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Abstract. The logic FO(ID) extends classical first order logic with
inductive definitions. This paper studies the satisifiability problem for
PC(ID), its propositional fragment. We develop a framework for model
generation in this logic, present an algorithm and prove its correctness.
As FO(ID) is an integration of classical logic and logic programming,
our algorithm integrates techniques from SAT and ASP. We report on a
prototype system, called MIDL, experimentally validating our approach.

1 Introduction

The logic FO(ID), or Inductive Definition Logic (ID-logic) [7], extends classical
first order logic (FO) with a language primitive that allows a uniform repre-
sentation of inductive definitions. In general, inductive definitions cannot be
represented in first order logic (FO). The semantics of this primitive is based on
the well-founded semantics of logic programming [28]; indeed, as argued in [6,
8], it correctly formalizes the semantics of inductive definitions.

While definitions are common in mathematics, they are also crucial in declar-
ative Knowledge Representation. Not only non-inductive definitions are frequent
in common-sense reasoning as argued in the seminal paper [2], also inductive def-
initions are. In [10], the situation calculus is given a very natural and general
representation as an iterated inductive definition in the well-ordered set of situa-
tions and [16] observes that inductive definitions are present in many applications
of Answer Set Programming (ASP) [12]. In short, definitions are a distinctive
and important form of knowledge that can be naturally represented in FO(ID).

The goal of this paper is to present algorithms to solve SAT(PC(ID)), the
satisfiability problem for PC(ID)!, the propositional fragment of FO(ID), or
equivalently, generate models for theories in this fragment. This problem is an
extension of SAT, the satisfiability problem of propositional CNF formulas. Cur-
rent SAT solvers exhibit impressive performance on many industrial instances.
Unfortunately, SAT is a rather poor modeling language, and substantial effort is
often required to encode a problem. PC(ID) is a major enhancement of the ex-
pressivity [19]. Solvers for SAT(PC(ID)) are also strongly related to ASP solvers
such as Smodels [21] and DLV [4]. These solvers use the fixpoint operator of the
well-founded semantics as a boolean propagation mechanism for rule sets.
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Viable approaches for building a solver for SAT(PC(ID)) are:

1. A native approach that integrates inference techniques for inductive defini-
tions with SAT inference techniques.

2. Mapping PC(ID) theories to CNF theories and applying off-the-shelf SAT
solvers as in [23].

3. Mapping PC(ID) theories to equivalent general logic programs and then
applying off-the-shelf ASP solvers. Using results from [16], it is easy to ac-
complish, but it completely bypasses PC(ID)’s relation with SAT.

The first approach, explored in this paper, is the most promising in the
long run. It will improve our understanding of how to compute with inductive
definitions and is best suited to integrate language extensions such as aggregates,
constraints and open functions.

Despite the semantical differences, the computational tasks of our algorithm
are very similar to those of algorithms like Smodels’ Expand [21] and DLV’s
DetCons [4]. Its novelty lies in the use of justification semantics [9], which offers
a different view on the computational task involved:

— One can locally test whether the well-founded operator is required.
— One can use a watched literal technique for propagations, very similar to the
Two Watched Literal technique used in SAT [20].

We introduce PC(ID) in Section 2 and the semantic foundations of our al-
gorithm in Section 3. We present the algorithm and argue its correctness in
Section 4. Its implementation, MIDL, and a comparison with other approaches
are described in Section 5. We finish with conclusions and related work.

2 Preliminaries

2.1 PC(ID)

The semantics of FO(ID) ([7]) is here redefined for the propositional fragment
PC(ID). A vocabulary X' is a set of atom symbols. A definition D is a set of
rules of the form (P « ¢), where P € X is called the head of the rule, and the
body of the rule, ¢, is a propositional formula in X'. We denote by Def (D) the
set of atoms that appear in the heads of the rules of D. The set X'\ Def(D) is
called the set of open symbols of D and is denoted by Open(D). A literal is an
atom P or its negation —P; it is defined if P € Def(D), otherwise it is open. A
PC(ID) theory T in X is a set of propositional formulas and definitions in X.

A three-valued X-interpretation I is a function from X' to the set {f,u,t}
of truth values; a two-valued interpretation maps to {f, ¢} instead. Truth values
are ordered by the truth order, defined as f < w < t, and the precision order,
given by u <, t and u <, f. We also have fl=t,ul=wandt ' =f We
denote the projection of I on the atoms in a set S by [|s.

The semantics can be defined by means of the well-founded semantics [28]:
Given a definition D and an interpretation I|open(py of the open atoms of D,



there is a unique well-founded model of D extending I |Open( D), Which we denote
by wfmp (I|open(p))- An interpretation I is a model of definition D, denoted I |=
D, iff I is two-valued and I = wfmp (I|open(p)); I is a model of a PC(ID) theory
T iff I is two-valued and is a model of every definition and every propositional
formula in T'. An equivalent characterisation is provided by Corollary 1 below.

Ezample 1. Consider the definition Dy = {P <« Q}. Then P € Def(D;),Q €
Open(D1). The models of Dy are {P,Q} and ). They are also the models of
Dy = {Q « P}. Hence, Ty = {{P «— Q},{Q < P}} which consists of two
definitions has models { P, @} and 0. However, T = {{P <« Q,Q < P}} consists
of a single definition and has only () as model.

The theory T3 = {{P <« Q},{P <}, ~Q V R} has two definitions for P and
one propositional formula; the first definition has two models (as D;), while the
second one has only {P} as its model and {P, @, R} is the only model of T5.

2.2 MIDL normal form

Definition 1 (MIDL normal form). A PC(ID) theory T is in MIDL normal
form iff T = CU{D}UE where C is a set of clauses without defined literals,
FE is a set of equivalences P = Q) where P is an open and Q) a defined atom,
and D is a definition (a set of rules), with for each atom @Q in Def(D) exactly
one rule with @ in the head. Moreover for all rules R in D, R is in the form
Q—LiAN...NL, orQ« LV ...VL,, where n > 1 and L; are literals.

Ezample 2. T = {{PP4+ — Q,PPs —} -QV R, P = PP+ P = PPs} s
the MIDL normal form equivalent to T3 in Example 1: the models of Tl
restricted to T3’s vocabulary, are the models of T;.

Defined atoms whose body is a disjunction respectively conjunction are called
disjunctive respectively conjunctive atoms. Let S be a set of literals; then we
abbreviate A\, s L by AS and \/, s L by V S.

A straightforward transformation (time linear in the size of the input) that
maps a PC(ID) theory T to an equivalent theory in MIDL normal form by
introducing new atoms, is given in [17]. As the above example shows, the head
of a definition P « ... becomes a defined atom PP which is linked to the original
atom P through an equivalence.

3 Semantic Background

This section introduces semantical concepts borrowed from [9].

Definition 2 (Direct justification). Let D be a definition in MIDL normal
form and Jg a set of literals. Jy is a direct justification for a defined atom P iff:

— either P«— L1 AN...ANL, € D and Jg = {L1,...,L,};
—orP—LiV...VL, €D and Jg={L;} for somei€l...n.



Jyq is a direct justification for a defined literal ~P iff:
— either P«— L1 N...ANL, € D and Jg = {—L;} for somei€1l...n;
—orP—ILiV..VL,€Dand Jg={-Ly,...,~L,}.

Ezample 3. Consider D1 = {P «— Q A —R,Q «— =PV R}. The set {Q, R} is
a direct justification for P and {P, - R} for =Q; both {—=P} and {R} are direct
justifications for @ and both {—-Q} and {R} for —P.

Consider Dy = {P «— Q,Q «— PV R,R «— —~P A S}. Though {Q} is a direct
justification for P and {P} for @, the truth of P doesn’t justify the truth of @
or vice versa, as illustrated by the model wfmp({S¥}) = {Pf,QF, R Sf}.

A direct justification is insufficient to infer the truth of a literal in the well-
founded model. We need to consider graphs of direct justifications. A leaf of a
graph is a node without outgoing edges.

Definition 3 (Justification). A justification J of a definition in MIDL normal
form is a directed graph where the nodes are literals, such that for each internal
node L, L is a defined literal and the set of its children, Chy(L), is a direct
justification for L. A justification is total if none of its leaves are defined literals.

Ezxample 4. Dy from Example 3 has many justifications. Examples are:

P P Q R—>5 -P
Jo=0.5=|0)]. 7= T j/ = 1)
Q ~R<—-Q __-P -Q — R

Here Jy, J1 and Js are total, but J3 is not since =R is a defined leaf.

As the example shows, justifications can contain cycles. We distinguish be-
tween positive. negative and mized cycles. They consist of repectively only posi-
tive (as in Jy), only negative (as in J3) and both kind of literals (as in J3).

A justification is an argument for the truth value of its literals. Its value
depends on the structure of the justification and the truth value of its leaves.

Definition 4 (V;(J), the value of a justification). Let J be a justification,
and I an interpretation.

— Vi(J) = f if J contains either a leaf L with I(L) = f or a positive cycle.

- Vi(J) =uw if Vi(J) # f and J contains either a leaf L with I(L) = w or a
mized cycle (or both).

— Vi(J) =t otherwise (all leaves are t and cycles, if any, are negative).

Ezample 5. Continuing Example 4. Independent of I, Vr(Jy) = t and, because
Ji has a positive cycle, Vr(J1) = f. Now, let I = {Pt,Qt, Rf,St}. Vi(J2) = u,
indeed, although the only leaf (S) is ¢, Jo contains a mixed cycle; and finally
Vi (J3) = t, because the only leaf is ¢t and the only cycle is negative.

The value of a total justification J depends only on its cycles and the in-
terpretation of its open symbols. Jr, the restriction of J to L, denotes the
subgraph with L as root. A defined literal L is justified in a justification J if J,



is non-empty and total. The supported value SVi(L) of a defined literal L in an
interpretation I is the maximal value in the truth order of its justifications i.e.,
SVi(L) = max<{Vr(J)|J is a justification and L is justified in J}.

It was proven in [9] that in the well-founded model M, the interpretation
of defined literals agrees with the supported values, i.e., M (L) = SV (L). Fur-
thermore, [5] proved that SV (L) = SVa(—L)~! for any defined literal L.

Ezample 6. Continuing from Example 4, let I’ be an interpretation with I'(S) =
f- Then SV, (P) = f, since for any justification J in which P is justified, either
Sisaleafin Jp, or Jp = J;. And indeed, let J’ be the total justification obtained
from J3 by adding the edge (R, —S); then SV (=P) > Vi (J.p) =V (J') =t.

Hence one can compute the well-founded model by computing for each literal
its supported value. However, searching over all justifications for the best one is
infeasible. Fortunately, attention can be restricted to a subclass of justifications.

Definition 5 ((strict) support, positive residue). Let J be a justification
and I an interpretation. J supports I if I(L) <, I(\Ch;(L)) and J strictly
supports I if I(L) = I(A\ Chy(L)) for each internal node L of J.

The positive residue of J in I consists of the atoms that would be strictly
supported if true but are undefined, i.e., I(L) = w and I(\ Ch; (L)) =t.

Definition 6 (Cycle-safe). Let J be a justification and I an interpretation. J
is cycle-safe in I if J contains neither mized cycles with literals that are true in
I nor positive cycles.

Definition 7 (v-total). Let J be a justification, I an interpretation, and v a
truth value, i.e., v € {f,u,t}. Then J is v-total in I if for each defined literal
L such that I(L) = v, L is justified in J.

Note that if a justification J is f-, u- and t-total w.r.t. an interpretation I,
then J is total, but a total justification might not be f-, u- or ¢t-total w.r.t. any
interpretation, because not every literal occurs in J.

Theorem 1. Let I be an interpretation and J a justification. If the following
conditions hold:

(i1) J strictly supports I;
(i2) J is cycle-safe in I;
(i3) J is t-total in I;

(i4) J is u-total in I,

then for every defined literal L it holds that I(L) = SVi(L).
Corollary 1. Let I and J satisfy (i1)-(i4). Then wfmp(I|open(py) = I

In the next section we introduce an algorithm that incrementally constructs
and maintains a 3-valued interpretation I and a justification J that satisfy the
conditions (il)-(i4).



1 Initialize I and J (see Section 4.4);
2 while there is an open atom A with I(A) = u do
3 Select open atom A with I(A) = u;
4 Choose S := {A} or § := {—-A};
% Boolean Propagation:
while true do

if S # () then

L Direct_Propagation(I, J,S); % Can initiate backtracking

if there is an L with I(L) = uw and Ch;(L) = 0 then select such a L;
else Break;
10 S = Justify(I, J, L);

© 0w N o wm

11 if I is 2-valued then Return SATISFIABLE;
12 else Backtrack;

Algorithm 1: MIDL(T)

4 Algorithm

4.1 Structure of the algorithm

The progenitor of our algorithm is the DLL algorithm [3], which is also the basis
of most of today’s SAT solvers. The DLL algorithm incrementally constructs an
interpretation I that satisfies an input CNF theory T'. In each stage, a choice
literal is selected and is made true, after which boolean propagation is applied on
the current assignment to infer other true literals. In particular, unit propagation
makes the last non-false literal of a clause true. In case of conflict, backtracking
returns to the last choice point. There, the alternative choice is made.?

Algorithm 1, the backbone of our algorithm is similar to the DLL algorithm.
The input is a PC(ID) theory in MIDL normal form. However, the choice literal
is an open one and boolean propagation is extended to include propagations
according to the well-founded semantics by maintaining a 3-valued assignment I
and a justification J. The aim of Steps 1 and 5 is to establish the conditions (i1)-
(i4), as well as the following invariant:

(i5) For each clause C € T, I(C) > u;

If so, obviously, I is a model when Step 11 returns SATISFIABLE. The “Boolean
Propagation” (Step 5) is the core of the algorithm; it consists of two components:

Direct Propagation The input consists of I and J, the current interpretation
and justification and the set of literals S to be made true. The latter are
made true, unit propagation on the clauses and propagation from body to
head in the rules of the definitions are applied. This establishes the invariants
(i1)-(i3) and (i5) unless a conflict is detected and backtracking is initiated.

2 UNSATISFIABLE is returned when no more backtrackings are possible.



Justify The input consists of the current I and J, and a literal L that violates
invariant (i4) (u-totality) (L is a unknown defined literal that has no justi-
fication). The procedure tries to adjust J into a justification J’ in which all
literals of J} are strictly supported. In case this fails, an unfounded set [28]
is found. The involved atoms must become false, their negation is returned
in the set S for processing by the direct propagation.

The u-totality invariant is satisfied when the while loop exits in Step 9. It
terminates because Direct_Propagation extends the interpretation I and Justify
either reduces the number of unknown defined literals without justification or
finds a unfounded set that leads to an extension of I in the next iteration. Hence:

Theorem 2. Steps 5-10 of Algorithm 1 terminate; when they do via Step 9 then
invariants (i1)-(i5) are satisfied.

4.2 Direct Propagation (Algorithm 2)

The Direct_Propagation algorithm uses the following data structures:

— A data structure dj which associates with each defined literal L a direct
justification of L. While dj(L) is constant for conjunctive atoms and the
negation of disjunctive atom, it consists of a selected literal (the watched
literal) in the other cases.

— A boolean data structure just over defined literals, indicating whether or
not the literal’s direct justification belongs to the current justification?.

The data structures dj and just together determine a justification J in the
following way: if just(L), then Ch;(L) = dj(L); otherwise, Ch;(L) = 0.

Making a literal in S true (Step 5) invalidates invariant (il1); however, the
following weaker invariants are maintained:

(i6) J supports I;
(i7) the positive residue of J in I is a subset of S; for all defined literals
L e S:Vy, (I) =t; ie., there exists a justification for making L true.

From invariant (i7), it follows that there is no positive residue when S be-
comes empty, hence (il) is restored. Also (i2) and (i3) are preserved:

t-totality (i3): A defined literal can only be made true in step Step 5 of Al-
gorithm 2. Therefore, if a defined literal L has I(L) = t, we know by (i6)
that it has children in J that are all also true. By induction over all literals
in Jr, Jr, must be total and invariant (i3) holds.

3 Hence L is justified if just(L) and the literals in Chy(L) are justified
4 This explains both the restriction in Step 3 of Algorithm 1 to open literals, and the
requirement in Definition 1 that the CNF formula cannot contain defined literals.
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Assert: (il), (i2), (i3) and (i5)
repeat
Pop L from S;
if I(L) = f then backtrack (to choice point in Alg. 1);
if I(L) #t then
I(L) :=t;
if L is defined then Push its original on S (using the equivalences);
if L is open then for every clause ¢ of T' containing =L do
L if ¢ has eractly one non-false literal L' then Push L' on S;

for every unknown literal L' for which {L} is a direct justification do
| Jjust(L') :=t; dj(L') :== {L}; Push L' on S ;
for every unknown literal L' such that —~L € dj(L’) do
case L' = P with P — —-LA---€T, or L' = =P with
P—LV---eT
| dj(~L') :={L}; just(~L) := t; Push =L’ on S;
case L' = =P with P+~ LA---€T
if P has no unknown body literals left then Push P on S;
else

Select an unknown body literal L of P; dj(L’) := {~L"};
L just(L') ==t ;
case L' =P with P+~ —-LV---€T
if P has no unknown body literals left then Push =P on S;
else

if P has unknown open or negative body literal L” then

| di(L'):={L"}; just(L') :=t;

else

L Select an unknown defined body atom @

dj(L") :={Q}; just(L’) := f;

until S = (;

Algorithm 2: Direct Propagation(I, J,S)

Cycle-safeness (i2): By (i3) and (i6), true literals are justified, hence taking

a true literal as the direct justiciation of a unknown literal cannot create
a mixed cycle containing true literals.We must also verify that none of the
steps in Algorithm 2 creates a positive cycle in J. Steps 2-10 don’t change
J. In the case of Step 12 Ch;(L') is only changed for a negative literal L',
in the case of Step 14 J is either not changed, or only for a negative literal.
Finally, in the case of Step 18 a positive cycle might be created in J when the
direct justification of the atom P is changed to a positive defined atom. This
is prevented by removing it from J (just(L’) := f implies Ch;(L') := 0).
Consequently, u-totality, invariant (i4), is violated.

Making an unknown literal true can violate invariant (i5) on the clauses.

Step 8 not only performs unit propagation (not all clauses containing =L are



inspected but the Two Watched Literal technique is used) but also restoration
of the invariant. By pushing the last non-false literal on the stack, a violation of
the invariant will finally result in the uncovering of a conflict in Step 3.

Example 7. Let T = {{PP «— QP v A, QP «— PP ARP A =B, RP « (1},
PP=pP QP =Q, RP =R}, I =0, and
PP<—Q"—RP PP _-Q° R
J= J/ | i i e ¢ . Suppose Step 3 in Al-
A -B C -A -C
gorithm 1 chooses § := {B}. Then Step 5 makes B true; subsequently Step 13
changes Ch;(—QP) from =PP to B, and pushes -Q” on S. In a next iteration
of the repeat loop, =QP is made true, and —Q is pushed on S in Step 6.
Suppose that orginally S := {—=A} is chosen. After making A false, the al-
gorithm ends up in Step 23. dj(PP) is changed from A to Q. In addition
just(PP) is set to f. Note that otherwise a positive cycle PP « QP would have
been created.

The Direct_Propagation algorithm can be understood as performing a watched
literal technique for rules, similar to the Two Watched Literals (2WL) technique
in SAT [20]. Every literal in a singleton direct justification (i.e., of a positive
disjunctive atom, or of a negative conjunctive atom) is “watched”: when the
literal becomes false, the corresponding rule has to be visited. When any other
literal in that body becomes false, we don’t need to visit the rule yet, since the
“watched literal” is still unknown and thus might still justify the head.

Interpreting the head of each rule as a second watched literal, it can be seen
that the Direct_Propagation algorithm actually has the same behaviour as the
2WL scheme has on the completion of the definition.

4.3 Justify (Algorithm 3)

Algorithm 3 tries to adjust J so that Jp is a total justification for the unknown
atom P. If dj(P), the direct justification of P, can be added to the current justi-
fication J (by setting Just(P) to t) without creating a positive cycle (involving
P) then we are done. This is tested in Step 1. This is a fairly simple test; how-
ever, if it fails, we will have to adjust the direct justification of P to construct a
total justification.

The next step then is to find an overestimation of all unknown defined atoms
that can potentially contribute to some Jp that is a total justification of P. Note
that the unknown open literals and unknown negative literals can be used as valid
leaves in a total justification, so they need not be included. This overestimation
is computed in Step 2 and stored in £. It consists of all atoms reachable from P
in the dynamic positive dependency graph. The latter is defined as follows:

Definition 8 (dynamic positive dependency graph). Let D be a definition
in MIiDL normal form, I a partial interpretation. The dynamic positive depen-
dency graph of D in I is a directed graph (V, E) of atoms. P € V iff P is defined



Assert: (i), (i2), (i3) and Chy(P) =0
Result: a set of negative literals S;
1 if IsCycleSafe(P, dj) then just(P) := t; Return (;
2 & := FindSet(I, P);
3 B := FindBottomSeeds(/,£); £ := £\ B;
4 while B # () do
5 Select @ from B; B := B\ {Q};
6 for disjunctive atoms Q' € £ such that Q occurs in the body of Q' do
7 L dj(Q") :={Q}; just(Q") := t; Move Q' from & to B;
8 for conjunctive atoms Q' € £ such that dj(—Q’) = {—-Q} do
9 if there exists a Q" € & in the rule of Q' then dj(—Q’) := {-Q"};
10 L else just(Q') :=t; Move Q' from & to B;
11 Return {-Q|Q € £};

Algorithm 3: Justify(I, J, P)

in D and I(P) =u. (P,Q) € E iff {P,Q} CV and P is the head of a rule and

the atom Q) occurs in its body.

Observe that £ not only includes atoms without direct justification such as
P itself, but also atoms with direct justification. In order to justify P, however,
it may be necessary to update the direct justification of such atoms.In other
words, £ is the set of endangered atoms: atoms, whose direct justification may
have to be revised.

In the following steps, the algorithm tries to construct justifications for el-
ements in £. In Step 3, it collects in B elements from &£ that have a trivial
justification:

— conjunctive atoms C' € & which have no elements from £ in their body (the
unknown literals in their body are either open or negative)

— disjunctive atoms D € £ which have an unknown open or negative literal L
in their body (their direct justification is set to that literal).

In the while loop, elements from B are used one by one as seeds to construct
justifications for other elements in £. In Step 6, the direct justification of a
disjunctive atom is set to the seed and in Step 8, a conjunctive atom is justified
and removed from &£ once it has no other body atoms in £. In both steps,
the newly justified atoms are added to the seeds. Observe that negative literals
returned in Step 11 are justified; their direct justifications have been set in Step 9.

When exiting the while loop, all seeds have been used and what remains is
an unfounded set of atoms. They have to be made false, hence their negation is
returned by Justify.

This algorithm is an adaptation from [15] to the context of justifications.

Ezample 8. Continuing from Example 7, where we initially chose S := {—-A}. In
Step 10 of Algorithm 1, Justify(Z, J, Q) will be called. Since dj(Q”) = {PP}
and dj(PP) = {QP}, IsCycleSafe(QP , dj) fails. £ = {PP,QP, RP} is computed

10



in Step 2. In the next step we find B = {RP} and therefore & = {PP QP"},
meaning that R” might still justify PP and/or QP becoming true.

Since RP only occurs in a conjunctive body (QP), but dj(-QP) # {-RP},
RP cannot justify anything, and the while-loop stops. Finally Justify returns
{=PP,-QP} which are the negated literals from the unfounded set {P”,QP}.

Let J be a justification, then we define 7; as the set {L|L € JA Chy(L) =
0 A L is defined}, i.e. the defined leaves of J.

Proposition 1. Let I, J and P satisfy the requirements in Algorithm 3. Let
J' be the justification after termination of Algorithm 8 and S the resulting set.
Then either S is empty and T;0 C Ty \ {P}, or S is not empty and contains
the negated literals from an unfounded set: for each —=Q € S, —Q is justified and
Vio)=t.

Proposition 2. Algorithm 3 preserves invariants (i1), (i2), (i8) and (i5).

These propositions formalize our claim in Section 4.1 that after each call
to Justify either I is constant and the number of unknown defined leaves of J
decreases, or I can be extended by the set returned by Justify.

4.4 Correctness, initialization and optimization issues

Soundness and Completeness. Soundness has been argued in Section 4.1: [ is
a model when Algorithm 1 returns SATISFIABLE. Completeness follows from
the completeness of the DLL algorithm and the observation that our Boolean
Propagation extends unit propagation of DLL and computes after each choice
point the well-founded model extending the interpretation of the open literals.

Initialization. Step 1 of Algorithm 1 should initialize an interpretation I and a
partial justification J such that invariants (i1)-(i5) are satisfied. To do this, we
initialize I to the empty interpretation and dj(L) to an arbitrary direct justifica-
tion of L, for every defined literal. To avoid positive cycles, we set just(P) := f
for every defined atom P. Then the set of unit clauses is collected in S, and the
initialisation executes the same while loop as described in Step 5 of Algorithm 1.

Backtracking. Backtracking restores I and J to some old value, say I, and Jp.
The invariants (i1)-(i5) hold for I, and J. In fact, with exception of (i4), they
also hold for I, and J. Indeed, a conflict arises at a moment when (i2), (i3)
and (i6) all hold. After restoring I to a previous level, for every defined literal
L it holds that I(L) = I(Adj(L)), and hence (i6) still holds, i.e., J supports
I. Since (i1)-(i3), (i5) are sufficient pre-conditions for Boolean Propagation, the
justification need not be restored upon backtracking.
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Endangered Atoms. After an unsuccessful cycle-safety check (which is in fact
optional), the first step of Justify is a call to FindSet to produce &, the set of
atoms endangered by the modified direct justification of P. There are a number
of alternative possibilities. For example, the algorithm would remain correct if
FindSet would return all unknown atoms in De f (D) instead. However, one could
also compute a smaller set of endangered atoms: Those in the strongly connected
component (SCC) of P in the dynamic positive dependency graph. An SCC is
a set S of atoms, such that every element of S can reach every other element
of S via the directed edges. Tarjan’s algorithm searches for strongly connected
components in time linear in the size of the graph [26,22]. Also the SCC of
the static positive dependency graph, which we define as the dynamic positive
dependency graph after the initialization (Step 1 in Algorithm 1), could be used.
The smaller the set of endangered atoms, the faster it is processed. However,
there is a trade-off between the work spent to compute the endangered atoms
and that spent on processing them.

5 Experimental results

We have made a prototype implementation, called MIDL, of the algorithm de-
scribed in the previous section. We have compared MIDL to Smodels [21] and
idsat(zChaff) [23,29]. We have thus a representative for each of the three ap-
proaches mentioned in Section 1. Note that the input to Smodels is handcoded
and hence behaves possibly better than what one would obtain by an automatic
mapping from PC(ID) to ASP. We used two classes of problems: N-queens and
Hamiltonian cycles®. All the experiments were run on 863 MHz P-III with 254
MB of RAM. In Table 1 timings to find the first model (averaged over 5 runs)
are given in seconds.

Since MIDL doesn’t enjoy the fine-tuned optimizations of a state of the art
SAT or ASP solver, we don’t expect comparable effiencies. Most notably, MIDL’s
data structures are not yet minimized, which can be expected to lead to serious
losses in cache usage. Also its heuristics are very crude.

Indeed, the results show poor scaling. However, observe that MIDL outper-
forms the other solvers on some of the smaller problems. Remarkably, zChaff
cannot cope with several Hamiltonian cycle problems; as they contain a lot of
induction, idsat increased the size of these problems 20-fold. This confirms the
usefulness of our native approach with respect to a translation to SAT. For an
important class of problems, MIDL is currently the best PC(ID) model generator.

In Table 2 we compare timings®, the total number of atoms found to be in
an unfounded set (U) and the total number of endangered atoms considered (E)
for some variants of MiDL: in MIDL- and MIDL SCC-, the optional Step 1 of

® We denote the Hamiltonian cycle problems by “H-#vertices- #nodes”. Encodings are
taken from http://asparagus.cs.uni-potsdam.de/; randomly generated graphs
were used.

5 To save space, we've selected but a few example problems; other problems exhibit
the same behaviour.
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ML MipL- MipL. MipL
SCC SCC-
U (1427 1461 1022 1433
E 4570 20327 2535 11363
time|0.32 034 3.52  1.57
U (1933 2013 474 1976
E |10567 116186 2708 62460
time|1.97  2.87 1.20 3.62
U |248 283 112 179
E 1112 6573 785 4435
time|0.12 0.17 0.25 0.24
U 1209 231 85 180
E 2002 31618 2031 22975
time|0.18 1.70 032 1.77
Table 2. Comparison of unfounded set sizes
(U) vs. number of “endangered atoms” (E) and
timings (sec) for different variants of MIDL

MibpL idsat+zCh Smod.
9-queens 0.08 0.564+0.02 0.05
11-queens| 1.49 0.7940.21 0.18 H-20-
13-queens| 10.77 1.184-0.13 0.43 200
15-queens|296.91 1.67+0.16 1.85
H-20-200 | 0.32 61.194+-7.62 0.10 H-30-
H-25-200 | 0.06 96.54-82.2  0.10 200
H-30-200 | 1.97 98.5+137 0.13
H-35-200 | 3.65 H#+# 0.18 H-20-
H-20-400 | 0.12 72.87+# 0.35 400
H-25-400 | 0.20 128.0+# 0.55
H-30-400 | 0.18 209.2+# 0.56 H-30-
H-35-400 # #+4# 0.87 400
Table 1. Timings (sec) of MIDL,
idsat wusing zChaff, and Smodels.
# = >10min.

Algorithm 3 is disabled, in MiDL SCC and MIDL SCC- the FindSet procedure
returns the SCC of the dynamic positive dependency graph, as described in
Section 4.4. The first important observation is that the cycle-safety check almost
consistently yields faster results. A second observation is that MIDL SCC is
doing more intelligent work: it uses less endangered atoms, and it also finds
much less unfounded sets, i.e., finds falsity of atoms through Direct Propagation
more often. Still, MIDL outperforms MIDL SCC, suggesting that a more careful
implementation that removes some overhead of the SCC computation might be
beneficial.

6 Conclusions, related and future work

This work is one of the first attempts to build a SAT(PC(ID)) system. We have
chosen for a direct implementation, in contrast to a mapping to ASP, or to
propositional logic, as was done in [23]. The latter approach is similar to ASP
systems such as ASSAT [14] and Cmodels [13].

Despite semantical differences between PC(ID) and ASP, the algorithms pre-
sented here share a lot of structure with those of Smodels and DLV. The main
novelties of our approach come through the use of justifications:

— this enables us to do the beneficial cycle-safety check;

— it integrates nicely with a watched literal technique for rules;

— the justification graph can be seen as a straightforward extension of the
implication graph, which is used for Clause Learning [18]. In the near future,
we intend to include this important SAT technique in MIDL.

Another strongly related system is dcs [11]. This system can be viewed as a
model generator for a fragment of FO(ID). The system takes as input a function

13



free FO theory and an inductive definition consisting of Horn rules, and computes
Herbrand models of this theory.

In future work, we plan to re-implement MIDL, investigating a variety of tech-

niques from SAT, logic programming and ASP. Interesting recent optimizations
to SAT solvers are described in [20,24,18,29]. Potentially relevant techniques
for computing the well-founded semantics are described in [27, 1,15, 25].

Finally, we mention some issues that will be investigated in the near future:

— The current solver uses rules only in a bottom up propagation. In some

situations it is definitely worthwhile to also exploit proagation from head to
body.

— As shown in [20,24], the quality of the search algorithm strongly depends

on the heuristics. Now that our search algorithm is more or less fixed, we
should start to evaluate different heuristics for the system.

— A major task in the project is to build an efficient grounder which reduces

a FO(ID) theory to a propositional theory by grounding it with respect to
the Herbrand universe.
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