
HAL Id: hal-00012536
https://hal.science/hal-00012536

Submitted on 25 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounding Resource Consumption with Gödel-Dummett
Logics

Dominique Larchey-Wendling

To cite this version:
Dominique Larchey-Wendling. Bounding Resource Consumption with Gödel-Dummett Logics. 12th
International Conference on Logic for Programming Artificial Intelligence and Reasoning - LPAR’05,
Dec 2005, Montego Bay, Jamaica. pp.682-696, �10.1007/11591191_47�. �hal-00012536�

https://hal.science/hal-00012536
https://hal.archives-ouvertes.fr

Bounding resource consumption

with Gödel-Dummett logics

Dominique Larchey-Wendling

LORIA – CNRS
Campus scientifique, BP 239

54 506 Vandœuvre-lès-Nancy, France

Abstract. Gödel-Dummett logic LC and its finite approximations LCn

are the intermediate logics complete w.r.t. linearly ordered Kripke mod-
els. In this paper, we use LCn logics as a tool to bound resource consump-
tion in some process calculi. We introduce a non-deterministic process
calculus where the consumption of a particular resource denoted • is
explicit and provide an operational semantics which measures the con-
sumption of this resource. We present a linear transformation of a process
P into a formula f of LC. We show that the consumption of the resource
by P can be bounded by the positive integer n if and only if the for-
mula f admits a counter-model in LCn. Combining this result with our
previous results on proof and counter-model construction for LCn, we
conclude that bounding resource consumption is (linearly) equivalent to
searching counter-models in LCn.

1 Introduction

Gödel-Dummett logic LC and its finitary versions (LCn)n>0 are the intermediate
logics (between classical logic CL and intuitionistic logic IL) characterized by
linear Kripke models. LC was introduced by Gödel in [1] and later axiomatized
by Dummett in [2]. It is now one of the most studied intermediate logics and
has been recognized recently as one of the fundamental t-norm based fuzzy log-
ics [3]. Proof-search in LC has benefited from the development of proof-search
in intuitionistic logic IL with two important seeds: the contraction-free calculus
of Dyckhoff [4–6] and the hyper-sequent calculus of Avron [7,8]. Two recent con-
tributions propose an alternative approach based on a set of local and strongly
invertible proof rules (for either sequent [9] or hyper-sequent [7,10] calculus) and
a semantic criterion to decide irreducible (hyper)-sequents and eventually build
a counter-model.

In our previous work, we proposed a new approach to the decision problem in
LC [11]. We transform a formula (or a sequent) of LC into a conditional bi-colored
graph of the same size. Then, we search counter-models of the initial formula by
looking for chains of a certain kind in the graph. We call those chains alternating
chains. This method constitutes a decision procedure for LC and LCn, thus we
have a linear transformation of the decision problem for LC (and also LCn)
into the search for alternating chains problem in conditional graphs. Moreover,

we propose a procedure based on matrix computation to solve the search of
alternating chains [12].

In this paper, we study the reverse transformation. First, we character-
ize the search for alternating chains in conditional graphs as a resource use
bounding problem in some particular process calculus: the processes have non-
deterministic branching, conditional branching, consume some particular re-
source, and can be recursive. The conditions are expressed by boolean formulae.
We show how to normalize process systems being thus able to view theses pro-
cesses as conditional graphs. We relate resource consumption by processes to the
search for alternating chains in conditional graphs.

Then we show how to encode a conditional graph into a formula of LC (of size
linear w.r.t. the size of the graph). We prove the equivalence of the existence of
a counter-model for this formula and the existence of an alternating chain into
the conditional graph. Therefore we obtain a linear transformation of the search
for alternating chains problem in conditional graphs into a decision problem for
the family of logics LCn.

Moreover, this result establishes a characterization of the family of Gödel-
Dummett logics LCn as resource use bounding logics for some particular process
calculus. This is the main goal of this paper: to shed some new light of LC and
to relate it with processes and resource consumption. In particular, the process
calculus we introduce here should not be viewed as a real tool to model complex
systems. However, it could be extended or integrated to other process calculi like
CCS [13] so as to exploit the LC logic for specifying resource related properties.

2 Logical syntax for CL and LC

In this section we present the syntax we use for logical formulae. We either use
formulae of classical propositional logic CL or formulae of propositional Gödel-
Dummett logic LC. Fortunately they share the same syntax, even though their
semantics differ.

The set of propositional formulae, denoted Form, is defined inductively, start-
ing from a set of propositional variables, denoted by LVar, with an additional
bottom constant ⊥ denoting absurdity and using the connectives ∧, ∨ and ⊃:

Form : f ::= ⊥ | x | f ∧ f | f ∨ f | f ⊃ f where x ∈ LVar

We use the abbreviations ¬f ≡ f ⊃ ⊥ and ⊤ ≡ ¬⊥. In conditional graphs (see
sections 4 and 6), we even use the notation x ≡ ¬x but only for propositional
variables. The semantics of classical formulae is as usual: given a valuation (or
interpretation) of propositional variables σ : LVar → {0, 1}, the semantic value
of f denoted by [[f]]σ ∈ {0, 1} is defined inductively on the structure of f , the
connectives ⊥, ⊃, ∧ and ∨ being respectively interpreted by their corresponding
boolean operator. The semantics of the formulae of LC will be defined later in
section 5.1.

3 Resource consuming processes

In this section, we present a calculus for processes which consume resources.
This calculus features non-determinism, choices, recursion and of course resource
consumption. We only model one kind of resources in our calculus, denoted by
a big dot •. The processes only consume resources, they do not produce them,
neither do they transform them into another kind of resources. So the behavior
of processes is characterized by how they consume resources.

Let us consider a set of process variables denoted PVar. We define the set of
processes Proc as follows:

Proc : P ::= X | <f>P | •P | [P + · · · + P] where f ∈ Form, X ∈ PVar

The process •P should be viewed as the process which consumes one resource
• and then, behaves as P . The process [P + Q] should be understood as the
non-deterministic sum of P and Q, i.e. the process that behaves either as P or
Q. In particular, the process [] does nothing, i.e. does not consume any resource.
Given a boolean condition f , the process <f>P is the process which behaves
like P if the condition f is fulfilled, and does nothing otherwise.

Non-determinism and conditions are sufficient to represent the if-then-else
construct: if f then P else Q ≡ [<f>P + <¬f>Q]. We insist on the fact that
the boolean value of the condition f does not evolve during the execution of
processes: it is fixed once and for all before the execution starts. And as we
are going to describe the operational semantics of processes, it should be noted
that conditions (like f) are external : even though they influence the behavior of
processes, they cannot change because of that behavior.

3.1 Process systems and recursion

To represent recursion, i.e. the possibility for processes to become themselves
again after having consumed some resources, we use (sets of) recursive equations:

Definition 1 (Process system). A process system is a pair (E ,V) where E =
{X1 = P1, . . . , Xn = Pn} is a finite set of process equations. X1, . . . , Xn are
supposed are to be n distinct process variables and V ⊆ {X1, . . . , Xn} is a subset
of relevant variables. P1, . . . , Pn are processes. The variables occurring in E
but not in V are called private variables. A sub-process of E is either one of
X1, . . . , Xn or a sub-term of one of P1, . . . , Pn.

As an example, consider the system

V = {X}

E =







X = •<a>Y
Y = [X +<¬a> •Z + Z]
Z = []

[X +<¬a> •Z + Z]

X X []
Y <a>Y •<a>Y
Z •Z <¬a> •Z

The sub-processes are listed on the right-hand side. Intuitively, X is the process
which consumes one resource and if a is true becomes Y . Y becomes either X

P −[0, σ, E]−• P
[Id]

Pi −[n, σ, E]−• Q

[· · · + Pi + · · ·] −[n, σ, E]−• Q
[Sum]

P −[n, σ, E]−• Q

•P −[n + 1, σ, E]−• Q
[Res]

P −[n, σ, E]−• Q X = P ∈ E

X −[n, σ, E]−• Q
[Eq]

P −[n, σ, E]−• Q [[f]]
σ

= 1

<f> P −[n, σ, E]−• Q
[Con]

Fig. 1. Deduction system for resource consumption

if b is true, or if a is false consumes one resource and then becomes Z, or Y
becomes Z. Z is the process that does nothing.

This calculus should not be viewed as useful for representing real or complex
systems. It has too few features for that. But it could be viewed as an abstraction
calculus: either one could abstract a complex system into our simple formalism to
prove resource consumption related properties for this particular system, or one
could extend our calculus with further constructs to model more sophisticated
systems directly.

3.2 Operational semantics for resource consumption

Given a set of process equations E and a valuation σ : LVar → {0, 1} of boolean
variables, we define the ternary relation −[·, σ, E]−• ⊆ Proc × N × Proc by the
set of deduction rules presented in figure 1. As the reader might notice, σ and
E are not modified by the application of those rules but they occur in the side
conditions of rules [Eq] and [Con], restricting the applicability of those rules.
When E or σ are understood in the context, we might simplify the notation
P −[n, σ, E]−• Q into P −[n, σ]−• Q or even P −[n]−• Q. Intuitively, P −[n]−• Q
should be read as: the process P has an execution path to Q which consumes
exactly n times the resource •.

Lemma 1. The [Cut] rule is admissible:

P −[m]−• Q Q −[n]−• R

P −[m+ n]−• R
[Cut]

Proof. We prove the result by induction on the length of the deduction of
P −[m]−• Q. If P −[m]−• Q is obtained by the axiom [Id], then Q ≡ P and
m = 0, thus P −[0 + n]−• R is identical to Q −[n]−• R. If P −[m]−• Q is ob-
tained by the [Res] rule then P ≡ •P ′ and we have a shorter (sub-)deduction of
P ′ −[m− 1]−• Q. By induction, P ′ −[m− 1 + n]−• R is deducible and then, ap-
plying rule [Res], we obtain •P ′ −[m− 1 + n+ 1]−• R, thus P −[m+ n]−• R. If
the last rule is [Eq], then P ≡ X with X = P ′ ∈ E and we have a sub-deduction
of P ′ −[m]−• Q. Thus, by induction, we obtain a deduction of P ′ −[m+ n]−• R.

Applying rule [Eq], we obtain a deduction of P −[m+ n]−• R. The cases of rules
[Sum] and [Con] are similar. ⊓⊔

Definition 2 (Boundable resource use). A process system (E ,V) has a re-
source use boundable by n if there exists a valuation σ : LVar→{0, 1} such that
for any X,Y ∈ V and k ∈ N, if X −[k, σ, E]−• Y holds then k 6 n.

This definition means that the resource use can be bounded in some context,
modeled by the valuation σ. The resource use is not necessarily bounded in every
context.

3.3 Normalization

We define the equivalence of process systems and a normalization procedure so
that the systems appear in a shape suitable for further transformations. The
process systems (E ,V) and (F ,V) are equivalent if for any valuation σ, the
relations −[·, σ, E]−• and −[·, σ,F]−• have identical restrictions to V × N × V.

Definition 3 (Normality). A process equation is normal if it contains no
nested construct, i.e. it has one of the following forms: X = •Y , X = <f>Y

or X = [Y1 + · · · + Yn] where Y and the Yi’s are process variables. A process
system is normal if all its equations are normal.

Lemma 2 (Normalization). Let (E ,V) be a process system of size k. There
exists a normal process system (E ′,V) of size O(k) which is equivalent to (E ,V).

Proof. Let (E ,V) be a process system of size k. We build the set of equations
of the system E ′. Let us introduce a new process variable XP for each strict
(i.e. not a process variable) sub-process P of E . For process variables P ≡ Y

occurring in E , we choose XY ≡ Y , so there is no new process variable for
atomic sub-processes. Let P be a sub-process of E . If P ≡ •Q, we add the
equation XP = •XQ to E ′. If P ≡ <f>Q, we add XP = <f>XQ and if
P ≡ [Q1 + · · · + Qk], we add XP = [XQ1

+ · · · +XQk
]. Finally, if Y = P is an

equation of E , we add the equation Y = [XP] to E ′.
Obviously (E ′,V) is a normal system and its size (number of symbols) is

linear in the size of (E ,V). It is a bit tedious but obvious to show that for any
sub-process P,Q ∈ E , σ : LVar → {0, 1} and n ∈ N, P −[n, σ, E]−• Q holds if and
only if XP −[n, σ, E ′]−• XQ holds. The proof can be done by induction on the
length of deductions. Then, since for any variable Y of V we have the property
XY ≡ Y , the relation −[·, σ, E]−• and −[·, σ, E ′]−• have identical restrictions to
V × N × V. ⊓⊔

The result of the normalization procedure described previously applied to
the example presented in section 3.1 is the following:

X = [K6] Z = [K5] K2 =X K4 = •Z K1 = [K2 +K7 + Z]
Y = [K1] K6 = •K3 K3 =<a>Y K5 = [] K7 =<¬a>K4

4 Conditional bi-colored graphs

In this section, we introduce the notion of conditional graphs. Then we show
how to transform a normal process system into a conditional graph and the
relation between the existence of some chains in those graphs and the operational
semantics of the process system.

4.1 Graphs and instance graphs

A bi-colored graph is a (finite) directed graph with two kinds of arrows: green
arrows denoted by → and red arrows denoted by ⇒.

Definition 4 (alternating chain). A n-alternating chain is a chain of the
form (→⋆⇒)n.

So a chain contains a n-alternating chain if and only if it contains at least n
red arrows ⇒.

Definition 5 (Conditional graph). A conditional bi-colored graph is a bi-
colored graph where green arrows → may be indexed with the (propositional)
boolean expressions of Form.

Considering boolean expressions as representatives for boolean functions and
given a valuation σ : LVar→{0, 1}, a boolean expression e is instantiated to the
boolean value [[e]]σ ∈ {0, 1}. We obtain an instance graph: an arrow indexed with
a boolean expression e belongs to this instance if and only if [[e]]σ = 1. The case
of an unconditional (i.e. not indexed) arrow can be treated by considering that
it has an implicit boolean conditional which is the tautology ⊤ (and then always
evaluates to 1) and non-existing arrows have the implicit boolean condition ⊥
that always evaluates to 0.

Definition 6 (Instance graph). Let G be a conditional bi-colored graph and
σ be a valuation of boolean variables in {0, 1}. We define the instance graph Gσ

as the bi-colored graph that one obtains when one evaluates boolean expressions
indexing arrows and keeping exactly those whose valuation equals 1.

4.2 From normal process systems to conditional graphs

We describe how to build a conditional bi-colored graph from a normal set
of process equations. Let E be a finite set of normal process equations. The
equations are of one of the following forms: X = •Y , X = <f>Y or X =
[Y1 + · · · + Yk] where Y and the Yi’s are process variables.

We build the graph GE (simply denoted G here). It has the process variables
occurring in E as vertices. We associate to each (normal) equation of E a set of
arrows:

– for the equation X = •Y , we associate the arrow X ⇒ Y ;

– for X = <f>Y , we associate the arrow X →f Y ;
– for X = [Y1 + · · · + Yk], we associate the arrows X → Y1, . . . , X → Yk.

Obviously, the graph G ≡ GE is a conditional bi-colored graph and its size is
linear in the size of E . As an example, we display the graph associated with the
example of normal process system obtained in section 3.3:

X K2 K1 K7 K4

K6 K3 Y K5 Z

b

a

a

4.3 Chains and resource consumption

In this section, we relate the consumption of the resource • by the processes of
E to the alternating chains of GE .

Theorem 1. Let E be a normal set of process equations and G = GE be its
associated conditional graph. Let σ : LVar → {0, 1} be a valuation. Then for any
process variables X,Y ∈ E and any n ∈ N, X −[n, σ]−• Y holds if and only if
there exists a chain X (→⋆⇒)n→⋆ Y in the instance graph Gσ.

Proof. Let us fix E and σ : LVar → {0, 1}. We consider the conditional graph
GE and its instance Gσ. Let X ⇒ Y be an arrow of Gσ. By construction of GE ,
there is an equation X = •Y in E . Thus, X −[1]−• Y holds. Now let us consider
an arrow X → Y of Gσ: either there exists an equation X = <f>Y in E s.t.
[[f]]σ = 1 or there exists an equation X = [· · · + Y + · · ·] in E . In either case,
X −[0]−• Y holds. Then by using the derived [Cut] rule of lemma 1, from a
chain X (→⋆⇒)n→⋆ Y containing exactly n red arrows ⇒, we can deduce that
X −[n]−• Y holds.

Conversely, let us show how to transform a deduction of X −[n]−• Y into
a chain of the form X (→⋆⇒)n→⋆ Y in Gσ, by induction on the length of the
deduction. Suppose it ends with the [Id] rule. Then Y ≡ X and n = 0. Thus
X →0 Y is a zero length chain. Considering other rules, we remark that a de-
duction of X −[n]−• Y cannot end with rules [Sum], [Res] or [Con] since X is a
process variable. We consider the last remaining case where the deduction ends
with rule [Eq]. Then there exists an equation X = P in E . As E is normal, P is
in one of the following forms: •Z, <f>Z or [Z1 + · · · + Zk], where Z and the
Zi are process variables:

– if P ≡ •Z then there is a (sub-)deduction of •Z −[n]−• Y and therefore a
(sub-)deduction of Z −[n− 1]−• Y . By induction on deductions, we obtain
of chain Z (→⋆⇒)n−1→⋆ Y in Gσ. Moreover, as X = •Z ∈ E , we have an
arrow X ⇒ Z in Gσ. Thus there exists a chain X (→⋆⇒)n→⋆ Y in Gσ;

– if P ≡ <f>Z, then we have a sub-deduction of <f>Z −[n]−• Y . It is
necessary that the last rule of this sub-deduction is [Cond] and then [[f]]σ = 1.
We have a sub-deduction of Z −[n]−• Y . By induction, there is a chain
Z (→⋆⇒)n→⋆ Y in Gσ. Since X = <f>Z ∈ E and [[f]]σ = 1, there is an
arrow X → Z in Gσ. Thus there exists a chain X (→⋆⇒)n→⋆ Y in Gσ;

– if P ≡ [Z1+· · ·+Zk], then we have a sub-deduction of [Z1+· · ·+Zk] −[n]−• Y .
It is necessary that the last rule of this sub-deduction is [Sum] and thus, there
exists i ∈ [1, k] and a sub-deduction of Zi −[n]−• Y . By induction, we obtain
a chain Zi (→⋆⇒)n→⋆ Y . Since X = [Z1 + · · · + Zk] ∈ E , there is an arrow
X → Zi in Gσ, and there exists a chain X (→⋆⇒)n→⋆ Y in Gσ. ⊓⊔

Corollary 1. Let E be a normal set of process equations, V the set of variables
of E, G its associated conditional graph and n ∈ N. The process system (E ,V)
has a resource use boundable by n if and only if there is an instance graph Gσ

with no (n+ 1)-alternating chain.

Proof. If (E ,V) has a resource use boundable by n, there exists a valuation
σ : LVar → {0, 1} s.t. for any X,Y ∈ V and k ∈ N, if X −[k, σ]−• Y holds then
k 6 n. Suppose there exists a (n+ 1)-alternating chain X0 (→⋆⇒)n+1 Y0 in the
instance graph Gσ. Then, by theorem 1, X0 −[n+ 1, σ]−• Y0. But X0, Y0 ∈ V
so we get n + 1 6 n, that leads to a contradiction. Conversely, let X0, Y0 ∈ V
and k ∈ N satisfying X0 −[k, σ]−• Y0. Then, by theorem 1, there is a chain
X0 (→⋆⇒)k→⋆ Y0 in the instance graph Gσ. If k > n then this chain contains a
sub-chain of the form X0 (→⋆⇒)n+1 Y1, contradiction. Consequently k 6 n. ⊓⊔

4.4 From conditional graphs to normal process systems

We have proved that a normal process system can be transformed into a condi-
tional graph of the same size. Now we present the converse transformation. We
show how to recover a process system from a conditional graph.

There is only a slight problem to be addressed: the construction described
in section 4.2 does not generate a configuration like for example X → Y and
X ⇒ Z where these two arrows have the same source X. This can only be
generated when these two arrows are green → using the [· · ·+ · · ·] construct. To
overcome this difficulty, we propose the following trick: every red arrows ⇒ (resp.
conditional arrow →f) is split into two arrows →⇒ (resp. →→f) introducing
a new intermediary node for each red ⇒ and conditional →f arrow. These two
splits preserve n-alternating chains.

Using such a transformation on a conditional graph G, we obtain a new
conditional graph G′ with the following property: every node which is the source
of multiple arrows is the source of only unconditional green arrows → since the
source of a red ⇒ (resp. conditional →f) arrow is the intermediary node which
is specifically introduced for this particular arrow.

The graph G′ can be transformed into a normal set of process equations. Let
V be a set of process variables, one Xv for each vertex v of G′. We build E as
follows. We consider each vertex as a source for some arrows and associate an
equation to each vertex:

– if v is the source of a red arrow v⇒w then v is the source of no other arrow1

and we add Xv = •Xw to E ;

1 v is new and has been introduced in G′ specifically for this purpose.

– if v is the source of a conditional green arrow v→f w then v is the source of
no other arrow and we add Xv = <f>Xw to E ;

– otherwise v is the source of k (unconditional) green arrows v→w1, . . . , v→wk

(k could be 0) and we add Xv = [Xw1
+ · · · +Xwk

] to E .

E being built this way, it is obvious that it is a normal set of process equations and
that G′ appears as the conditional graph associated with E by the construction
described in section 4.2, i.e. G′ = GE .

Theorem 2. Let G be a conditional graph of size k. There exists a process
system (E ,V) of size O(k) with the following property: for any n ∈ N, (E ,V)
has a resource use boundable by n if and only if there is an instance graph Gσ

with no (n+ 1)-alternating chain.

Proof. Obviously, the size of the graph G′ described earlier in this section is less
than 2k. The size of E is the same as the size of G′, so is less than 2k. Let V be
the set of process variables occurring in E . The size of (E ,V) is less than 3k. Then
it is clear that for any σ : LVar → {0, 1}, there is a one-to-one correspondence
between a (n+ 1)-alternating chain of Gσ and a (n+ 1)-alternating chain of G′

σ,
since the splits ⇒ →⇒ and →f →→f preserve alternating chains in every
instance. As the identity G′ = GE holds, we finish by an application of corollary 1
to E . ⊓⊔

5 From conditional graphs to LC

In this section, we introduce the algebraic semantics of the family of propositional
Gödel-Dummett logics LCn. The value n belongs to the set N

⋆
= {1, 2, . . .}∪{∞}

of strictly positive natural numbers with its natural order 6, augmented with a
greatest element ∞. In the case n = ∞, the logic LC∞ is also denoted by LC:
this is the usual Gödel-Dummett logic.

After having defined the semantics of LCn, we show how to transform a
conditional graph into a formula2 of LCn and we relate the existence of a counter-
model for this formula to the alternating chains of the initial graph, and thus to
resource consumption.

5.1 The semantics of LCn

IL denotes the set of formulae that are provable in any intuitionistic propositional
calculus (see [4]) and CL denotes the classically valid formulae. As usual an
intermediate propositional logic [6] is a set of formulae L satisfying IL ⊆ L ⊆ CL

and closed under the rule of modus ponens (if A ∈ L and A ⊃ B ∈ L then
B ∈ L) and under arbitrary substitution (if A ∈ L and ρ is any substitution
then Aρ ∈ L.)

2 In fact, into a sequent which can straightforwardly be transformed into an equivalent
formula, see proposition 1.

For any n ∈ N
⋆
, the Gödel-Dummett logic LCn is an intermediate logic. On

the semantic side, it is characterized by the linear Kripke models of size n, see [2].
The following strictly increasing sequence holds:

IL ⊂ LC = LC∞ ⊂ · · · ⊂ LCn ⊂ · · · ⊂ LC1 = CL

In the particular case of LC, the logic has a simple Hilbert axiomatic system:
(X ⊃ Y) ∨ (Y ⊃X) added to the axioms of IL.

In this paper, we will use the algebraic semantic characterization of LCn [7]

rather than the Kripke semantics. Let us fix a particular n ∈ N
⋆
. The algebraic

model is the set [0, n) = [0, . . . , n[∪{∞} composed of n+1 elements.3 A valuation
(or interpretation) on propositional variables σ : LVar → [0, n) is inductively
extended to formulae:

[[⊥]]σ = 0
[[x]]σ =σx

[[a ∨ b]]σ = max(a, b)
[[a ∧ b]]σ = min(a, b)

[[a⊃ b]]σ = a_ b

where the operator _ is defined by a_ b = if a 6 b then ∞ else b. A formula f
is valid for the valuation σ if the equality [[f]]σ = ∞ holds. This interpretation
is complete for LCn. A counter-model of a formula f is a valuation σ such that
[[f]] <∞.

A sequent is a pair Γ ⊢ ∆ where Γ and ∆ are multisets of formulae. Γ,∆
denotes the sum of the two multisets and if Γ is the empty multiset, we write
⊢∆. Given a sequent Γ ⊢∆ and an interpretation [[·]] of variables, we interpret
Γ ≡ a1, . . . , an by ⌊⌊Γ ⌋⌋ = min{[[a1]], . . . , [[an]]} and ∆ ≡ b1, . . . , bp by ⌈⌈∆⌉⌉ =
max{[[b1]], . . . , [[bp]]}. This sequent is valid with respect to the interpretation [[·]]
if ⌊⌊Γ ⌋⌋ 6 ⌈⌈∆⌉⌉ holds. On the other hand, a counter-model to this sequent is an
interpretation [[·]] such that ⌈⌈∆⌉⌉ < ⌊⌊Γ ⌋⌋, i.e. for any pair (i, j), the inequality
[[bj]] < [[ai]] holds.

Proposition 1. The sequent a1, . . . , an⊢b1, . . . , bp has the same counter-models
as the formula (a1 ∧ · · · ∧ an) ⊃ (b1 ∨ · · · ∨ bp).

The proof of this proposition is trivial. Let f be a propositional formula. It
can either be viewed as a boolean formula, or a formula of LCn. We relate the
two semantic interpretations using the double negation. We define the mappings
φ : {0, 1}→ [0, n) and ψ : [0, n)→{0, 1} by φ0 = 0, φ1 = ∞, ψ0 = 0 and ψx = ∞
for x > 0.

Proposition 2. Let f be a propositional formula and σ : LVar → [0, n) be an
interpretation of variables. The identity [[¬¬f]](σ) = φ

(

[[f]](ψ ◦ σ)
)

holds.

Proof. Let us denote ¬¬f by f⋆. We remark that φ commutes with the inter-
pretation of the connectives ∧, ∨ and ⊃; for instance max(φx, φy) = φ(x ∨ y).
Then, the following logical identities hold in LCn:

[[⊥⋆]]σ = [[⊥]]σ [[(a ∨ b)
⋆
]]σ = max([[a⋆]]σ, [[b

⋆]]σ)
[[(a⊃ b)

⋆
]]σ = [[a⋆]]σ _ [[b⋆]]σ [[(a ∧ b)

⋆
]]σ = min([[a⋆]]σ, [[b

⋆]]σ)

3 With the convention [0,∞) = N ∪ {∞}. With our particular representation, the
algebraic models [0, n) form a strictly increasing sequence of subsets of N.

We prove [[f⋆]](σ) = φ
(

[[f]](ψ ◦ σ)
)

by induction on f :

– if f ≡ ⊥, we obtain [[⊥⋆]]σ = [[⊥]]σ = 0 and φ([[⊥]](ψ ◦ σ)) = 0;
– if f ≡ x, then [[x⋆]]σ = 0 if σx = 0 and [[x⋆]]σ = ∞ if σx > 0. So [[x⋆]]σ =
φ(ψ(σx)). On the other hand, φ([[x]](ψ ◦ σ)) = φ(ψ ◦ σ(x)) = φ(ψ(σx));

– if f ≡ a ∨ b, then [[(a ∨ b)
⋆
]]σ = [[a⋆ ∨ b⋆]]σ = max(φ([[a]](ψ ◦ σ)), φ([[b]](ψ ◦

σ))) = φ(max([[a]](ψ ◦ σ), [[b]](ψ ◦ σ))) = φ([[a ∨ b]](ψ ◦ σ));
– the cases f ≡ a ∧ b and f ≡ a⊃ b are similar. ⊓⊔

5.2 Transforming conditional graphs into formulae

Let us consider a conditional graph G. There may be some conditional formulae
on green arrows like →f . We consider all these formulae and the propositional
variables they contain. For each vertex v of G we introduce a new propositional
variable xv, so that the propositional variables occurring in conditional formulae
and the newly introduced xv do not overlap. We build a sequent SG = Γ ⊢∆ by
adding one formula to either Γ or ∆ for each arrow of G:

– if v→ w is green arrow of G, we add xv ⊃ xw to Γ ;
– if v→f w is conditional green arrow of G, we add (¬¬f) ⊃ (xv ⊃ xw) to Γ ;
– if v⇒ w is a red arrow of G, we add xw ⊃ xv to ∆.

Theorem 3. Let G be a conditional graph, SG its associated sequent and n ∈ N.
There exists a valuation σ : LVar → {0, 1} such that the instance graph Gσ does
not contain a (n + 1)-alternating chain if and only if the sequent SG has a
counter-model in LCn.

Proof. First, let us suppose that there exists a valuation σ : LVar→{0, 1} s.t. the
instance graph Gσ does not contain a chain of type (→⋆⇒)n+1. By theorem 4
of [11], there exists a height h s.t. for every vertices v, w of G (or Gσ, they have
the same vertices), hv ∈ [0, n], if v→w ∈ Gσ then hv 6 hw and if v⇒w ∈ Gσ then
hv < hw. We define h′v = n_ v, i.e. h′v = hv if hv < n and h′v = ∞ if hv = n.
We define a valuation σ′ : LVar → [0, n). If x ≡ xv is a variable corresponding
to one of the vertices of G then σ′

xv
= h′v. Otherwise we define σ′

x = φ(σx). We
recall that the xv do not overlap with the variables occurring in the conditional
formulae of G. We prove that σ′ is a counter-model of SG ≡ Γ ⊢∆:

– consider the formula xv ⊃ xw occurring in Γ . Then [[xv ⊃ xw]]σ′ = [[xv]]σ′ _

[[xw]]σ′ = σ′(xv) _ σ′(xw) = h′v _ h′w = ∞ because h′v 6 h′w since v → w

occurs in Gσ. Thus [[xv ⊃ xw]]σ′ = ∞;
– consider the formula (¬¬f)⊃(xv ⊃xw) occurring in Γ . Then [[(¬¬f)⊃(xv ⊃
xw)]]σ′ = [[¬¬f]]σ′ _ [[xv ⊃ xw]]σ′ . [[¬¬f]]σ′ = φ([[f]](ψ ◦ σ′)) = φ([[f]](ψ ◦
φ ◦ σ)) = φ([[f]]σ). If [[f]]σ = 0 and in this case [[¬¬f]]σ′ _ [[xv ⊃ xw]]σ′ =
0 _ [[xv ⊃ xw]]σ′ = ∞. On the other hand, if [[f]]σ = 1, then v→ w occurs
in Gσ, and thus h′v 6 h′w. So [[¬¬f]]σ′ _ [[xv ⊃ xw]]σ′ = ∞ _ [[xv ⊃ xw]]σ′ =
[[xv ⊃ xw]]σ′ = h′v _ h′w = ∞. In either case, [[(¬¬f) ⊃ (xv ⊃ xw)]]σ′ = ∞;

– consider the formula xw ⊃ xv occurring in ∆. Then v ⇒ w occurs in Gσ.
[[xw ⊃ xv]]σ′ = h′w _ h′v = h′v since h′v < h′w. Moreover, as h′v < h′w, we
deduce h′v <∞ and then [[xw ⊃ xv]]σ′ <∞.

Then ⌈⌈∆⌉⌉σ′ <∞ and that ⌊⌊Γ ⌋⌋σ′ = ∞. So σ′ is a counter-model of SG .

Conversely, consider σ : LVar → [0, n) a counter-model of SG . We define σ′ =
ψ ◦ σ. Let us consider a conditional arrow v→f w of G. We compute [[¬¬f]]σ =
φ([[f]]σ′). [[f]]σ′ = 1 if and only if there is an arrow v→w in Gσ′ . If [[f]]σ′ = 1 then
φ([[f]]σ′) = ∞ and [[(¬¬f)⊃(xv⊃xw)]]σ = ∞_ [[xv⊃xw]]σ = [[xv⊃xw]]σ. On the
other hand, if [[f]]σ′ = 0, then [[(¬¬f)⊃(xv⊃xw)]]σ = 0_[[xv⊃xw]]σ = ∞. Let use
denote Γ ′ the multiset where we have replaced the formula (¬¬f)⊃(xv ⊃xw) by
xv ⊃xw when [[f]]σ′ = 1 and by nothing (i.e. we simply erase it) when [[f]]σ′ = 0.
It is clear that ⌊⌊Γ ′⌋⌋σ = ⌊⌊Γ ⌋⌋σ. So σ is also a counter-model in LCn of the
implicational sequent Γ ′⊢∆ corresponding to the instance graph Gσ′ . According
to theorem 6 of [11], since the implicational sequent Γ ′ ⊢∆ has a counter-model
in LCn, its instance graph Gσ′ does not contain a chain of type (→⋆⇒)n+1. ⊓⊔

It is obvious that the size of SG is linear in the size of G (of course, the
size of G should account for the size of conditional formulae). So there exists a
linear transformation of the problem of resource consumption bounding into the
decision problem in LCn.

Corollary 2. Let E be a normal set of process equations of size k and V the
set of variables of E. There exists a formula fE of LC of size O(k) such that
for any n ∈ N, (E ,V) has a resource use boundable by n if and only if fE has a
counter-model in LCn.

Proof. Let G be the conditional graph associated to E (see corollary 1), S be the
sequent associated to G (see theorem 3). Then fE is a formula logically equivalent
to S, see proposition 1. ⊓⊔

6 Counter-models of LCn and resource consumption

In this section, we briefly recall some of our previous results which provide the
proof of the converse of corollary 2. Given a formula f of LC, we explain how to
build a conditional graph Gf of size linear w.r.t. the size of f which represents the
proof-search process on f and on which it is possible to either prove f or extract
counter-models of f . For an explanation of the construction in full details, the
reader is invited to consult [12].

Let f be a formula of LC. We build a conditional graph Gf based on the de-
composition tree of f , i.e. the set of sub-formula occurrences of f . An occurrence
of a sub-formula r can be identified with the root node of the sub-tree corre-
sponding to r. Each node is polarized starting with polarity − for the root f−

and propagated the following way: the connectives ∨ and ∧ preserve the polarity
while the connective ⊃ preserves the polarity on the right hand side and inverses
it on the left-hand side.

f− ♦

v+ v−

v

⊥+ ⊥−

�

x x

∧−

a− b−

∨−

a− b− x

x⊃−

a+ b−

♦

k

∧+

a+ b+

x x
∨+

a+ b+

x

x

⊃+

a− b+

Fig. 2. Counter-model search system for LC

We add a supplementary node for each propositional variable v occurring
in f . This is one node per variable, not per occurrence: two occurrences of the
same variable only produce one supplementary node. These added nodes are not
polarized. Two more nodes are added: ♦ and �. Intuitively, ♦ represents the
semantic value ∞ whereas � represents the semantic value 0.

Before we describe how we build the arrows of Gf , we precise that we will
sometimes introduce new conditional variables denoted x and use either x or its
negation x ≡ ¬x as a condition indexing some green arrows like →x or →x. Now
we describe how we build the arrows of Gf :

– for the root f−, we add a red arrows f ⇒♦;

– for every added node v corresponding to a propositional variable occurring
in f , we add a green arrow � → v;

– for a positive occurrence v+ of a variable in f , we add a green arrow v+→v;

– for a negative occurrence v− of a variable in f , we add a green arrow v→v−;

– for a positive occurrence of ⊥+ in f , we add a green arrow ⊥+ → �;

– for a negative occurrence of ⊥− in f , we add a green arrow � →⊥−.

All these rules correspond to the left part of figure 2. Now we describe what we
do with internal nodes, which corresponds to the right part of figure 2:

– for each negative occurrence of a sub-formula r− ≡ a− ∧ b−, we introduce
a new conditional variable x and we add the two conditional green arrows
a− →x r

− and b− →x r
−;

– for each positive occurrence of a sub-formula r+ ≡ a+ ∧ b+, we add the two
green arrows r+ → a+ and r+ → b+;

– for r− ≡ a− ∨ b−, we add the two green arrows a− → r− and b− → r−;

– for r+ ≡ a+ ∨ b+, we introduce a new variable x and add the two arrows
r+ →x a

+ and r+ →x b
+;

– for r− ≡ a+ ⊃ b−, we introduce a new variable x and a new node k and the
five arrows b− →x k, k⇒ a+, k→ r−, k⇒♦ and ♦→x r

−;

– for r+ ≡ a− ⊃ b+, we introduce a variable new x and add the two arrows
r+ →x b

+ and a− →x b
+.

The construction of Gf is finished after each internal node has been processed.
The order in which they are processed is indifferent. We recall the main result4

of [11], which relates conditional graphs and LCn:

Theorem 4. Let f be a formula of LC, G ≡ Gf be the conditional graph asso-
ciated to f by the construction described in this section and n ∈ N. Then f has
a counter-model in LCn if and only if there exists a valuation σ such that the
instance graph Gσ has no (n+ 1)-alternating chain.

Corollary 3. Let f be a formula of LC of size k. There exists a process system
(E ,V) of size O(k) such that for any n ∈ N, (E ,V) has resource use boundable
by n if and only if f has a counter-model in LCn.

Proof. Let f be a formula of LC. We apply theorem 4 and obtain a conditional
graph Gf . The size of Gf is linear w.r.t. the size of f . Then we apply theorem 2
and obtain a process system (E ,V). The size of (E ,V) is linear w.r.t. the size of
Gf , thus also w.r.t. the size of f . (E ,V) has resource use boundable by n if and
only if Gf has no (n+ 1)-alternating chains if and only if f has a counter-model
in LCn. ⊓⊔

7 Conclusion

We have defined a process calculus and an operational semantics that measures
resource consumption. We establish a correspondence between normal process
systems and conditional bi-colored graphs: a process system has resource use
boundable by an integer n if and only if the corresponding graph has no (n+1)-
alternating chain. Then we show how the absence of (n + 1)-alternating chain
in a graph can be expressed by the refutability of a formula of LCn. Combining
the two results, we get a linear transformation of a resource bounding problem
in a process calculus into a decision problem in LCn.

We recall our previous result on counter-model search in LC [11] and relate it
to the process formalism we introduced. Thus, we have a linear transformation
of a decision problem in LCn into a resource bounding problem in a process
calculus. This establishes the linear equivalence of the two problems. So LC

could be viewed as a logic for specifying some resource related properties. This
sheds some new lights on LC.

In further studies, we want to use the process calculus defined in this paper
as an abstraction of more complex calculi: by keeping only the basic constructs
present in our calculus and abstracting the other constructs. Counter-model
search in LC could be used as a tool to bound resource consumption in some
specified complex systems.

4 To be precise, the construction of Gf we present here, and the associated theorem 4
are a slight but obvious modification of the cited result, to integrate the case of the
⊥ logical constant and to avoid generating conditional red arrows like ⇒x or ⇒x.

References

1. Gödel, K.: Zum intuitionistischen Aussagenkalkül. In: Anzeiger Akademie des
Wissenschaften Wien. Volume 69. (1932) 65–66

2. Dummett, M.: A Propositional Calculus with a Denumerable matrix. Journal of
Symbolic Logic 24 (1959) 96–107

3. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers (1998)
4. Dyckhoff, R.: Contraction-free Sequent Calculi for Intuitionistic Logic. Journal of

Symbolic Logic 57 (1992) 795–807
5. Dyckhoff, R.: A Deterministic Terminating Sequent Calculus for Gödel-Dummett

logic. Logical Journal of the IGPL 7 (1999) 319–326
6. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-Free Tableau Calculi and Re-

lated Cut-Free Sequent Calculi for the Interpolable Propositional Intermediate
Logics. Logic Journal of the IGPL 7 (1999) 447–480

7. Avron, A.: A Tableau System for Gödel-Dummett Logic Based on a Hypersequent
Calculus. In: TABLEAUX 2000. Volume 1847 of LNAI. (2000) 98–111

8. Metcalfe, G., Olivetti, N., Gabbay, D.: Goal-Directed Calculi for Gödel-Dummett
Logics. In: CSL. Volume 2803 of LNCS. (2003) 413–426

9. Larchey-Wendling, D.: Combining Proof-Search and Counter-Model Construction
for Deciding Gödel-Dummett Logic. In: CADE-18. Volume 2392 of LNAI. (2002)
94–110

10. Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent Calculi for Gödel Logics –
A Survey. Journal of Logic and Computation 13 (2003) 835–861

11. Larchey-Wendling, D.: Counter-model search in Gödel-Dummett logics. In: IJCAR
2004. Volume 3097 of LNAI. (2004) 274–288

12. Larchey-Wendling, D.: Gödel-Dummett counter-models through matrix computa-
tion. Electronic Notes in Theoretical Computer Science 125 (2005) 137–148

13. Milner, R.: Communication and Concurrency. International series in computer
science. Prentice Hall (1989)

