
Disjunctive Constraint Lambda Calculi

Matthias M. Hölzl1 and John N. Crossley2,?

1 Institut für Informatik. LMU, Munich
Matthias.Hoelzl@ifi.lmu.de

2 Clayton School of Information Technology, Monash University
John.Crossley@infotech.monash.edu.au

Abstract. Earlier we introduced Constraint Lambda Calculi which in-
tegrate constraint solving with functional programming for the simple
case where the constraint solver produces no more than one solution to
a set of constraints. We now introduce two forms of Constraint Lambda
Calculi which allow for multiple constraint solutions. Moreover the lan-
guage also permits the use of disjunctions between constraints rather
than just conjunction. These calculi are the Unrestricted, and the Re-
stricted, Disjunctive Constraint-Lambda Calculi. We establish a limited
form of confluence for the unrestricted calculus and a stronger form for
the restricted one. We also discuss the denotational semantics of our
calculi and some implementation issues.

1 Introduction

Constraint programming languages have been highly developed in the context
of logic programming (see e.g. [9, 3]). In [11] Mandel initiated the use of the
lambda calculus as an alternative to a logic programming base. There were
many difficulties and, in particular, the treatment of disjunction was not very
satisfactory (see [12]). It has turned out to be surprisingly difficult to get a
transparent and elegant system for the functional programming paradigm. This
was ultimately accomplished in [6] and [8], where we introduced the unrestricted
and restricted constraint-lambda calculi. In this paper we expand the language
of these calculi to include disjunction in constraints.

The basic problem with the introduction of disjunction or, indeed with mul-
tiple solutions, is easily demonstrated by the example (first noted, we believe,
by Hennessy [5]) (λx.x + x)(2|3) where “2|3′′ means “2 or 3”. If a choice is first
made of a value for y, i.e. 2 or 3, then there are two answers: 4 and 6. If the
β-reduction is performed first, then the result is (2|3) + (2|3). In this case there
is also the possible interpretation that the first value should be chosen to be 2
and the second to be 3 (or vice versa) yielding an additional answer: 5.

We propose two solutions, one for each possibility, in sections 2.3 and 8.2.

? Special thanks to Martin Wirsing for his support, interest and extremely helpful
criticism.

The systems that we define are extensions of our calculi in [8]. Because we now
have multiple solutions as a matter of course we cannot expect confluence. Nev-
ertheless we are able to establish a weaker property which we call path-confluence
in Theorem 2 for the Restricted Disjunctive Constraint-Lambda Calculus.

We briefly discuss the denotational semantics of our systems and implementa-
tion issues. Then we turn to the question of multiple constraint stores and finally
we compare our systems with the earlier work of Mandel and Cengarle [13] and
other current approaches to constraint-functional programming integration.

2 Unrestricted Disjunctive Constraint-Lambda Calculus

2.1 The Constraint Language

A constraint is a relation that holds between several entities from a fixed do-
main. We assume a notion of equality, denoted by =, is given. Typical constraint
domains are the real numbers, the integers, or a finite subset of the integers.

A constraint language is a 4-tuple L = (C,V,F ,P), where C = {c1, c2, . . . } is
a set of individual constants, V = {X1, X2, . . . } is a set of constraint variables,
F = {f1, f2, . . . } is a set of function letters with fixed arity, and P = {P1, P2, . . . }
is a set of predicate symbols, again with fixed arities. We assume that a constant
⊥ representing the undefined value is included in C. The set T of constraint terms
over a constraint language L is defined inductively in the usual way.

Definition 1. If P is a predicate letter with arity n and t1, . . . , tn are constraint
terms, then P (t1, . . . , tn) is an atomic constraint. The set of constraints C is
the closure of the atomic constraints under conjunction (∧) and disjunction (∨).
The empty conjunction is written as true and the empty disjunction as false.

Definition 2 (Inconsistent constraints). A set S = {C1, C2, . . . , Cn} of con-
straints is said to be inconsistent, if S is not satisfiable.

The denotation of a constraint term in a constraint language L over a con-
straint domain D, is defined by a evaluating it in the usual way (which gives the
usual properties): value : (V → D) → T → D.

Convention 1 (Canonical names) We assume that there is an idempotent
mapping (canonical naming) n : C → C with the following properties:

∀θ.valueθ(n(t)) = valueθ(t) (1)(
∃θ.valueθ(t1) = valueθ(t2)

)
=⇒ n(t1) ≡ n(t2) (2)

(where = is the semantic equality of the constraint domain and ≡ is syntac-
tic equality). The image of an element of a constraint term under n is called
its canonical name, the image of the constraint domain under n is the set of
canonical names. We designate canonical names by cn or cni.

2

A constraint store is a set of constraints. The only operation on constraint
stores is the addition of a new constraint to the store, denoted by S ⊕ C:

S ⊕ C = S ∪ {C}.

We shall only be concerned with formulae, principally equations, implied by a
constraint store S, therefore a constraint solver may simplify the set of con-
straints contained in the constraint store without changing the possible reduc-
tions. Since, for our purposes, all inconsistent stores are equivalent, we write ⊗
to denote any inconsistent store and we then write S = ⊗.

2.2 Syntax

The syntax for constraint-lambda terms is given by:1

Λ ::= x | X | c | f(Λ, . . . , Λ) | λx.Λ | ΛΛ | {GC}Λ,

GCT ::= Λ, GC ::= P (GCT, . . . , GCT) | (GC ∧GC) | (GC ∨GC).

The syntactic categories are:

– Constraint-lambda terms (Λ): These are the usual lambda terms aug-
mented with a notation for constraint-variables (variables whose values are
computed by the constraint solver) and a notation to describe the addition
of constraints to the constraint store.

– General constraint terms (GCT): These are augmented terms of the con-
straint language. Constraint-variables may appear as part of a lambda term
or as part of a general constraint term. This makes it possible to transfer
values from the constraint store to lambda terms. Similarly, a lambda term
may appear inside a constraint term. Having lambda variables inside con-
straints allows us to compute values in the lambda calculus and introduce
them as part of a constraint. We also allow arbitrary lambda terms inside
constraints. These terms have to be reduced to constraint terms before being
passed to the constraint solver.

– General constraints (GC): These are primitive constraints as well as dis-
junctions and conjunctions of constraints (defined in terms of general con-
straint terms instead of the usual constraint terms). They correspond to,
but are slightly more general than, the notion of constraint in the previ-
ously defined constraint-language, since they may include lambda terms as
constituents.

The generalized constraint terms correspond exactly to the constraint-lambda
terms. Nevertheless we consider it important to distinguish these two sets, since
the set of pure constraint-lambda terms and pure constraint terms are disjoint:
1 In the rest of the paper we sometimes omit the parentheses around disjunctions and

conjunctions.

3

Definition 3. We call a constraint-lambda term pure if it contains no term of
the form {C}M ; we call a constraint term pure if it contains no lambda term,
i.e., if the only constraint-lambda terms it contains are constraint variables, con-
stants or applications of function-symbols to pure constraint terms. A constraint
C is called a pure constraint if every constraint term appearing in C is pure.
We write Λp for the set of all pure constraint-lambda terms not containing ⊥.

Free and bound variables and substitution are defined in a straightforward
way (see [6] for details). Only lambda variables may appear as free and bound
variables, i.e., FV(X) = ∅ = BV(X). As usual we identify α-equivalent terms, so
we can freely rename bound variables and also ensure no variable appears both
free and bound in M . We postulate the following:

Convention 2 (Variable Convention) The following property holds for all
λ-terms M : No variable appears both free and bound in M , FV(M)∩BV(M) = ∅.
Furthermore, we can always assume by changing bound variables (if necessary)
that for different subterms λx.M1 and λy.M2 of M , we have x 6= y.

2.3 Reduction Rules

Rule 1. Fail on an Inconsistent Store (M,⊗) → (⊥,⊗) (⊥)

Rule 2. Beta-reduction ((λx.M)N,S) → (M [x/N], S) (β)

Rule 3. Reduce Pure Constraint Terms
(C,S) → (n(C), S) if C is a pure constraint and C 6= n(C) (CR)

Rule 4. Introduce Constraint
({C}M,S) → (M,S ⊕ C) if C is a pure constraint (CI)

Rule 5. Use Constraint
(X, S) → (n(M), S ⊕ (X = M)) if S ⊕ (X = M) 6|= false (CS)

Notes on the rules.
Rule 1. Reductions resulting in inconsistent stores correspond to failed com-

putations in logic programming languages.
Rule 2. We allow full beta-reduction in the disjunctive constraint-lambda

calculi. E.g., if we have the integers as constraint domain, (λx.x + 1)5 → 5 + 1.
Rule 3. This rule ties the constraint system into the lambda calculus. E.g.,

continuing our example: 5 + 1 → 6. We do not allow arbitrary transformations
between pure constraint terms, since this does not increase the expressive power
of the system.2

Rule 4. We only allow pure constraints to be passed to the constraint store
since otherwisethe constraint solver could perform transformations other than
2 This rule was not included in our earlier work [8] but it easy to verify that it does

not affect the confluence properties.

4

β-reduction on lambda terms. This would increase the power of the system since
“oracles” might be introduced as predicates in the constraint language. But it
would also require the constraint theory to be a true superset of the lambda
calculus. This would pose a major problem for practical applications of the
calculus, since most constraint systems cannot handle lambda terms.

Rule 5. A constraint variable may be instantiated to any value that is con-
sistent with the constraint store. We only introduce canonical names into the
lambda term since this allows us to obtain confluent restrictions of the disjunc-
tive calculus. We introduce the constraint X = M into the constraint store to
remove the possibility of substituting different values for the same variable.

Definition 4. We say a constraint lambda term M is reducible with store S if
one of the rules (⊥), (β), (CR), (CI) or (CS) is applicable to the pair (M,S).
We say M is reducibleif it is reducible for all stores S. We write M → M ′ as
an abbreviation for ∀S.∃S′.(M,S) → (M ′, S′).

We call a sequence of zero or more reduction steps (M1, S1) → (M2, S2), . . . ,
(Mn−1, Sn−1) → (Mn, Sn) a reduction sequence and abbreviate it by (M1, S1) →∗

(Mn, Sn). We write M →∗ M ′ as an abbreviation for ∀S.∃S′.(M,S) →∗ (M ′, S′).

Example 1. Without the addition of X = M to the store we would have:

(X + X, {X = 2 ∨X = 3}) → (2 + X, {X = 2 ∨X = 3})
→ (2 + 3, {X = 2 ∨X = 3}).

If we add the new constraint to the store, there are only two (essentially different)
possible reduction sequences:

(2) (X + X, {X = 2 ∨X = 3}) → (2 + X, {X = 2 ∨X = 3, X = 2})
→ (2 + 2, {X = 2 ∨X = 3, X = 2})

(3) (X + X, {X = 2 ∨X = 3}) → (3 + X, {X = 2 ∨X = 3, X = 3})
→ (3 + 3, {X = 2 ∨X = 3, X = 3}).

Obviously the order in which the variables are instantiated can be changed.

We need to have the reductions commute with the constructions of con-
straints in order to allow reductions of subterms. (For example, a pair of the
form (λx.(λy.y)x, S) ought to be reducible to (λx.x, S).) If the reduction of a
subterm changes the store, then this change propagates to the store associated
with the enclosing term. We give only a few examples. If (M,S) → (M ′, S′),

(f(M1, . . . ,M, . . . , Mn), S) → (f(M1, . . . ,M
′, . . . ,Mn), S′)

(L ∧M,S) → (L ∧M ′, S′), (LM, S) → (LM ′, S′)
(λx.M, S) → (λx.M ′, S′), ({M}N,S) → ({M ′}N,S′)

To avoid infinite reduction paths where the terms differ only in the names of
constraint variables we impose:

Convention 3 We assume a well-founded partial order ≺ on the set of con-
straint variables. Substitution in rule (CS) is only allowed if, for every variable
Y in M , we have Y ≺ X.

5

Example 2. We write (x|y)X as an abbreviation for {X = x ∨X = y}X with a
fresh constraint-variable X. When we reduce the term (λx.x+x)(2|3)X with an
empty constraint store, we obtain as one possible reduction sequence:

((λx.x + x)(2|3)X , {}) → ({X = 2 ∨X = 3}X + {X = 2 ∨X = 3}X, {})
→ (X + {X = 2 ∨X = 3}X, {X = 2 ∨X = 3})
→ (2 + {X = 2 ∨X = 3}X, {X = 2})
→ (2 + X), {X = 2})
→ (2 + 2).

3 Confluence

It is not possible to have confluence in the traditional sense for the unrestricted
calculus because different reductions can lead to different constraint stores as
well as to different solutions.

Example 3. Consider the pair ((λx.X)({X = cn}M), ∅), where the constraint
store is initially empty. This can be reduced in two different ways. In the first
the final store contains X = cn but in the second the store remains empty and it
is not possible to carry out any further reduction. Thus we have the reductions:

((λx.X)({X = cn}M), ∅) → ((λx.X)M, {X = cn}) by (CI)
→ (X, {X = cn}) by (β)

(∗) → (cn, {X = cn}) by (CS)
but we also have

(∗∗) ((λx.X)({X = cn}M), ∅) → (X, ∅) by β-reduction,

and there is no way to reduce (∗) and (∗∗) to a common term.

Note that the constraint store may contain different sets of constraints at differ-
ent stages of the the reduction so that, while a constraint substitution may not
be possible at some reduction step, it may become possible later.

Definition 5. Suppose that in a reduction sequence (M1, S1) →∗ (Mn, Sn) we
apply rule (CS) zero or more times and replace Xi by cni. If a store S exists,
such that, for all these applications of rule (CS), we have S |= Xi = cni, then
we say that (M1, S1) →∗ (Mn, Sn) is a reduction sequence that can be restricted
to store S.

Let (M,S) →∗ (M1, S1) and (M,S) →∗ (M2, S2) be two reduction sequences.
We say these reduction sequences are compatible if S1 ∪ S2 is consistent.

Definition 6. We call the following property confluence as a reduction system:
For every pair of reductions (M,S) →∗ (M1, S1) and (M,S) →∗ (M2, S2) such
that both reduction sequences can be restricted to store S there exist a term N
and stores S′

1, S′
2 such that (M1, S1) →∗ (N,S′

1) and (M2, S2) →∗ (N,S′
2).

6

Example 1 shows that the unrestricted disjunctive constraint-lambda calculus
is not confluent as a reduction system since different reductions may introduce
different values for a constraint variable. But if two reductions introduce the
same values for all constraint-variables then their results can be reduced to a
common term. This property is made explicit in the remainder of this section.

Since each application of the rule (CS) introduces a constraint Xi = cni into
the store it is clear that all applications of rule (CS) for a variable X in two
compatible reduction sequences substitute the same value for X. From this we
may conclude that the reduction sequences (M,S1 ∪ S2) →∗ (M1, S1 ∪ S2)
and (M,S1 ∪ S2) →∗ (M2, S1 ∪ S2) (obtained from the original sequences by
extending the stores but not changing any reductions) are reduction sequences
in the single-valued calculus. of [8]. These sequences can trivially be restricted to
S1 ∪ S2. It follows from the confluence as a reduction system of the single-valued
constraint-lambda calculus which was proved as Theorem 1 in [8] that there is a
term N and a store S′ such that both (M1, S1 ∪ S2) and (M2, S1 ∪ S2) reduce
to (N,S′). We therefore have:

Theorem 1. Let (M,S) →∗ (M1, S1) and (M,S) →∗ (M2, S2) be compati-
ble reduction sequences. Then there is a term N and a store S′ such that both
(M1, S1 ∪ S2) and (M2, S1 ∪ S2) reduce to (N,S′).

4 Restricted Disjunctive Constraint-Lambda Calculus

The restricted constraint-lambda calculus has the same reduction rules as the
unrestricted constraint-lambda calculus, but the allowed terms are only those
from λI (not λK):

Definition 7. The set of restricted constraint-lambda terms, RCTs, ΛI is de-
fined inductively by the following rules:

– Every lambda variable x and every constraint variable X is a RCT.
– If M is a RCT and x ∈ FV(M), then λx.M is a restricted lambda term.
– If M and N are restricted lambda terms, then MN is a RCT.
– If C is an extended constraint and M a restricted constraint-lambda term,

then {C}M is a RCT.

The sets of extended constraints and extended constraint terms are defined sim-
ilarly to the sets of general constraints and general constraint terms, but with
RCTs in place of general constraint terms.

We write M ∈ ΛI if M is a restricted lambda term.

We use the same conventions as for the unrestricted constraint-lambda cal-
culus, most importantly, we use the variable convention. The reduction rules for
the restricted constraint-lambda calculus are the same as for the unrestricted
constraint-lambda calculus. The terms of the restricted constraint-lambda cal-
culus satisfy certain properties that are not necessarily true of unrestricted terms.

7

Lemma 1. 1. ∀x.M,N ∈ ΛI =⇒ M [x/N] ∈ ΛI ,
2. λx.M ∈ ΛI =⇒ FV((λx.M)N) = FV(M [x/N]),
3. M ∈ ΛI ,M →∗ N =⇒ N ∈ ΛI , and
4. M ∈ ΛI ,M →∗ N,N 6= ⊥ =⇒ FV(M) = FV(N).

For the proof see the appendix.
The following Lemma holds for terms of ΛI . A normal form is a term which

cannot be reduced.

Lemma 2. Let M ∈ ΛI . If (M,S) →∗ (N,S′), where N is a normal form, then
every reduction path starting with (M,S) is finite.

The proof is similar to the one in [1]. We make use of the previously intro-
duced convention 3 for rule (CS) (see page 5) to show that no infinite (CS)-
reduction sequences can occur. This Lemma is also true for the restricted single-
valued calculus. Since we make no other use of this Lemma we omit the details.

5 Path-Confluence

The single-valued restricted constraint-lambda calculus was proved in [8] to be
confluent so we can improve Theorem 1 for terms of the Restricted Disjunctive
Constraint-Lambda Calculus to the following whose proof is in the appendix.

Theorem 2 (Path-confluence). Let M be a RCT and let (M,S) →∗ (M1, S1)
and (M,S) →∗ (M2, S2) be compatible reduction sequences. Then there is a term
N and a store S′ such that both (M1, S1) and (M2, S2) reduce to (N,S′).

6 Denotational Semantics

We defined the denotational semantics of the constraint-lambda calculus without
disjunction in [8] and we recall only a few key points here. We let E denote the
semantic domain of the constraint-lambda terms. The denotational semantics
are defined in such a way that each model for the usual lambda calculus can be
used as a model for the constraint-lambda calculus provided that the model is
large enough to allow an embedding emb : D → E of the underlying constraint
domain D into E. This is usually the case for the constraint domains appearing
in applications. As usual we have an isomorphism E → E ' E. We denote
environments by η (a mapping from lambda variables to E). We can then define
a semantic valuation from the set of constraint terms, T , into D which we call
val : T → D. We shall write val ′ for emb ◦ val : T → E.

We associate a pure lambda term with every constraint-lambda term by
replacing all constraint variables by lambda variables. Let M be a constraint-
lambda term with constraint variables {X1, . . . , Xn} and let {x1, . . . , xn} be a set
of distinct lambda variables not appearing in M . Then the associated constraint-
variable free term, cvt (M), is the term

λx1 . . . λxn.(M [X1/x1] . . . [Xn/xn]).

8

We separate the computation of a constraint-lambda term into two steps.
First we collect all constraints appearing in the term and compute all the lambda
terms contained therein in the appropriate context. Then we apply the associated
constraint-variable free term to the values computed by the constraint-solver to
obtain the value of the constraint-lambda term.

For a constraint-lambda term M and store S we set

1. Dη as the denotation of a constraint-lambda term in an environment η when
the constraints are deleted from the term.3

2. The function CC collects all constraints appearing in the constraint-lambda
term T and evaluates the lambda expressions contained within these con-
straints. The superscript C on C denotes the recursively generated context.

The semantics of a single-valued constraint-lambda term with respect to a store
S is defined as

[[(M,S)]] = {Dη(cvt (M)v1 . . . vn) | S ∪ C◦(M) ` X1 = v1, . . . , Xn = vn}

where D defines the usual semantics for pure lambda terms and ignores con-
straints contained within a term. The superscript ◦ on C indicates that we are
starting with the empty context and building up C as we go into the terms. The
environment η is supposed to contain bindings for the free variables of M .

Intuitively, this definition means that the semantics of a single-valued constr-
aint-lambda term is obtained as the denotation of the lambda term when all
constraints are removed from the term and all constraint-variables are replaced
by their values. In particular we have (by footnote 3):

Fact 1 The denotational semantics of a pure lambda term is the same as in the
traditional denotational semantics.

The denotation of a constraint-lambda term in an environment η, Dη, is
defined as follows:4

Dη(λx.M) = λv.Dη[x/v](M)
Dη(x) = η(x)
Dη(c) = val ′(c)

Dη(MN) = Dη(M)Dη(N)
Dη({C}M) = Dη(M)

Dη(f(M1, . . . ,Mn)) = val ′(f)(Dη(M1), . . . ,Dη(Mn))

When evaluating lambda terms nested inside constraints, we are only in-
terested in results that are pure constraints, since the constraint solver cannot
handle any other terms. Therefore we identify all other constraint-lambda terms
with the failed computation.

We can now show that the semantics of a constraint-lambda term is compat-
ible with the reduction rules.
3 Therefore, for pure constraint-lambda terms, Dη represents the usual semantics.
4 Notice that the semantic function D is only applied to constraint-variable-free terms

and that it does not recurse on constraints, therefore there is no need to define it on
constraints or constraint terms. Furthermore the interpretations of a constant, when
regarded as part of a lambda term or as part of a constraint, coincide, as expected.

9

Lemma 3. For all environments η and all terms M , N , we have

Dη(M [x/N]) = Dη[x/Dη(N)](M).

For unrestricted constraint-lambda terms without disjunction we may lose a
constraint during the reduction and then we get [[(M,S)]] ⊇ [[(M ′, S′)]]. However
in the case of the disjunctive calculus the situation is reversed: Now a smaller
set of constraints implies a larger set of values, therefore if (M,S) → (M ′, S′)
it may be the case that [[(M ′, S′)]] contains values that are not contained in
[[(M,S)]]. Therefore the operational semantics are not correct with respect to the
denotational semantics in this case. This, however, is not surprising if we consider
the meaning of [[(M,S)]]. We have defined the semantics so that this expression
denotes the precise set of values that can be computed in such a way that all
constraints are satisfied. If constraints are dropped during a β-reduction step the
new term places less restrictions on the values of the constraint variables, thus
we obtain an approximation “from above” as the semantics of the new term.5

7 Implementation issues

Application of the rule (CS) to a variable with a large range of possible values
may lead to many unnecessary reductions. If, for example, we introduce

({X = 100}X, {1 ≤ X, X < 500})

with rule (CS) we may have to try many substitutions for X before instantiating
X with the only value that does not lead to an inconsistent store in the next
reduction step. If we introduce the constraint X = 100 into the store the next
reduction step immediately leads to the normal form 100. Therefore one has to be
5 The evaluation of constraints in the denotational semantics is currently done in a

very “syntactical” manner. To see why this is the case, we have to make a short di-
gression into the motivations for defining the semantics in the way they are defined.
As M. B. Smyth points out in [17], the Scott topology is just the Zariski topol-
ogy ([2]) on the ring defined by the lattice structure of the domain in question and
corresponds to the notion of an observable property. It is evident that this topology
cannot be Hausdorff for any interesting domain. The denotational semantics of logic
programming languages, on the other hand, is generally defined on the Herbrand-
universe, and the fixed points are calculated using consequence operators, see [10]
or [4]. It seems that these two methods of defining the denotational semantics do
not match well. A more natural approach in our setting would be to regard the
predicates of the constraint theory as boolean functions over the constraint domain
and constraints as restrictions on the known ranges of these functions. However, this
definition results in a Hausdorff topology on the universe in question, and is therefore
incompatible with the topology of the retract definition. It would be interesting to
see whether this problem can be resolved by a suitable denotational semantics for
the constraint theory. The resulting topology shows another problem: A Hausdorff
topology cannot be the topology resulting from observable properties. This suggests
a connection with the sometimes difficult to control behavior of constraint programs.

10

careful not to apply the (CS)-rule indiscriminately in an implementation of the
constraint-lambda calculus. We discuss practical issues about implementation in
our paper [7].

For applications of the constraint-lambda calculus it is sometimes useful to
extend the system with additional capabilities. One such extension is the addition
of multiple constraint stores, another is the computation of fresh constraint
variables. We discuss this extension in the next section. It adds some additional
complexity to the calculus but we think that this is more than compensated for
by the added expressive power.

8 Multiple Constraint Stores

For some applications it is desirable to split the problem into several smaller
parts and to have each part operate on its own constraint store. This can be done
by extending the constraint-lambda calculus to incorporate multiple constraint
stores. The addition of multiple stores allows us to provide a choice for the
following problem: If a function is applied to a non-deterministic argument,
should all references to this argument be instantiated with the same value or
should it be possible to instantiate each reference individually? For example,
should (λx.x + x)(2|3) return only the values 4 and 6 or should it also return 5?
In Section 2.3 we restricted ourselves to the first solution. With the extension
discussed in this section we allow the user to choose the preferred alternative
by means of a store assignment. To keep the strict separation between program
logic and control, the store assignment is defined on the meta-level.

8.1 Syntax

When we add multiple stores to a constraint-lambda calculus we need a means
of showing on which store the rules (CI) and (CS) operate. To this end we
extend the syntax of the calculus with names for stores, denoted by the letter S
(with indices and subscripts if necessary) and with locations. Syntactically, any
constraint-lambda term can be used as a location, but only locations evaluating
to a store-name can actually select a store. We write the locations as superscripts
to other constraint-lambda terms. For example, in the term MN , the term N is
used as the location for M . In terms of the form {C}NM , the term N is used as
the location for the constraint C, and terms of the form {C}M without location
for the constraint C are not valid terms of the constraint-lambda calculus with
multiple stores. The context-free syntax is therefore

Λ ::= ⊥ | x | X | c | S | ΛΛ | f(Λ, . . . , Λ) | λx.Λ | (ΛΛ) | {GC}ΛΛ.

We write N for the set of all names for stores and C for the set of all constraints.
We extend substitution to the new terms in the natural way:

S[x/L] = S;MN [x/L] = M [x/L]N [x/L]; ({C}NM)[x/L] = {C[x/L]}N [x/L]M [x/L].

11

8.2 Reduction Rules

We want to be able to “alias” store names, i.e., we want to be able to have two
different names refer to the same constraint store. Therefore we define reductions
on triples (M,σ,S) where M is a constraint-lambda term, σ is a map from store
names to integers, σ : N → ω and S is a map from integers to sets of constraints,
S : ω → P(C). where P denotes “power set”. For any integer n we write S⊕n C
for the following mapping:

(S⊕n C)(m) =

{
S(m) if m 6= n

S(n) ∪ {C} if m = n.

If σ is clear from the context, we write S⊕S C for S⊕σ(S) C.
We consider a branch of the computation to fail if any constraint store be-

comes inconsistent in that branch.
With these notations we can define the reduction rules for the disjunctive

constraint-lambda calculus with multiple stores:

(M,σ,S) → (⊥, σ, S) if ∃n ∈ ω.S(n) = ⊗. (⊥)
((λx.M)N,σ,S) → (M [x/N], σ, S). (β)

(C, σ,S) → (n(C), σ, S), if C is a pure constraint & C 6= n(C).
(CR)

({C}SM,σ,S) → (M,σ,S⊕S C), if C is a pure constraint. (CI)

(XS , σ, S) → (M,σ,S⊕S (X = M)), if S⊕ (X = M) 6|= false . (CS)

The closure rules can be transferred mutatis mutandis from the disjunctive
constraint-lambda calculus. We allow reductions in locations: If (M,σ,S) →
(M ′, σ, S′), then (LM , σ, S) → (LM ′

, σ, S′), and similarly for {C}MN .
Next we show how the addition of multiple stores adds even more flexibility.

Example 4. On p. 5, we argued that when we substitute M for X using the rule
(CS) we have to add the constraint X = M to the store to avoid substitutions
such as those in Example 1. With the addition of multiple stores we have more
liberty to define whether we want to allow this kind of behaviour. To illustrate
this we slightly rewrite the example.

We define the abbreviation M |N by: M |N := λxS .{X = M ∨X = N}xS XxS

where X is a fresh constraint variable. This term can be applied to a store name
and evaluates to either M or N . For example, if we write S0 for the map n 7→ ∅,
and if σ is any map N → ω, then we obtain the following reductions:

((2|3)S, σ, S0) → ({X = 2 ∨X = 3}SXS , σ, S0)

→ (XS , σ, S0 ⊕S {X = 2 ∨X = 3})
→ (2, σ, S0 ⊕S {(X = 2 ∨X = 3), X = 2})

and ((2|3)S, σ, S0) → ({X = 2 ∨X = 3}SXS , σ, S0)

→ (XS , σ, S0 ⊕S {X = 2 ∨X = 3})
→ (3, σ, S0 ⊕S {(X = 2 ∨X = 3), X = 3}).

12

Now consider a more complicated expression (corresponding to Example 2):
(λx.xS1+xS2)(2|3). If we evaluate this expression with a map σ for which σ(S1) =
σ(S2) it is obvious that this expression only evaluates to the values 4 and 6. If we
change σ to a map where σ(S1) 6= σ(S2) we obtain the three values 4, 5 and 6.
In general this is not the desired behavior for arithmetic problems, but for other
problems this behavior is more sensible. For example, if we allow constraints to
range over job-titles in an organization, then it might be reasonable for a function
talkTo(programmer |manager) to talk to the manager in the part dealing with
business matters and to the programmer when deciding technical details.

Another example where the choice of different values for a single constraint vari-
able is useful are compilers. One specific example is code generators: An opti-
mizing compiler might have different code generators for the same intermediate-
language expression; these code generators usually represent different trade-offs
that can be made between compilation speed, execution speed, space and safety.
For example, the d2c compiler can assign either a speed-representation or a
space-representation to a class. The CMUCL Common Lisp compiler has differ-
ent policies (:fast, :safe, :fast-safe and :small) with which an intermediate
representation might be translated into machine code. In a compiler based on
the constraint-lambda calculus the policy used for the translation of some inter-
mediate code could be determined by a constraint solver. This constraint-solver
might compute disjunctive solutions, e.g., the permissible policy values might
be :safe and :fast-safe, but not :small and :fast because some constraint
on the safety of the program part in question has to be satisfied. In this case it
is obviously desirable if different instantiations of the “policy-variable” can be
instantiated with different values: An innermost loop might be compiled with
:fast-safe policy to attain the highest possible execution speed while user-
interface code might be compiled with the :safe policy to reduce the size of the
program.

9 Comparison with earlier work

In [13], Mandel and Cengarle provided a partial solution of the disjunction prob-
lem only. We have now provided mechanisms for resolving Hennessy’s problem
(see Section 1) in both directions.

A current example for a constraint-functional language is Alice [15] which is
based on a concurrent lambda calculus with futures, λ(fut) [14, 16]. The λ(fut)
calculus is not directly concerned with integration of constraints but rather al-
lows the integration of constraint solvers via general-purpose communication
mechanisms. There are two major technical differences between λ(fut) and our
work: the treatment of concurrency, and how far the order of evaluations is
restricted.

In our constraint-lambda calculi we do not deal with concurrency in the
reduction rules of the calculi, we use reduction strategies to specify parallel exe-
cutions on the meta-level. λ(fut) incorporates an interleaving semantics for con-
current execution of multiple threads directly in the reduction rules. This makes

13

it possible to talk about communication between concurrently executing threads
in λ(fut) but not in the basic constraint-lambda calculi. In citeHthesis we have
developed an extension of the constaint-lambda calculi that can model explicit
communication with the environment.

The λ(fut) calculus uses the call-by-value β-reduction rule, which requires
all arguments to functions to be evaluated before the function can be applied.
Furthermore, to preserve confluence, futures may only be evaluated at precisely
specified points of a reduction secuence. The constraint-lambda calculi do not re-
strict applications of the β-rule at all and in general impose very few restrictions
on allowed reductions.

10 Conclusions and future work

We have extended constraint functional programming to accommodate disjunc-
tions. In particular we have introduced the unrestricted disjunctive constraint-
lambda calculus and the restricted disjunctive constraint-lambda calculus in a
simple and transparent fashion which, unlike previous attempts at defining com-
binations of constraint solvers and lambda calculi, makes them conservative ex-
tensions of the corresponding traditional lambda calculi.

The interface between the constraint store and the lambda terms ensures
clarity and the smooth movement of information into and out of the constraint
store.

We have shown that the restricted disjunctive constraint-lambda calculus
satisfies a restricted form of confluence, namely that it is path-confluent as a re-
duction system. In the case of the the unrestricted disjunctive constraint-lambda
calculus the stores play an important rôle and we can prove convergence of the
terms only under certain conditions on the stores (Theorem 1).

In addition, we have given the denotational semantics for each of these the-
ories.

Finally, we have shown how both horns of Hennessy’s dilemma: e.g., the
evaluation of (λx.x + x)(2|3) to either {4, 6} or {4, 5, 6}, can be accommodated
by the appropriate choice of one of our calculi.

In the future we are planning to extend our implementation of the con-
straint lambda calculi without disjunction (see [6, 7]) to the disjunctive constraint
lambda calculi treated here.

References

1. Henk Barendregdt. The Lambda Calculus, Its Syntax and Semantics. North Hol-
land, 1995.

2. Nicolas Bourbaki. Commutative Algebra, Chapters 1-7. Elements of Mathematics.
Springer, 1989, first published 1972.

3. Bart Demoen, Maŕıa Garćıa de la Banda, Warren Harvey, Kim Marriott, and
Peter Stuckey. An overview of HAL. In Proceedings of Principles and Practice
of Constraint Programming, pages 174–188. Asociation for Computing Machinery,
1999.

14

4. Kees Doets. From Logic to Logic Programming. The MIT Press, 1994.
5. Matthew C. B. Hennessy. The semantics of call-by-value and call-by-name in a

nondeterministic environment. SIAM Journal on Computing, 9(1):67–84, 1980.
6. Matthias Hölzl. Constraint-Lambda Calculi: Theory and Applications. PhD thesis,

Ludwig-Maximilians-Universität, München, 2001.
7. Matthias M. Hölzl and John Newsome Crossley. Parametric search in constraint-

functional languages. In preparation.
8. Matthias M. Hölzl and John Newsome Crossley. Constraint-lambda calculi. In

Alessandro Armando, editor, Frontiers of Combining Systems, 4th International
Workshop, LNAI 2309, pages 207–221. Springer, 2002.

9. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Conference
Record, 14th Annual ACM Symposium on Principles of Programming Languages,
Munich, West Germany, 21–23 Jan 1987, pages 111–119. Association for Comput-
ing Machinery, 1987.

10. John Wylie Lloyd. Foundations of Logic Programming. Artificial Intelligence.
Springer, second edition, 1987. First edition, 1984.

11. Luis Mandel. Constrained Lambda Calculus. PhD thesis, Ludwig-Maximilians-
Universität, München, 1995.

12. Luis Mandel and Maŕıa Victoria Cengarle. The disjunctive constrained lambda
calculus. In Dines Bjørner, Manfred Broy, and Igor Vasilevich Pottosin, editors,
Perspectives of Systems Informatics, (2nd. International Andrei Ershov Memo-
rial Conference, Proceedings), volume 1181 of Lecture Notes in Computer Science,
pages 297–309. Springer Verlag, 1996.

13. Luis Mandel and Maŕıa Victoria Cengarle. The disjunctive constrained lambda
calculus. In Dines Bjørner, Manfred Broy, and Igor Vasilevich Pottosin, editors,
Perspectives of Systems Informatics, (2nd. International Andrei Ershov Memo-
rial Conference, Proceedings), volume 1181 of Lecture Notes in Computer Science,
pages 297–309. Springer Verlag, 1996.

14. Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. In Bernhard Gramlich, editor, 5th International Workshop
on Frontiers in Combining Systems, Lecture Notes in Computer Science. Springer,
May 2005. Accepted for publication.

15. Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Alice through the looking glass. In Hans-Wolfgang Loidl, editor, Trends
in Functional Programming, Volume 5, volume 5 of Trends in Functional Program-
ming. Intellect, Munich, Germany, 2004.

16. Jan Schwinghammer. A concurrent lambda-calculus with promises and futures.
Master’s thesis, Programming Systems Lab, Universität des Saarlandes, February
2002.

17. Michael B. Smyth. Topology. In Handbook of Logic in Computer Science, pages
641–761. Oxford Science Publications, 1992.

15

Appendix: Proofs

Lemma 1.

Proof. The first statement can be shown by induction on the structure of M :
If M = x, then M [x/N] = N and N ∈ ΛI . If M = y, M = c or M = X the
statement is obvious. If M = λy.L, then x 6= y by the variable convention and
M [x/N] = M . If M = M1M2, then M [x/N] = M1[x/N]M2[x/N] by definition;
by the induction hypothesis each of the terms M1[x/N], M2[x/N] is a restricted
constraint-lambda term. Therefore, M1[x/N]M2[x/N] = M ∈ ΛI by the defi-
nition of ΛI . If M = {C}L, then M [x/N] = {C[x/N]}L[x/N], and the result
follows again by the induction hypothesis and the definition of ΛI .

To prove the second statement, we note that, by the definition of ΛI , we
have x ∈ FV(M). If λx.M ∈ ΛI , the term N is substituted in at least one place,
therefore the free variables of M [x/N] are FV(M) \ {x} ∪ FV(N).

The third statement follows by induction on the generation of →. If M is of
the form (λx.M1)M2, then M → M1[x/M2], which is a RCT by (1). If M is a
RCT of the form {C}L and C is a pure constraint, then L is obviously a RCT
as well. Similarly for X → M ′.

If M is of the form λx.L and L → L′, then by (2) FV(L) = FV(L′) and
therefore λx.L′ is a RCT. The other cases are similar.

The proof of the last statement is again by induction on the generation of →.
If M is of the form (λx.M1)M2 and N = M1[x/M2], the result follows from (2).
If M = {C}L and N = L, the result follows because in this case C is a pure
constraint and therefore does not contain λ-variables. If a term of the form
M = X is reduced using rule (CI), we have made the restriction that the newly
introduced term may not contain any λ-variables. Pure constraint terms do not
contain lambda-variables, therefore applications of rule (CR) do not change the
set of free variables. The inductive step is straightforward.

Theorem 2.

Proof. Let SE be the set of all constraints of the form Xi = cni for applications
of rule (CS) with variable Xi and canonical name cni in the two reduction
sequences. Let S′ be the union S ∪ SE . Then it is obvious that we obtain
reduction sequences (M,S′) →∗ (M1, S

′
1) and (M,S′) →∗ (M2, S

′
2) for some

stores S′
1 and S′

2. These are also reduction sequences in the single-valued calculus.
It follows therefore from the confluence of the single-valued calculus that there
is a term N and a store S′ such that both (M1, S

′
1) and (M2, S

′
2) can be reduced

to (N,S′).
A reduction sequence

(M,S′) = (L1, S̃1) → (L2, S̃2) → · · · → (Lk, S̃k) = (N,S ′′)

in the restricted single-valued calculus can be transformed into a reduction se-
quence in the restricted disjunctive calculus

(M,S) = (L1,S1) → (L2,S2) → · · · → (Lk,Sk) = (N,Sk)

16

where Si is consistent if S̃i is. The transformation is done according to the
following rules:

– If (Li, S̃i) → (Li+i, S̃i+i) with rule (β) then S̃i = S̃i+i and (Li,Si) →
(Li+i,Si) with rule (β).

– If (Li, S̃i) → (Li+i, S̃i+i) with rule (CR) then S̃i = S̃i+i and (Li,Si) →
(Li+i,Si) with rule (CR).

– If (Li, S̃i) → (Li+i, S̃i+i) with rule (CI), then S̃i+i = S̃i ⊕ C for a pure
constraint C. In this case (Li,Si) → (LiSi+i) with Si+i = Si ⊕ C. Since S̃i

is consistent, it follows from the construction of Si that Si is consistent as
well.

– If (Li, S̃i) → (Li+i, S̃i+i) with rule (CS) and if X is replaced with cn by
this application of (CS) then (Li,Si) → (Li+i,Si ⊕ X = cn). In this case
S̃i |= X = cn, therefore Si ⊕X = cn is consistent.

Therefore there exist compatible stores S1
′′ and S2

′′ such that (M1, S1) →∗

(N,S1
′′) and (M2, S2) → (N,S2

′′).

17

