such
a model behaves similarly to the one we consider here).

In Figure 12 we present the probability of universality as a function ofr andf .
To generate each data point we checked the universality of 200 random automata with
|S| = 30. The behavior here is quite intuitive. As transition and acceptance densities
increase, the automaton has more accepting runs and is therefore more likely to be
universal. Note that even if all states are accepting (f = 1), the automaton is still not
guaranteed to be universal. This follows from the fact that the transition relation is not
necessarily total, and the missing transitions are replaced by an implicit transition to a
rejecting sink state.

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5
0

10
20
30
40
50
60
70
80

Density of final states (f)

Probability of universal automata (|S| = 30)

Transition density (r)

P
ro

ba
bi

lit
y

of
 b

ei
ng

 u
ni

ve
rs

al

Fig. 1. Probability of universal automata
(|S| = 30)

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

200

400

600

Density of final states (f)

Size of the canonical mDFA (|S| = 30)

Transition density (r)

N
um

be
r

of
 s

ta
te

s

Fig. 2. Median number of states in the mDFA
(|S| = 30)

A completely different pattern emerges when we look at the size of canonical mini-
mized DFA (mDFA) corresponding to the input NFAA (Figure 2). For each data point
on the graph we determinized and minimized 200 random automata and took the me-
dian of the size of the minimized DFA (we chose to report the median rather than the
mean because the median is less affected by outlying points). We refer to the latter as
thecanonical size. While the effect of the acceptance density on the canonicalsize is
not too dramatic, transition density does have a dramatic effect on canonical size. The
latter rises and then falls with tradition density, peakingat r = 1.25. We see that the
canonical size has a coarse phase transition at that density.

1 We thank Ken McMillan for this suggestion.
2 We recommend viewing the figures in this paper online: www.cs.rice.edu/∼vardi/papers/

Finally, we investigated how the canonical sizescaleswith respect to the size of
the input NFAA. Since the values off do not have a large effect on the canonical
size, we fixedf = 0.5 here. Figure 3 shows that canonical size scales differentlyat
different transition densities. The scaling curves exhibit a range of behaviors. Forr ≤
1.25 they grow super-polynomially but subexponentially (in fact, a function of type

ab
√

|S| provides a very good approximation), forr = 1.5 the growth is polynomial,
and for higher transition densities they remain almost constant. Interestingly, though in
the worst case the canonical size may scale exponentially [34], we do not observe such
exponential scaling in our probabilistic model.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Number of states in the initial automaton

S
ta

te
s

in
 th

e
m

D
F

A
 (

lo
g

sc
al

e)

Number of states in the mDFA at fixed f = 0.5

r = 1.0
r = 1.25
r = 1.5
r = 1.75
r = 2.0
r = 2.25
r = 2.5

Fig. 3. Scaling of canonical size at different transition densities (log scale)

Based on these results we argue that our proposed model allows for “interesting”
behavior as we varyr, f , and the size of the input NFA. In the next sections we use this
model to study the performance of algorithms for canonization and universality.

3 Canonization

The canonizationproblem consists of constructing the minimal DFA that accepts the
same language as a given (possibly non-deterministic) finite automaton. In addition
to its theoretical appeal, this problem has an array of applications, from compilers to
hardware circuit design to verification [40].

There are two different approaches to canonization. The first approach involves a
two-step process: first, determinize the NFA, and second, minimize the resulting DFA.
To complete the first step, we use thesubset construction, which we present briefly
here (see eg. [31] for a detailed description). LetA = (Σ, S, S0, ρ, F) be an NFA.
We constructAd = (Σ, 2S, {S0}, ρd, Fd), whereFd = {T ∈ 2S : T ∩ F 6= ∅}
andρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈ S : ρ(t1, a, t2) for somet1 ∈ T1}. The subset
construction can be applied on the fly: starting with the initial stateS0, we determine
the “next” state for each letter, and then recur. The automaton Ad is deterministic and

accepts exactly the same language asA. For the second step, Watson [40] presents 15
algorithms that can be used to minimize a DFA, including one of the simplest (Huff-
man’s [25]), and the one with the best known worst-case complexity (Hopcroft’s [23]).
The second approach to canonization, due to Brzozowski [10], avoids the minimization
step, but applies the determinization step twice. In our study we compare the two ap-
proaches by evaluating the performance of Hopcroft’s and Brzozowski’s algorithms on
randomly generated automata.

We present briefly the idea of the two algorithms. LetL(A(p)) be the language
accepted by the automatonA starting from the statep. Given a DFA, Huffman’s and
Hopcroft’s algorithms construct an equivalence relationE ⊆ S × S with the following
property:(p, q) ∈ E ⇔ L(A(p)) = L(A(q)). The equivalence relationE is computed
as the greatest fixed point of the equation

(p, q) ∈ E ⇔ (p ∈ F ⇔ q ∈ F)∧(∀a ∈ Σ, (p, a, p′) ∈ ρ, (q, a, q′) ∈ ρ : (p′, q′) ∈ E).

In Huffman’s algorithm all states are assumed equivalent until proven otherwise.
Equivalence classes are split repeatedly until a fixpoint isreached. The algorithm runs
in asymptotic timeO(|S|2). Hopcroft made several clever optimizations in the way
equivalence classes are split, which allowed him to achievethe lowest known running
time O(|S| log |S|) [21, 23]. Hopcroft’s algorithm also significantly outperforms Huff-
man’s algorithm in practice, so we can ignore Huffman’s algorithm from this point on.
Strictly speaking, Hopcroft’s algorithm is just the DFA minimization algorithm, but we
take it here to refer to the canonization algorithm, with determinization in the first step
and minimization in the second step. Because the subset construction is applied in the
first step, the worst-case complexity of this approach is exponential.

Brzozowski’s algorithm is a direct canonization algorithm, and it does not use mini-
mization, but, rather, two determinization steps. To describe the algorithm, we introduce
some notation. IfA is an automaton(Σ, S, S0, ρ, F), thenreverse(A) is the automaton
AR = (Σ, S, F, ρR, S0), whereρR ⊆ S ×Σ ×S and(s2, a, s1) ∈ ρR ⇔ (s1, a, s2) ∈
ρ. Intuitively, reverse switches the accepting and the initial states, and changes the di-
rection of the transitions. Letdeterminize(A) be the deterministic automaton obtained
from A using the subset construction, and letreachable(A) be the automatonA with
all states not reachable from the initial states removed.

Theorem 1 (Brzozowski). LetA be an NFA. Then

A′ = [reachable ◦ determinize ◦ reverse]2(A)

is the minimal DFA accepting the same language asA.

It is not immediately obvious what the complexity of Brzozowski’s algorithm is.
The key to the correctness of the algorithm is, however, the following lemma.

Lemma 1. Let A = (Σ, S, {s0}, ρ, F) be a DFA with the property that all states inS
are reachable froms0. Thenreachable(determinize(reverse(A))) is a minimal-state
DFA.

Since the canonical size is at most exponential in the size ofthe input automaton and
sincereachable anddeterminize can be combined to generate only reachable sets
(which is exactly what we do in Hopcroft’s algorithm), it follows that the worst-case
complexity of Brzozowski’s algorithm is also exponential.

For our experimental study we used the tool dk.brics.automaton [32], developed by
Anders Møller. All experiments were performed on the Rice Terascale Cluster3, which
is a large Linux cluster of Itanium II processors with 4 GB of memory each.

We first study performance on fixed-size automata. Again, oursample contains 200
random automata per(r, f) pair, and median time is reported (as we mentioned earlier,
median time is less affected by outlying points than the mean. These, and all subse-
quent timing data, refer to the median). To generate each data point in Figure 4, we
determinized and then minimized with Hopcroft’s algorithmeach automaton; we mea-
sured combined running time for both steps. Note that Figure4 is similar to Figure 2,
but the two peaks occur in different densities (r = 1.5 andr = 1.25, respectively). As
in Figure 2, for a fixed transition density, the impact of acceptance density on running
time is not large.

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

20

40

60

80

100

Density of final states (f)

Calculating the canonical mDFA with Hopcroft (|S| = 30)

Transition density (r)

T
im

e
to

 d
et

er
m

in
iz

e
+

 ti
m

e
to

 m
in

im
iz

e
(m

s)

Fig. 4. Canonization using Hopcroft

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

200

400

600

800

Density of final states (f)

Calculating the canonical mDFA with Brzozowski (|S| = 30)

Transition density (r)

T
im

e
to

 m
in

im
iz

e
(m

s)

Fig. 5. Canonization using Brzozowski

For Brzozowski’s algorithm, we measured the total time to perform the tworeachable ◦
determinize ◦ reverse steps. The results are presented in Figure 5. The peak for Brzo-
zowski’s algorithm coincides with the peak of Figure 2 (r = 1.25). For a fixed transition
density, the impact of acceptance density on running time ismuch more pronounced that
in Hopcroft’s algorithm.

Our experiments indicate that neither Hopcroft’s nor Brzozowski’s algorithm dom-
inates the other across the whole density landscape. In Figure 6 we show the running
times of both algorithms for fixedf = 0.5. In Figure 6(a) the areas under both curves
are 691 for Hopcroft and 995.5 for Brzozowski, and in Figure 6(b) the areas are 1900 for
Hopcroft and 5866 for Brzozowski, so Hopcroft’s algorithm has a better overall perfor-
mance, but forr > 1.5 Brzozowski’s algorithm is consistently faster. The conclusion is
that Hopcroft’s algorithm is faster for low-density automata, while Brzozowski’s algo-
rithm is better for high-density automata. It remains to be seen if this conclusion applies
also for automata that arise in practical applications, e.g, [1].

3 http://support.rtc.rice.edu/

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

Transition density (r)

T
im

e
to

 c
al

cu
la

te
 m

D
F

A
 (

m
s)

Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Brzozowski
Hopcroft

(a) Initial size 30

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

Transition density (r)

T
im

e
to

 c
al

cu
la

te
 m

D
F

A
 (

m
s)

Hopcroft and Brzozowski‘s algorithms (|S| = 40, f = 0.5)

Brzozowski
Hopcroft

(b) Initial size 40

Fig. 6. Comparison between Hopcroft’s and Brzozowski’s algorithms for fixedf = 0.5

Similar to the approach of [36], we also investigated how Hopcroft’s and Brzozow-
ski’s algorithms scale with automaton size. We fixed the acceptance density atf = 0.5,
because its effect on the running time is less dramatic than that of the transition den-
sity. The results (Figure 7) indicate that none of the algorithms scales better than the
other over the whole landscape. Brzozowski’s algorithm hasan edge over Hopcroft’s for
r ≥ 1.5, and the opposite is true for the lower densities. At the peak, Hopcroft’s algo-
rithm scales exponentially, but generally the algorithms scale subexponentially. Again
we see that Hopcroft’s algorithm is better at low densities,while Brzozowski’s algo-
rithm is better at high densities.

5 10 15 20 25 30 35
10

0

10
1

10
2

10
3

10
4

Initial size of the automaton (|S|)

T
im

e
to

 c
an

on
iz

e
(m

s)
(lo

g
sc

al
e)

Comparison of Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Hopcroft, r = 1.0
Hopcroft, r = 1.25
Brzozowski, r = 1.0
Brzozowski, r = 1.25

5 10 15 20 25 30 35
10

0

10
1

10
2

Initial size of the automaton (|S|)

T
im

e
to

 c
an

on
iz

e
(m

s)
(lo

g
sc

al
e)

Comparison of Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Hopcroft, r = 1.5
Hopcroft, r = 1.75
Hopcroft, r = 2.0
Brzozowski, r = 1.5
Brzozowski, r = 1.75
Brzozowski, r = 2.0

Fig. 7. Scaling comparison of Hopcroft and Brzozowski’s algorithms

4 Universality

The straightforward way to check for universality of an NFAA = (Σ, S, S0, ρ, F) is to
determinize it, using the subset construction, and then verify that every reachable state
is accepting and that the transition relation is total. We optimize this by modifying the
subset construction algorithm slightly. When a “next” state is generated, the algorithm
first checks whether it is accepting, and if this is not the case the algorithm terminates
early, indicating that the automaton is not universal.

An alternative approach is to view the determinized automatonAd = (Σ, 2S, {S0}, ρd, Fd),
with Fd = {T ∈ 2S : T ∩ F 6= ∅} and ρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈ S :
ρ(t1, a, t2) for somet1 ∈ T1}, as asequential circuit(SC). An SC [22] is a tuple
(I, L, δ, α) whereI is a set of input signals,L is a set of registers,δ : 2L × 2I → 2L

is the next-state function, describing the next assignmentof the of the registers given
their current assignment and an input assignment, andα ∈ 2L is an initial assignment
to the registers. (Usually we also have output signals and anoutput function, but this
is not needed here.) The alphabetΣ = {0, 1} corresponds here to a single input sig-
nal. The state setS can be viewed as the register setL; a set in2S can be viewed as a
Boolean assignment to the state inS, using the duality between sets and their charac-
teristic functions. The intuition is that every state inS can be viewed as a register that
is either “active” or “inactive”. The initial states0 correspond to an initial assignment,
assigning1 to s0 and0 to all other registers, as onlys0 is active, initially. Finally, the
transition relationρd, which is really a function, correspond to the next-state function,
whereδ(P, σ) = Q whenρd(P, a, Q) holds (note that we view here subsets ofS as
Boolean assignments toS). Universality ofA now correspond to an invariance prop-
erty ofAd, expressed in CTL asAG(

∨
s∈F s). Thus, we can check universality using a

model checker.
In our evaluation we used two symbolic model checkers, both referred to as SMV:

Cadence SMV [33] and NuSMV [15]. SMV is based on binary decision diagrams
(BDDs) [8, 9], which provide a canonical representation forBoolean functions. A BDD
is a rooted, directed acyclic graph with one or two terminal nodes labeled0 or 1, and
a set of variable nodes of out-degree two. The variables respect a given linear order
on all paths from the root to a leaf. Each path represents an assignment to each of the
variables on the path. Since there can be exponentially morepaths than vertices and
edges, BDDs are often substantially more compact explicit representations, and have
been used successfully in the verification of complex circuits [12]. To encode the SC
for Ad in SMV, we use the states inS as state variables, corresponding to the regis-
ters. The SC is defined via theinit andnext statements:init(s) = 1 iff s = s0, and
next(s) = 1 iff

∨
ρ(t,σ,s) t, when the input isσ; we provide an example in Figure 8. We

use a Boolean array to encode the registers, and a variableinput to encode the input
symbol. The specification in the example is the universalityproperty. The NFAA is
universal iff the sequential circuit corresponding toAd satisfies the specification.

In order to improve the running time of the model checkers we considered several
optimization techniques.

Sloppy vs. fussy encodingIt turns out that to check universality we need not determinize
A. Instead, we can construct the non-deterministic automatonAn = (Σ, 2S, {S0}, ρn, Fd),

1

0

1

0

0

1
0

1 2

3

MODULE main
VAR

state: array 0..3 of boolean; input: boolean;

ASSIGN
init(state[0]) := 1; init(state[1]) := 0;
init(state[2]) := 0; init(state[3]) := 0;

next(state[0]) := ((state[1] & input) |
(state[2] & ! input) | (state[3] & input));

next(state[1]) := (state[2] & ! input);
next(state[2]) := (state[3] & input);
next(state[3]) := (state[0] & ! input);

SPEC
AG (state[0] | state[3]);

Fig. 8. A simple automaton and its encoding in SMV

with Fd = {T ∈ 2S : T ∩ F 6= ∅} andρn(T1, a, T2) ⇐⇒ T2 ⊆ {t2 ∈ S :
ρ(t1, a, t2) for somet1 ∈ T1}. It is easy to see thatA is universal iff every reach-
able state inAn is accepting. Intuitively,An allows more states to be active in the
subset construction. UnlikeAd, we cannot viewAn as an SC, since it is not determin-
istic. SMV, however, can also model non-deterministic systems. Rather than require
that next(s) = 1 iff

∨
ρ(t,σ,s) t, when the input isσ, we requite thatnext(s) = 1 if

∨
ρ(t,σ,s) t, when the input isσ (the “iff” is replaced by “if”). We refer to the initial

encoding asfussyand to this encoding assloppy. In an explicit construction the sloppy
approach would generate more subsets, but in a symbolic approach the sloppy approach
uses “looser” logical constraints (trans, rather thanassign), which might result in
smaller BDDs. See Figure 9 for a sloppy encoding of the previous example.

...
TRANS

((state[1] & input) | (state[2] & (! input)) |
(state[3] & input)) -> next(state[0]);

(state[2] & (! input)) -> next(state[1]);

(state[3] & input) -> next(state[2]);

(state[0] & (! input)) -> next(state[3]);

Fig. 9. Sloppy encoding of the automaton in Figure 8

Monolithic vs. conjunctive partitioningIn [11] Burch, Clarke and Long suggest an
optimization of the representation of the transition relation of a sequential circuit. They
note that the transition relation is the conjunction of several small relations, and the
size of the BDD representing the entire transition relationmay grow as the product of
the sizes of the individual parts. This encoding is calledmonolithic. The method that
Burch et al. suggest represents the transition relation by a list of the parts, which are
implicitly conjuncted. Burchet al.call their methodconjunctive partitioning, which has
since then become the default encoding in NuSMV and Cadence SMV.

Conjunctive partitioning introduces an overhead when calculating the set of states
reachable in the next step. The set of transitions has to be considered in some order, and
choosing a good order is non-trivial, because each individual transition may depend on
many variables. In large systems the overhead is negligiblecompared to the advantage

of using small BDDs [11]. However, in our models the transitions are fairly simple, and
it is not immediately clear whether monolithic encoding is abetter choice.

Variable ordering When using BDDs, it is crucial to select a good order of the vari-
ables. Finding an optimal order is itself a hard problem, so one has to resort to different
heuristics. The default order in NuSMV corresponds to the order in which the variables
are first declared; in Cadence SMV it is based on some internalheuristic. The orders that
we considered included the default order, and the orders given by three heuristics that
are studied with respect to tree decompositions: Maximum Cardinality Search (MCS),
LEXP and LEXM [27]. In our experiments MCS proved to be betterthan LEXP and
LEXM, so we will only report the results for MCS and the default order.

In order to apply MCS we view the automaton as a graph whose nodes are the
states, and in which two nodes are connected iff there is a transition between them.
MCS orders [38] the vertices from 1 to|S| according to the following rule: The first
node is chosen arbitrarily. From this point on, a node that isadjacent to a maximal
number of already selected vertices is selected next, and soon. Ties can be broken in
various ways (eg. minimize the degree to unselected nodes [3] or maximize it [5], or
select one at random), but none leads to a significant speedup. For our experiments,
when we used MCS we broke ties by minimizing the degree to the unselected nodes.

Traversal In our model the safety condition is of the formAGα: i.e.α is a property that
we want to hold in all reachable states. CTL formulas are normally evaluated backwards
in NuSMV [16], via the greatest fixpoint characterization:

AGα = gfpZ [α ∧ AXZ]

This approach (“backwards traversal”) can be sometimes quite inefficient. As an opti-
mization (only forAGα formulas), NuSMV supports another strategy: calculate theset
of reachable states, and verify that they satisfy the property α (“forward traversal”). In
Cadence SMV, forward traversal is the default mode, but backwards traversal is also
available. We considered forward and backwards traversal for both tools.

Evaluating The Symbolic ApproachGenerally, running times of the various symbolic
approaches increase with both transition density and acceptance density. In Figure 10
we present the effect of the first three optimizations (for this set of experiments forward
traversal direction was used) to the running times of NuSMV and Cadence SMV for
fixed size automata. No single configuration gives the best performance throughout
the range of transition density. Nevertheless, we can make several conclusions about
the individual optimizations. Ordering the variables withMCS is always better than
using the default ordering. Monolithic encoding is better than conjunctive partitioning
for low transition density; the threshold varies dependingon the tool and the choices
for the other optimizations. Sloppy encoding is better thanfussy when used together
with monolithic encoding; the opposite is true when using conjunctive partitioning. The
only exception to the latter is sloppy monolithic encoding in NuSMV, which gives the
worst performance. Overall, for both tools, the best performance is achieved by using
monolithic-MCS-sloppyup to r = 1.3, andconjunctive-MCS-⋆ thereafter (the results
for sloppy and fussy are too close to call here).

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
gs

ca
le

)
NuSMV (|S| = 30, f = 0.5)

Mono−Default−Sloppy
Mono−Default−Fussy
Mono−MCS−Sloppy
Mono−MCS−Fussy
Conj−Default−Sloppy
Conj−Default−Fussy
Conj−MCS−Sloppy
Conj−MCS−Fussy

(a) NuSMV

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
gs

ca
le

)

Cadence SMV (|S| = 30, f = 0.5)

Mono−Default−Sloppy
Mono−Default−Fussy
Mono−MCS−Sloppy
Mono−MCS−Fussy
Conj−Default−Sloppy
Conj−Default−Fussy
Conj−MCS−Sloppy
Conj−MCS−Fussy

(b) Cadence SMV

Fig. 10. Optimizing the running times of NuSMV and Cadence SMV

In order to fine-tune the two tools we next looked at their scaling performance (Fig-
ure 11). We considered automata withf = 0.9 andr = 2.5 (our choice is explained
later). We fixed the transition encoding to conjunctive and variable order to MCS, and
varied traversal direction and sloppy vs. fussy encoding. For both tools backwards
traversal is the better choice, not surprisingly, since90% of the states are accepting
and a fixed point is achieved very quickly. When using backwards traversal, sloppy en-
coding gives better performance, and the opposite is true when using forward traversal.
Overall, the best scaling is achieved by Cadence SMV with backwards traversal and
sloppy encoding, and this is what we used for comparison withthe explicit approach.

Comparing The Explicit and Symbolic ApproachesWe compared the performance of
the explicit and the symbolic approaches on a set of random automata with a fixed initial
size. For each data point we took the median of all execution times (200 sample points).
Our results indicate that for small automata the explicit algorithm is much faster than the
symbolic. In fact, even when using automata with initial size |S| = 100, the median of
the execution time is 0 almost everywhere on the landscape (see Figure 12). In contrast,
even for automata with|S| = 30 the symbolic algorithm takes non-negligible time
(Figure 10).

As before, we also investigated which algorithm scales better as we increase the
initial size of the automata. For this set of experiments, wefixed the densities of the
final states and the transitions atf = 0.9 andr = 2.5 (i.e. on of the furthest edge of
the landscape). We chose this point because almost everywhere else the median exe-
cution time of the explicit algorithm is 0 for small automata. We varied the initial size
of the automata between 5 and 600. The results are presented on Figure 13. The sym-
bolic algorithm (Cadence SMV) is quite slower than the explicit throughout the whole
range. All algorithms scale sub-exponentially; however, the symbolic algorithm scales

10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

Initial size of the automaton (|S|)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
g

sc
al

e)

Comparing the scaling of NuSMV and Cadence SMV (f = 0.9, r = 2.5)

Cadence−Sloppy−Backwd
Cadence−Sloppy−Forward
Cadence−Fussy−Backwd
Cadence−Fussy−Forward
NuSMV−Sloppy−Backwd
NuSMV−Sloppy−Forward
NuSMV−Fussy−Backwd
NuSMV−Fussy−Forward

Fig. 11. Optimizing NuSMV and Cadence SMV (scaling)

0.2
0.4

0.6
0.8

1

0.5
1

1.5
2

2.5
0

50

100

150
200

250

300
350

400

Density of final states (f)

Checking for universality with the explicit algorithm (|S| = 100)

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

Fig. 12. Median time to check for universality with the explicit algorithm

2O(
√

|S|) worse than the explicit one (Figure 13(b)). We also present data for NuSMV,
which scales the worst of the three algorithms and is the slowest for|S| > 20. We note
that at lower transition and/or acceptance density, the advantage of the explicit approach
over the symbolic approach is much more pronounced.

5 Discussion

In this paper we proposed a probabilistic benchmark for testing automata-theoretic al-
gorithms. We showed that in this model Hopcroft’s and Brzozowski’s canonization al-
gorithms are incomparable, each having an advantage in a certain region of the model.
In contrast, the advantage of the explicit approach to universality over the symbolic
approach is quite clear.

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

10
5

Initial size of the automaton (|S|)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
g

sc
al

e)
Scaling of the symbolic and the explicit algorithms (f = 0.9, r = 2.5)

Explicit algorithm
NuSMV (optimized)
Cadence SMV (optimized)

(a) Logarithmic plot

10
1

10
2

10
1

10
2

10
3

10
4

Scaling of the symbolic and the explicit algorithms (f = 0.9, r = 2.5)

Initial size of the automaton (|S|) (log scale)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

 (
lo

g
sc

al
e) Explicit algorithm

NuSMV (optimized)
Cadence SMV (optimized)

(b) Log-log plot

Fig. 13. Scaling comparison of the symbolic and the explicit algorithms

An obvious question to raise is how “realistic” our probabilistic model is. There
is no obvious answer to this question; partly because we lackrealistic benchmarks of
finite automata. Since automata represent finite-state control, it is hard to see why ran-
dom directed graphs with linear density do not provide a realistic model. Hopefully,
with the recent increase in popularity of finite-state formalisms in industrial temporal
property specification languages (c.f., [4, 6]), such benchmarks will become available in
the not-too-far future, enabling us to evaluate our findingson such benchmarks. While
our results are purely empirical, as the lack of success withfully analyzing related prob-
abilistic models indicates (cf. [19, 18, 2]), providing rigorous proof for our qualitative
observations may be a very challenging task. At any rate, gaining a deeper understand-
ing why one method is better than another method is an important challenge. Another
research direction is to consider minimization on the fly, as, for example, in [30].

Our most surprising result, we think, is the superiority of the explicit approach to
universality over the symbolic approach. This runs againstthe conventional wisdom
in verification [12]. One may wonder whether the reason for this is the fact that our
sequential circuits can be viewed as consisting of “pure control”, with no data compo-
nent, unlike typical hardware designs, which combine control and data. This suggests
that perhaps in model checking such designs, control and data ought to be handled by
different techniques. Another possible explanation is that the sequential circuits corre-
sponding to the determinized NFA have registers with large fan-in, while realistic cir-
cuits typically have small-fan-in registers. We believe that these point deserve further
study.

In future work we plan to extend the comparison between the explicit and symbolic
approaches to universality to automata on infinite words, a problem of very direct rel-
evance to computer-aided verification [29]. It is known thatcomplementation of such
automata is quite intricate [29], challenging both explicit and symbolic implementation.

Acknowledgments. We are grateful to Andreas Podelski for raising the question of
comparing Hopcroft’s and Brzozowski’s algorithms.

References

1. Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfstal. FoCs - automatic gener-
ation of simulation checkers from formal specifications. InCAV, Proc. 12th International
Conference, volume 1855 ofLNCS, pages 538–542. Springer-Verlag, 2000.

2. D. Achlioptas. Setting two variables at a time yields a newlower bound for random 3-SAT.
In Proc. of 32nd Annual ACM Symposium on Theory of Computing, 2000.

3. A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs: The plot thickens
further. InPrinciples and Practice of Constraint Programming, pages 121–136, 2001.

4. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. TheForSpec temporal logic: A
new temporal property-specification logic. InProc. 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 2280 ofLNCS, pages
296–211, Grenoble, France, April 2002. Springer-Verlag.

5. D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation methodol-
ogy. InProc. 31st Design Automation Conference, pages 596–602. IEEE Computer Society,
1994.

6. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze,and Y. Rodeh. The temporal
logic sugar. InProc. 13th International Conference on Computer Aided Verification, volume
2102 ofLNCS, pages 363–367, Paris, France, July 2001. Springer-Verlag.

7. B. Bollobas.Random Graphs. Cambridge University Press, January 2001.
8. R.E. Bryant. Graph-based algorithms for boolean-function manipulation.IEEE Trans. on

Computers, C-35(8), 1986.
9. R.E. Bryant. Symbolic boolean manipulation with orderedbinary-decision diagrams.ACM

Computing Surveys, 24(3):293–318, 1992.
10. J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events.

In Mathematical theory of Automata, pages 529–561. Polytechnic Press, Polytechnic Insti-
tute of Brooklyn, N.Y., 1962. Volume 12 of MRI Symposia Series.

11. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. InProc. IFIP TC10/WG 10.5 International Conference on Very Large
Scale Integration, pages 49–58, 1991.

12. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond.Information and Computation, 98(2):142–170, June 1992.

13. Cadence. SMV. http://www.cadence.com/company/cadence labs research.html.
14. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. InIJCAI

’91, pages 331–337, 1991.
15. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002), volume 2404
of LNCS, Copenhagen, Denmark, July 2002. Springer.

16. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic model
checker. International Journal on Software Tools for Technology Transfer, 2(4):410–425,
2000.

17. E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
18. Olivier Dubois, Yacine Boufkhad, and Jacques Mandler. Typical random 3-SAT formulae

and the satisfiability threshold. InSODA, pages 126–127, 2000.

19. E. Friedgut. Necessary and sufficient conditions for sharp thresholds of graph properties,
and the k-SAT problem.Journal of the A.M.S., 12:1017–1054, 1999.

20. James Glenn and William I. Gasarch. Implementing WS1S via finite automata: Performance
issues. InWorkshop on Implementing Automata, pages 75–86, 1997.

21. D. Gries. Describing an algorithm by Hopcroft.Acta Informatica, 2:97–109, 1973.
22. G.D. Hachtel and F. Somenzi.Logic Synthesis and Verification Algorithms. Kluwer Aca-

demic Publishers, Norwell, Massachusetts, 1996.
23. J. E. Hopcroft. Ann log n algorithm for minimizing the states in a finite automaton. In

Z. Kohavi, editor,The Theory of Machines and Computations, pages 189–196. Academic
Press, 1971.

24. J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

25. D. A. Huffman. The synthesis of sequential switching circuits. In E. F. Moore, editor,
Sequential Machines: Selected Papers. Addison-Wesley, 1964.

26. R. M. Karp. The transitive closure of a random digraph.Random Struct. Algorithms, 1(1):73–
94, 1990.

27. A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van Hoesel. Treewidth: Computational
experiments. ZIB-Report 01–38, Konrad-Zuse-Zentrum fürInformationstechnik Berlin,
Berlin, Germany, 2001. Also available as technical report UU-CS-2001-49 (Utrecht Uni-
versity) and research memorandum 02/001 (Universiteit Maastricht).

28. O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal methods in
System Design, 19(3):291–314, November 2001.

29. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.ACM Trans.
on Computational Logic, 2001(2):408–429, July 2001.

30. D. Lee and M. Yannakakis. Online minimization of transition systems. InProc. 24th ACM
Symp. on Theory of Computing, pages 264–274, Victoria, May 1992.

31. P. Linz. An introduction to formal languages and automata. D. C. Heath and Company,
Lexington, MA, USA, 1990.

32. A. Møller. dk.brics.automaton. http://www.brics.dk/automaton/, 2004.
33. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
34. A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars, and formal

systems. InProc. 12th IEEE Symp. on Switching and Automata Theory, pages 188–191,
1971.

35. A.R. Meyer and L.J. Stockmeyer. The equivalence problemfor regular expressions with
squaring requires exponential time. InProc. 13th IEEE Symp. on Switching and Automata
Theory, pages 125–129, 1972.

36. G. Pan and M.Y. Vardi. Search vs. symbolic techniques in satisfiability solving. InSAT 2004,
LNCS, Aalborg, May 2004. Springer-Verlag.

37. Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability
problems.Artificial Intelligence, 81(1-2):17–29, 1996.

38. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.SIAM J. Comput.,
13(3):566–579, 1984.

39. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cambridge, June
1986.

40. B. W. Watson. A taxonomy of finite automata minimization algorithmes. Computing Science
Note 93/44, Eindhoven University of Technology, The Netherlands, 1993.

41. B. W. Watson. Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis,
Eindhoven University of Technology, the Netherlands, 1995.

