
A Sender Verifiable Mix-Net and
a New Proof of a Shuffle

Douglas Wikström

Royal Institute of Technology (KTH),
KTH, Nada, SE-100 44 Stockholm, Sweden

dog@nada.kth.se

Abstract. We introduce the first El Gamal based mix-net in which
each mix-server partially decrypts and permutes its input, i.e., no re-
encryption is necessary. An interesting property of the construction is
that a sender can verify non-interactively that its message is processed
correctly. We call this sender verifiability.

The mix-net is provably UC-secure against static adversaries corrupt-
ing any minority of the mix-servers. The result holds under the decision
Diffie-Hellman assumption, and assuming an ideal bulletin board and an
ideal zero-knowledge proof of knowledge of a correct shuffle.

Then we construct the first proof of a decryption-permutation shuffle,
and show how this can be transformed into a zero-knowledge proof of
knowledge in the UC-framework. The protocol is sound under the strong
RSA-assumption and the discrete logarithm assumption.

Our proof of a shuffle is not a variation of existing methods. It is based
on a novel idea of independent interest, and we argue that it is at least
as efficient as previous constructions.

1 Introduction

The notion of a mix-net was invented by Chaum [10]. Properly constructed a
mix-net takes a list of cryptotexts and outputs the cleartexts permuted using a
secret random permutation. Usually a mix-net is realized by a set of mix-servers
organized in a chain that collectively execute a protocol. Each mix-server receives
a list of encrypted messages from the previous mix-server, transforms them, using
partial decryption and/or random re-encryption, reorders them, and outputs the
result. The secret permutation is shared by the mix-servers.

1.1 Previous Work

Chaum’s original “anonymous channel” [10, 40] enables a sender to send mail
anonymously. When constructing election schemes [10, 17, 42, 47, 39] a mix-net
can be used to ensure that the vote of a given voter cannot be revealed. Abe gives
an efficient construction of a general mix-net [2], and argues about its properties.
Jakobsson has written (partly with Juels) more general papers on the topic of
mixing [30, 31, 32] focusing on efficiency. There are two known approaches to

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 273–292, 2005.
c© International Association for Cryptologic Research 2005

274 D. Wikström

proving a correct shuffle efficiently. These are introduced by Furukawa et al.
[19, 20, 21], and Neff [37, 38] respectively. Groth [27] generalizes Neff’s protocol
to form an abstract protocol for any homomorphic cryptosystem.

Desmedt and Kurosawa [13] describe an attack on a protocol by Jakobsson
[30]. Similarly Mitomo and Kurosawa [36] exhibit a weakness in another pro-
tocol by Jakobsson [31]. Pfitzmann has given some general attacks on mix-nets
[44, 43], and Michels and Horster give additional attacks in [35]. Wikström [48]
gives several attacks for a protocol by Golle et al. [26]. He also gives attacks
for the protocols by Jakobsson [31] and Jakobsson and Juels [33]. Abe [3] has
independently found related attacks.

Canetti [9], and independently Pfitzmann and Waidner [45] proposed security
frameworks for reactive processes. We use the former universal composability
(UC) framework. Both frameworks have composition theorems, and are based
on older definitional work. The initial ideal-model based definitional approach
for secure function evaluation is informally proposed by Goldreich, Micali, and
Wigderson in [22]. The first formalizations appear in Goldwasser and Levin [24],
Micali and Rogaway [34], and Beaver [5]. See [8, 9] for an excellent background
on these definitions.

Wikström [49] defines the notion of a mix-net in the UC-framework, and
provides a construction that is provably secure against static adversaries under
the decisional Diffie-Hellman assumption. The scheme is practical only when the
number of mix-servers is small.

1.2 Contributions

We introduce a new type of El Gamal based mix-net in which each mix-server
only decrypts and permutes its input. No re-encryption is necessary. This allows
an individual sender to verify non-interactively that its message was processed
correctly, i.e., the scheme is sender verifiable. Although some older constructions
have this property, our is the first provably secure scheme.

Then we give the first proof of a decrypt-permutation shuffle of El Gamal
cryptotexts. There are two known approaches, [37, 27] and [19], to construct such
a protocol, but our solution is based on a novel idea of independent interest, and
we argue that it is at least as efficient as previous schemes.

We also give the first transformation of a proof of a shuffle into an efficient
zero-knowledge proof of knowledge in the UC-framework. An important technical
advantage of the new decrypt and permute construction is that witnesses are
much smaller than for previous shuffle relations.

Combined, our results give a mix-net that is provably UC-secure against
static adversaries corrupting any minority of the mix-servers. The mix-net is
efficient for any number of mix-servers, improving the result in Wikström [49].

1.3 Outline of the Paper

The paper is organized as follows. Notation is introduced in Section 2. In Section
3 we define the ideal mix-net functionality. A partial result in this direction is

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 275

given in Section 4, where we describe a sender verifiable mix-net and discuss sender
verifiability. In Section 5 we describe a zero-knowledge proof of knowledge that a
mix-server processes its input correctly. Then in Section 6 we transform this into a
realization of an ideal zero-knowledge functionality in the UC-framework. Proofs
of all claims are given in the full version [50] of this paper.

2 Notation

Throughout, S1, . . . , SN denote senders and M1, . . . , Mk mix-servers. All partic-
ipants are modeled as interactive Turing machines. We abuse notation and use
Si and Mj to denote both the machines themselves and their identity. We denote
the set of permutations of N elements by ΣN . We use the term “randomly” in-
stead of “uniformly and independently at random”. A function f : N → [0, 1] is
said to be negligible if for each c > 0 there exists a K0 ∈ N such that f(K) < K−c

for K > K0 ∈ N. A probability p(K) is overwhelming if 1 − p(K) is negligible.
We assume that Gq is a group of prime order q with generator g for which

the Decision Diffie-Hellman (DDH) Assumption holds. Informally, it means that
it is infeasible to distinguish the distributions (gα, gβ , gαβ) and (gα, gβ , gγ) when
α, β, γ ∈ Zq are randomly chosen. This implies that also the Discrete Logarithm
(DL) assumption holds, namely that it is infeasible to compute the logarithm
in base g of a random element in Gq. For concreteness we let Gq be a subgroup
of prime order q of the multiplicative group Z

∗
p for some prime p. When we say

that an element in Zq is prime, we mean that its representative in {0, . . . , q − 1}
is a prime when considered as an integer.

We review the El Gamal [14] cryptosystem employed in Gq. The private key
x is generated by choosing x ∈ Zq randomly. The corresponding public key is
(g, y), where y = gx. Encryption of a message m ∈ Gq using the public key (g, y)
is given by E(g,y)(m, r) = (gr, yrm), where r is chosen randomly from Zq, and
decryption of a cryptotext on the form (u, v) = (gr, yrm) using the private key
x is given by Dx(u, v) = u−xv = m.

We also use an RSA modulus N = pq, where p and q are safe primes.
We denote by QRN the group of squares in Z

∗
N and adopt the convention that

any element b in QRN is written in boldface. We assume that the strong RSA-
assumption holds for such rings. Informally, it means that given random (N,h),
where h ∈ QRN, it is infeasible to find a non-trivial eth root b of h, i.e., an
e �= ±1 such that be = h. This differs from the RSA-assumption in that e is not
fixed.

The primary security parameter K1 is the number of bits in q. Several other
security parameters are introduced later in the paper. We denote by PRG a
pseudo-random generator (cf. [23]). We denote by Sort the algorithm that given
a list of strings as input outputs the same set of strings in lexicographical order.

2.1 The Universally Composable Security Framework

We analyze the security of our protocols in the Universally Composable (UC)
security framework of Canetti [9]. There are several variants and extensions of

276 D. Wikström

this framework, but we consider a plain model with asynchronous authenticated
communication. In the full version [50] we give a formal definition of this model.
Here we only indicate how our notation differs from the standard [9].

The notion of a communication model, CI , used below is not explicit in
Canetti [9]. It works as a router between participants and between participants
and ideal functionalities. Given the input ((A1, B1, C1, . . .), . . . , (As, Bs, Cs, . . .)
it interprets Aj as the receiver of (Bj , Cj , . . .). The adversary cannot read the
correspondence with ideal functionalities, but it has full control over when a
message is delivered.

Our results hold for both blocking and non-blocking adversaries, where a
blocking adversary is allowed to block the delivery of a message indefinitely.

Definition 1. We define Ml to be the set of static adversaries that corrupt
less than l out of k participants of the mix-server type, and arbitrarily many
participants of the sender type.

Throughout we implicitly assume that a message handed to an ideal functional-
ity that is not on the form prescribed in its definition is returned to the sender
immediately. In particular this includes verifying membership in Gq when ap-
propriate. We use the same convention for definitions of protocols.

3 The Ideal Mix-Net

Although other definitions of security of mix-nets have been proposed, the most
natural definition is given by Wikström [49] in the UC-framework. He formalizes
a trusted party that waits for messages from senders, and then when a majority of
the mix-servers request it, outputs these messages but in lexicographical order.
For simplicity it accepts only one input from each sender. We prove security
relative this functionality.

Functionality 1 (Mix-Net). The ideal functionality for a mix-net, FMN, run-
ning with mix-servers M1, . . . , Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, and set JP = ∅ and JM = ∅.
2. Repeatedly wait for new inputs and do

(a) Suppose (Si, Send, mi), mi ∈ Gq, is received from CI . If i �∈ JP , set
JP ← JP ∪ {i}, and append mi to L. Then hand (S, Si, Send) to CI .

(b) Suppose (Mj , Run) is received from CI . Set JM ← JM ∪ {j}. If |JM | >
k/2, then sort the list L lexicographically to form a list L′, hand
((S, Mj , Output, L′), {(Ml, Output, L′)}k

l=1) to CI and ignore further
messages. Otherwise, hand CI the list (S, Mj , Run).

4 A Sender Verifiable El Gamal Based Mix-Net

In recent El Gamal based mix-nets, e.g. [38, 20, 49], the mix-servers form a chain,
and each mix-server randomly permutes, partially decrypts, and re-encrypts the

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 277

output of the previous mix-server. In older constructions decryption is instead
carried out jointly at the end of the chain. Our construction is different in that
each mix-server partially decrypts and sorts the output of the previous mix-
server. Thus, no cryptotext is re-encrypted and the permutation is not random,
but determined by the lexicographical order of the cryptotexts.

Let us consider why re-encryption is often considered necessary. In several
previous mix-nets each mix-server Mj holds a secret key xj ∈ Zq corresponding
to a public key yj = gxj . A joint public key y =

∏k
j=1 yj is used by a sender Si

to compute a cryptotext (u0,i, v0,i) = (gri , yrimi) of a message mi for a random
ri ∈ Zq. The mix-servers take turns and compute

(uj,i, vj,i)N
i=1 =

(

gsj,iuj−1,πj(i),

(k∏

l=j+1

yl

)sj,i

vj−1,πj(i)/u
xj

j−1,πj(i)

)N

i=1
,

for random sj,i ∈ Zq and πj ∈ ΣN , i.e., each mix-server permutes, partially
decrypts and re-encrypts its input. In the end (vk,i)N

i=1 = (mπ(i))N
i=1 for some

random joint permutation π. The reason that re-encryption is necessary with
this type of scheme is that otherwise the first component u0,i of each cryptotext
remains unchanged during the transformation, which allows anybody to break
the anonymity of all senders. For the older type of construction it is obvious why
re-encryption is necessary.

4.1 Our Modification

We modify the El Gamal cryptosystem to ensure that also the first component
uj−1,i is changed during partial decryption. Each mix-server is given a secret key
(wj , xj) ∈ Z

2
q and a corresponding public key (zj , yj) = (gwj , gxj). To partially

decrypt and permute its input it computes

(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i)N
i=1 , (1)

from Lj−1, and sorts the result lexicographically. The result is denoted by Lj =
(uj,i, vj,i)N

i=1. Note that both components of each cryptotext are transformed
using the secret key of the mix-server. For this transformation to make any
sense we must also modify the way the joint key is formed. We define

(Zk+1, Yk+1) = (g, 1) and (Zj , Yj) = (Zwj

j+1, Yj+1Z
xj

j+1) . (2)

The joint keys must be computed jointly by the mix-servers. A sender en-
crypts its message using the public key (Z1, Y1), i.e., (u0,i, v0,i) = (Zri

1 , Y ri
1 mi)

for some random ri. The structure of the keys are chosen such that a crypto-
text on the form (uj−1,i, vj−1,i) = (Zri

j , Y ri

j mi) given as input to mix-server Mj

satisfies

(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i) = (Zri/wj

j , Y ri

j Z
−rixj/wj

j mi)

= ((Z1/wj

j)ri , (YjZ
−xj/wj

j)rimi) = (Zri

j+1, Y
ri

j+1mi) .

278 D. Wikström

Thus, each mix-server Mj transforms a cryptotext (uj−1,i, vj−1,i) encrypted
with the public key (Zj , Yj) into a cryptotext (uj,i, vj,i) encrypted with the public
key (Zj+1, Yj+1). Note that Sort({vk,i}N

i=1) = Sort({mi}N
i=1), since Yk+1 = 1.

There are several seemingly equivalent ways to set up the scheme, but some
of these do not allow a reduction of the security of the mix-net to the DDH-
assumption. The relation in Equation (1) is carefully chosen to allow a reduction.

4.2 Sender Verifiability

An important consequence of our modification is that a sender can compute
(Zri

j+1, Y
ri

j+1mi) and verify that this pair is contained in Lj for j = 1, . . . , k.
Furthermore, if this is not the case the sender can easily prove to any outsider
which mix-server behaved incorrectly. We call this sender verifiability, since it
allows a sender to verify that its cryptotext is processed correctly by the mix-
servers. This is not a new property. In fact Chaum’s original construction [10]
has this property, but our construction is the first provably secure scheme with
this property.

We think that sender verifiability is an important property that deserves
more attention. The verification process is unconditional and easily explained
to anybody with only a modest background in mathematics, and a verification
program can be implemented with little skills in programming. This means that
in the main application of mix-nets, electronic elections, a sender can convince
herself that her vote was processed correctly. We stress that this verification does
not guarantee anonymity or correct processing of any other cryptotext. Thus, a
proof of the overall security of the mix-net is still required.

The reader may worry that sender verifiability allows a voter to point out
its vote to a coercer. This is the case, but the sender can do this in previous
mix-nets as well by pointing at its message in the original list L0 of cryptotexts
and revealing the randomness used during encryption, so this problem is not
specific to our scheme. Furthermore, our scheme becomes coercion-free whenever
the sender does not know the randomness of its cryptotext, as other El Gamal
based mix-nets, but sender verifiability is then lost.

4.3 A Technical Advantage

There is also an important technical consequence of the lack of re-encryption in
the mixing process. The witness of our shuffle relation consists of a pair (wj , xj),
which makes it easy to turn our proof of knowledge into a secure realization of
the ideal functionality FRDP

ZK . This should be contrasted with all previous shuffle
relations, where the witness contains a long list of random exponents used to
re-encrypt the input that must somehow be extracted by the ideal adversary in
the UC-setting.

A potential alternative to our approach is to formalize the proof of a shuffle as
a proof of membership [7] in the UC-framework. However, a proof of membership
is not sufficient for the older constructions where decryption is carried out jointly
at the end of the mixing chain. The problem is that the adversary could corrupt

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 279

the last mix-server Mk and instruct it to output L0 instead of a re-encryption and
permutation of Lk−1. This would obviously break the anonymity of all senders.
The malicious behavior is not detected, since the ideal proof of membership only
expects an element in the language and no witness from corrupted parties, and
L0 is a re-encryption and permutation of Lk−1. Interestingly, it seems that the
adversary cannot attack the real protocol if the proof of membership of a correct
shuffle is implemented using a proof of knowledge in the classical sense.

It is an open question if a proof of membership suffices for mix-nets where
each mix-server partially decrypts and then re-encrypts and permutes its input.

4.4 Preliminaries

We describe the mix-net in a hybrid model as defined in the UC-framework. This
means that the mix-servers and senders have access to a set of ideal function-
alities introduced in this section. We assume the existence of an authenticated
bulletin board. All parties can write to it, but no party can erase any message
from it. A formal definition is given in [49, 50]. We also assume an ideal func-
tionality corresponding to the key set-up sketched in Section 4.1. This is given
below.

Functionality 2 (Special El Gamal Secret Key Sharing). The ideal Spe-
cial El Gamal Secret Key Sharing over Gq, FSKS, with mix-servers M1, . . . , Mk,
senders S1, . . . , SN , and ideal adversary S.

1. Initialize sets Jj = ∅ for j = 0, . . . , k.
2. Until |J0| = k, repeatedly wait for inputs. If (Mj, MyKey, wj , xj) is received

from CI such that wj , xj ∈ Zq and j �∈ J0. Set J0 ← J0 ∪ {j} compute
zj = gwj and yj = gxj , and hand (S, PublicKey, Mj, wj , zj) to CI .

3. Set (Zk+1, Yk+1) = (g, 1) and (Zj , Yj) = (Zwj

j+1, Yj+1Z
xj

j+1). Then hand
((S, PublicKeys,(Zj , Yj , zj, yj)k

j=1),{(Si, PublicKeys, (Zj , Yj , zj , yj)k
j=1)}N

i=1,

{(Ml, Keys, wl, xl, (Zj , Yj , zj, yj)k
j=1)}k

l=1) to CI .
4. Until |J0| = k, repeatedly wait for inputs. If (Mj , Recover, Ml) is received

from CI , set Jl ← Jl∪{j}. If |Jl|>k/2, then hand ((S, Recovered, Ml, wl, xl),
{(Mj, Recovered, Ml, wl, xl)}k

j=1) to CI , and otherwise hand
(S, Mj , Recover, Ml) to CI .

The above functionality can be securely realized by letting each mix-server
secret share its secret key using Feldman’s [15] verifiable secret sharing scheme.
Note that the functionality explicitly allows corrupted mix-servers to choose
their keys in a way that depends on the public keys of uncorrupted mix-servers.
The special joint keys would then be computed iteratively using Equation (2),
and during this process each mix-server would prove that it does this correctly
using standard methods.

Each mix-server partially decrypts each cryptotext and sorts the resulting
cryptotexts. Thus, proving correct behavior corresponds to proving knowledge
of a secret key (w, x) such that the cryptotexts (ui, vi) input to a mix-server are
related to the cryptotexts (u′

i, v
′
i) it outputs by the following relation.

280 D. Wikström

Definition 2 (Knowledge of Correct Decryption-Permutation). Define
for each N a relation RDP ⊂ (G3

q × G2N
q × G2N

q) × (Zq × Zq), by

((g, z, y, {(ui, vi)}N
i=1, {(u′

i, v
′
i)}N

i=1), (w, x)) ∈ RDP

precisely when z = gw, y = gx and (u′
i, v

′
i) = (u1/w

π(i), vπ(i)u
−x/w
π(i)) for i = 1, . . . , N

and π ∈ ΣN such that the list {(u′
i, v

′
i)}N

i=1 is sorted lexicographically.

To avoid a large class of “relation attacks” [44, 43, 48] no sender can be al-
lowed to construct a cryptotext of a message related to the message encrypted
by some other sender. Thus, each sender is required to prove knowledge of the
randomness it uses to form its cryptotexts. This corresponds to the following
relation.

Definition 3 (Knowledge of Cleartext). Define a relation RC ⊂ G4
q × Zq

by ((Z, Y, u, v), r) ∈ RC precisely when logZ u = r.

Formally, we need a secure realization of the following functionality parame-
terized by the above relations.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let L be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FR

ZK of a witness w to an element x ∈ L, running with parties
P1, . . . , Pk

1. Upon receipt of (Pi, Prover, x, w) from CI , store w under the tag (Pi, x),
and hand (S, Pi, Prover, x, R(x, w)) to CI .

2. Upon receipt of (Mj , Question, Pi, x) from CI , let w be the string stored
under the tag (Pi, x) (the empty string if nothing is stored), and hand
((S, Mj , Verifier, Pi, x, R(x, w)), (Mj , Verifier, Pi, R(x, w))) to CI .

In [49] a secure realization πC of FRC
ZK is given, under the DDH-assumption,

which is secure against Mk/2-adversaries.
The functionality FRDP

ZK is securely realized in Section 6.

4.5 The Mix-Net

We now give the details of our mix-net. It executes in a hybrid model with access
to the ideal functionalities described above.

Protocol 1 (Mix-Net). The mix-net protocol πMN =(S1, . . . , SN , M1, . . . , Mk)
consists of senders Si, and mix-servers Mj.

Sender Si. Each sender Si proceeds as follows.
1. Wait for (PublicKeys, (Zj , Yj , zj , yj)k

j=1) from FSKS.
2. Wait for an input (Send, mi), mi ∈ Gq. Then choose ri ∈ Zq randomly and

compute (ui, vi) = E(Z1,Y1)(mi, ri) = (Zri
1 , Y ri

1 mi). Then hand
(Prover, (Z1, Y1, ui, vi), ri) to FRC

ZK , and hand (Write, (ui, vi)) to FBB.

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 281

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Choose wj , xj ∈ Zq randomly and hand (MyKey, wj , xj) to FSKS.
2. Wait for (Keys, (wj , xj), (Zj , Yj , zj , yj)k

j=1) from FSKS, where wj , xj ∈ Zq

and Zj , Yj , zj , yj ∈ Gq.
3. Wait for an input (Run), and then hand (Write, Run) to FBB.
4. Wait until more than k/2 different mix-servers have written Run on FBB,

and let the last entry of this type be (cRun, Mi, Run).
5. Form the list L∗ = {(uγ , vγ)}γ∈I∗ , for some index set I∗, by choosing for

γ = 1, . . . , N the entry (c, Sγ , (uγ , vγ)) on FBB with the smallest c < crun
such that uγ , vγ ∈ Gq, if present.

6. For each γ ∈ I∗ do the following,
(a) Hand (Question, Sγ , (Z1, Y1, uγ , vγ)) to FRC

ZK .
(b) Wait for (Verifier, Sγ , bγ) from FRC

ZK .
Then form L0 = {(u0,i, v0,i)}N ′

i=1 consisting of pairs (uγ , vγ) such that bγ = 1.
7. For l = 1, . . . , k do

(a) If l �= j, then do
i. Wait until an entry (c, Ml, (List, Ll)) appears on FBB, where Ll is

on the form {(ul,i, vl,i)}N ′

i=1 for ul,i, vl,i ∈ Gq.
ii. Hand (Question, Ml, (g, zl, yl, Ll−1, Ll)) to FRDP

ZK , and wait for
(Verifier, Ml, bl) from FRDP

ZK .
iii. If bl = 0, then hand (Recover, Ml) to FSKS, and wait for

(Recovered, Ml, (wl, xl)) from FSKS. Then compute

Ll = {(ul,i, vl,i)}N ′

i=1 = Sort({(u1/wl

l−1,i, vl−1,iu
−xl/wl

l−1,i)}N ′

i=1) .

(b) If l = j, then compute

Lj = {(uj,i, vj,i)}N ′

i=1 = Sort({(u1/wj

j−1,i, vj−1,iu
−xj/wj

j−1,i)}N ′

i=1) ,

Finally hand (Prover, (g, zj, yj , Lj−1, Lj), (wj , xj)) to FRDP
ZK , and hand

(Write, (List, Lj)) to FBB.
8. Output (Output, Sort({vk,i}N ′

i=1)).

Theorem 1. The ideal functionality FMN is securely realized by πMN in the
(FBB, FSKS, FRC

ZK , FRDP
ZK)-hybrid model with respect to Mk/2-adversaries under

the DDH-assumption in Gq.

5 A New Efficient Proof of a Shuffle

We want to securely realize the ideal functionality FRDP
ZK . It turns out that a

useful step in this direction is to construct a statistical zero-knowledge proof for
the relation RDP, i.e., a proof of the decryption-permutation shuffle. First we
explain the key ideas in our approach. Then we give a detailed description of our
protocol. Finally, we explain how it can be turned into a public coin protocol.

282 D. Wikström

5.1 Our Approach

The protocol for proving the relation RDP is complex, but the underlying ideas
are simple. To simplify the exposition we follow Neff [37, 38] and consider the
problem of proving that a list of elements in Gq are exponentiated and permuted.
More precisely, let y, u1, . . . , uN , u′

1, . . . , u
′
N ∈ Gq be defined by y = gx and

u′
i = ux

π(i) for a permutation π. Only the prover knows x and π and it must
show that the elements satisfy such a relation. We also omit numerous technical
details. In particular we remove several blinding factors, hence the protocols are
not zero-knowledge as sketched here.

Extraction Using Linear Independence. The verifier chooses a list P =
(pi)N

i=1 ∈ Z
N
q of random primes and computes U =

∏N
i=1 upi

i . Then it requests
that the prover computes U ′ =

∏N
i=1(u

′
i)

pπ(i) , proves that U ′ = Ux and that it
knows a permutation π such that U ′ =

∏N
i=1(u

′
i)

pπ(i) .
The idea is then that if a prover succeeds in doing this it can be rewound and

run several times with different random vectors Pj , giving different Uj and U ′
j ,

until a set P1, . . . , PN of linearly independent vectors in Z
N
q are found. Linear

independence implies that there are coefficients al,j ∈ Zq such that
∑N

j=1 al,jPj

equals the lth unity vector el, i.e., the vector with a one in the lth position and
all other elements zero. We would then like to conclude that

ux
l =

(N∏

j=1

U
al,j

j

)x

=
N∏

j=1

(U ′
j)

al,j =
N∏

j=1

(N∏

i=1

(u′
i)

pj,π−1(i)

)al,j

= u′
π(l) , (3)

since that would imply that the elements satisfy the shuffle-relation.

Proving a Permutation of Prime Exponents. The prover can use standard
techniques to prove knowledge of integers ρ1, . . . , ρN such that U ′ =

∏N
i=1(u

′
i)

ρi ,
but it must also prove that ρi = pπ(i) for some permutation π.

Suppose that
∏N

i=1 pi =
∏N

i=1 ρi over Z. Then unique factorization in Z

implies that each ρi equals some product of the pi and −1. If in addition we
demand that ρi ∈ [−2K +1, 2K −1], no such product can contain more than one
factor. This implies that every product must contain exactly one factor. Thus,
ρi = ±pπ(i) for some permutation π. If we also have

∑N
i=1 pi =

∑N
i=1 ρi, then

we must clearly have ρi = pπ(i).
We observe that proving the above is relatively simple over a group of un-

known order such as the group QRN of squares modulo an RSA modulus N.
The prover forms commitments

b0 = g , (bi,b′
i)

N
i=1 = (htib

pπ(i)
i−1 ,ht′

igpπ(i))N
i=1 ,

with random ti and t′i and proves, using standard methods, knowledge of ρi, τi, τ
′
i

such that

U ′ =
N∏

i=1

(u′
i)

ρi , bi = hτibρi

i−1 , and b′
i = hτ ′

igρi . (4)

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 283

Note that bN = hτg
�N

i=1 ρi for some τ , so the verifier can check that
∏N

i=1 ρi =
∏N

i=1 pi by asking the prover to show that it knows τ such that bN/g
�N

i=1 pi =
hτ . We then note that a standard proof of knowledge over a group of unknown
order also gives an upper bound on the bit-size of the exponents, i.e., it implicitly
proves that ρi ∈ [−2K + 1, 2K − 1]. Finally, since

∏N
i=1 b′

i = hτ ′
g
�N

i=1 ρi for a
τ ′ =

∑N
i=1 τ ′

i , the verifier can check that
∑N

i=1 ρi =
∑N

i=1 pi by asking the prover
to show that it knows τ ′ such that

∏N
i=1 b′

i/g
�N

i=1 pi = hτ ′
.

Fixing a Permutation. In Equation (3) above it is assumed that a fixed
permutation π is used for all prime vectors P1, . . . , PN . Unfortunately, this is
not necessarily the case, i.e., the permutation used in the jth proof may depend
on j and we should really write πj .

To solve this technical problem we force the prover to commit to a fixed
permutation π before it receives the prime vector P . The commitment is on
the form (wi)N

i=1 = (gr′
igπ−1(i))N

i=1. The verifier then computes W =
∏N

i=1 wpi

i

and the prover proves that W = gr′ ∏N
i=1 gρi

i in addition to Equations (4).
The idea is that the prover must use π to permute the ρi or find a non-
trivial representation of 1 ∈ Gq using g, g1, . . . , gN , which is infeasible under the
DL-assumption.

5.2 An Honest Verifier Statistical Zero-Knowledge Computationally
Convincing Proof of Knowledge of a Decryption-Permutation

In this section we describe our proof of a shuffle in detail. Although we consider
a decrypt-permutation relation, our approach can be generalized to a proof of
a shuffle for the other shuffle relations considered in the literature. In the full
version [50] we detail such shuffles, including a shuffle of Paillier [41] cryptotexts.

We introduce several security parameters. We use K1 to denote the number
of bits in q, the order of the group Gq, and similarly K2 to denote the number
of bits in the RSA-modulus N. We use K3 to denote the number bits used in
the random primes mentioned above. At some point in the protocol the verifier
hands a challenge to the prover. We use K4 to denote the number of bits in
this challenge. At several points exponents must be padded with random bits to
achieve statistical zero-knowledge. We use K5 to denote the number of additional
random bits used to do this. We assume that the security parameters are chosen
such that K3 + K4 + K5 < K1, K2, and K5 < K3 − 2. Below the protocol we
explain how the informal description above relates to the different components
of the protocol.

Protocol 2 (Proof of Decryption-Permutation). The common input con-
sists of an RSA modulus N and g,h ∈ QRN, generators g, g1, . . . , gN ∈ Gq, a
public key (z, y) ∈ G2

q , and two lists L = (ui, vi)N
i=1 and L′ = (u′

i, v
′
i)

N
i=1 in G2N

q .
The private input to the prover consists of (w, x) ∈ Z

2
q such that (z, y) = (gw, gx)

and (u′
i, v

′
i) = (u1/w

π(i), vπ(i)/u
x/w
π(i)) for a permutation π ∈ ΣN such that L′ is lexi-

cographically sorted.

284 D. Wikström

1. The prover chooses r′i ∈ Zq randomly, computes (wi)N
i=1 = (gr′

igπ−1(i))N
i=1,

and hands (wi)N
i=1 to the verifier.

2. The verifier chooses random primes p1, . . . , pN ∈ [2K3−1, 2K3 −1], and hands
(pi)N

i=1 to the prover.
3. Both parties compute (U, V, W) = (

∏N
i=1 upi

i ,
∏N

i=1 vpi

i ,
∏N

i=1 wpi

i).
4. The prover chooses the following elements randomly k1, k2, k3, k4, k5 ∈ Zq,

l1, . . . , l7, lr′, l1/w, lx/w, lw, lx ∈ Zq, ti, t
′
i ∈ [0, 2K2+K5 − 1],

si, s
′
i ∈ [0, 2K2+K4+2K5 − 1], ri ∈ [0, 2K3+K4+K5 − 1] for i = 1, . . . , N ,

s ∈ [0, 2K2+NK3+K4+K5+log2 N −1], and s′ ∈ [0, 2K2+K5+log2 N −1]. Then the
prover computes

(b1, b2) = (gk1U1/w, gk2Ux/w) (5)

(b3, b4, b5) = (gk3
1 g1/w, gk4

1 bx
3 , gk5

1 bw
3) (6)

(β1, β2) =
(
gl1U l1/w , gl2U lx/w) (7)

(β3, β4) = (gl3
1 gl1/w , gl6

1 glx/w) (8)

(β5, β6, β7, β8, β9) = (gl4
1 blx

3 , glx , gl5
1 blw

3 , glw , gl7
1

)
(9)

(α1, α2, α3) =
(

gl1

N∏

i=1

(u′
i)

ri , g−l2

N∏

i=1

(v′i)
ri , glr′

N∏

i=1

gri

i

)

(10)

b0 = g (11)

(bi,b′
i)

N
i=1 = (htib

pπ(i)
i−1 ,ht′

igpπ(i))N
i=1 (12)

(γi, γ
′
i)

N
i=1 = (hsibri

i−1,h
s′

igri)N
i=1 (13)

(γ, γ′) = (hs,hs′
) , (14)

and ((bi)5i=1, (βi)9i=1, (α1, α2, α3), (bi,b′
i)

N
i=1, (γi, γ

′
i)

N
i=1, (γ, γ′)) is handed to

the verifier.
5. The verifier chooses c ∈ [2K4−1, 2K4 −1] randomly and hands c to the prover.
6. Define t = tN +pπ(N)(tN−1 +pπ(N−1)(tN−2 +pπ(N−2)(tN−3 +pπ(N−3)(. . .))),

t′ =
∑N

i=1 t′i, r′ =
∑N

i=1 r′ipi, k6 = k4 + k3x, and k7 = k5 + k3w. The prover
computes

(fi)7i=1 = (cki + li)7i=1 mod q

(f1/w, fx/w) = (c/w + l1/w, cx/w + lx/w) mod q

(fw, fx) = (cw + lw, cx + lx) mod q

fr′ = cr′ + lr′ mod q

(ei, e
′
i)

N
i=1 = (cti + si, ct

′
i + s′i)

N
i=1 mod 2K2+K4+2K5

(di)N
i=1 = (cpπ(i) + ri)N

i=1 mod 2K3+K4+K5

e = ct + s mod 2K2+NK3+K4+K5+log2 N

e′ = ct′ + s′ mod 2K2+K5+log2 N

Then it hands (((fi)7i=1, f1/w, fx/w, fw, fx, fr′), (ei, e
′
i)

N
i=1, (di)N

i=1, (e, e
′)) to

the verifier.

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 285

7. The verifier checks that bi, βi, αi ∈ Gq, and that L′ is lexicographically sorted
and that

(bc
1β1, b

c
2β2) = (gf1Uf1/w , gf2Ufx/w) (15)

(bc
3β3, b

c
4β4) = (gf3

1 gf1/w , gf6
1 gfx/w) (16)

(bc
4β5, y

cβ6) = (gf4
1 bfx

3 , gfx) (17)

(bc
5β7, z

cβ8, (b5/g)cβ9) = (gf5
1 bfw

3 , gfw , gf7
1) (18)

(bc
1α1, (V/b2)cα2, W

cα3) =
(

gf1

N∏

i=1

(u′
i)

di , g−f2

N∏

i=1

(v′i)
di , gfr′

N∏

i=1

gdi

i

)

(19)

(bc
iγi, (b

′
i)

cγ′
i)

N
i=1 = (heibdi

i−1,h
e′

igdi)N
i=1 (20)

(g−�N
i=1 pibN)cγ = he (21)

(

g−�N
i=1 pi

N∏

i=1

b′
i

)c

γ′ = he′
. (22)

Equations (5)-(9) are used to prove that (b1, V/b2) = (gκ1U1/w, g−κ2V/Ux/w)
using standard Schnorr-like proofs of knowledge of logarithms. Equations (12)
contain commitments corresponding to those in the outline of our approach.
Equations (13) are used to prove knowledge of exponents τi, τ

′
i , ρi such that

(bi,b′
i) = (hτibρi

i−1,h
τ ′

igρi). We remark that the verifier need not check that
bi,b′

i, γi, γ
′
i, γ, γ′ ∈ QRN for our analysis to go through. Equations (14) are

used to prove that
∏N

i=1 ρi =
∏N

i=1 pi and
∑N

i=1 ρi =
∑N

i=1 pi, i.e., that ρi

in fact equals pπ(i) for some permutation π. Equation (10) is used to prove
that (b1, V/b2) also equals (gk1

∏N
i=1(u

1/wj

i)pi , g−k2
∏N

i=1(vi/u
xj/wj

i)pi). If the
two ways of writing b1 and b2 are combined we have

(U1/w, V/Ux/w) =
(N∏

i=1

(u1/wj

i)pi ,

N∏

i=1

(vi/u
xj/wj

i)pi

)

,

which by the argument in Section 5.1 implies that ((g, z, y, L, L′), (w, x)) ∈ RDP.

5.3 Security Properties

Formally, the security properties of our protocol are captured by the following.

Proposition 1 (Zero-Knowledge). Protocol 2 is honest verifier statistical
zero-knowledge.

The protocol could be modified by adding a first step, where the verifier
chooses (N,g,h) and (g1, . . . , gN). This would give a computationally sound
proof of knowledge. However, in our application we wish to choose these para-
meters jointly and only once, and then let the mix-servers execute the proof with
these parameters as common inputs. Thus, there may be a negligible portion of

286 D. Wikström

the parameters on which the prover can convince the verifier of false statements.
Because of this we cannot hope to prove that the protocol is a proof of knowledge
in the formal sense. Damg̊ard and Fujisaki [12] introduce the notion of a compu-
tationally convincing proof of knowledge to deal with situations like these. We
do not use the notion of “computationally convincing proofs” explicitly in our
security analysis, but the proposition below implies that our protocol satisfies
their definition.

We consider a malicious prover A which is given Γ = (N,g,h) and g =
(g, g1, . . . , gN) as input and run with internal randomness rp. The prover outputs
an instance IA(Γ , g, rp), i.e., public keys z, y ∈ Gq and two lists L, L′ ∈ G2N

q

and then interacts with the honest verifier on the common input consisting of
(Γ , g, z, y, L, L′). Denote by TA(Γ , g, rp, rv) the transcript of such an interaction
when the verifier runs with internal randomness rv. Let Acc be the predicate
taking a transcript T as input that outputs 1 if the transcript is accepting
and 0 otherwise. Let LRDP be the language corresponding to the decryption-
permutation relation RDP. We prove the following proposition.

Proposition 2 (Soundness). Suppose the strong RSA-assumption and the
DL-assumption are true. Then for all polynomial-size circuit families A = {AK}
it holds that ∀c > 0, ∃K0, such that for K1 ≥ K0

Pr
Γ ,g,rp,rv

[Acc(TA(Γ , g, rp, rv)) = 1 ∧ IA(Γ , g, rp) �∈ LRDP] <
1

K1
c .

5.4 Generation of Primes from a Small Number of Public Coins

In our protocol the verifier must generate vectors in Z
N
q such that each compo-

nent is a “randomly” chosen prime in [2K3−1, 2K3 − 1]. We define a generator
PGen that generates prime vectors from public coins. Let p(n) be the smallest
prime at least as large as n. Our generator PGen takes as input N random integers
n1, . . . , nN ∈ [2K3−1, 2K3 −1] and internal randomness r, and defines pi = p(ni).
To find pi it first redefines ni such that it is odd by incrementing by one if nec-
essary. Then it executes the Miller-Rabin primality test for ni, ni + 2, ni + 4, . . .
until it finds a prime. We put an explicit bound on the running time of the
generator by bounding the number of integers it considers and the number of
iterations of the Miller-Rabin test it performs in total. If the generator stops
due to one of these bounds it outputs ⊥. If N ≥ K3, the bound corresponds to
6K3

4

K1
3 N exponentiations modulo a K1-bit integer. The generator can be used in

the obvious way to turn the protocol above into a public-coin protocol. The ver-
ifier sends (n1, . . . , nN , r) to the prover instead of p1, . . . , pN and the prover and
verifier generates the primes by computing (p1, . . . , pN) = PGen(n1, . . . , nN , r).
A result by Baker and Harman [4] implies that the resulting distribution is close
to uniform.

Theorem 2 (cf. [4]). For large integers n there exists a prime in [n−n0.535, n].

Corollary 1. For all primes p ∈ [2K3−1, 2K3 −1], Pr[p(n) = p] ≤ 2−0.465(K3−1),
where the probability is taken over a random choice of n ∈ [2K3−1, 2K3 − 1]

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 287

The corollary gives a very pessimistic bound. It is commonly believed that the
theorem is true with 0.465 replaced by any constant less than one. Further-
more, Cramér argues probabilistically that there is a prime in every interval
[n − log2 n, n]. See Ribenboim [46] for a discussion on this.

We must argue that the generator fails with negligible probability. There are
two ways the generator can fail. Either it outputs p1, . . . , pN , where pi �= p(ni)
for some i, or it outputs ⊥.

Lemma 1. The probability that PGen(n1, . . . , nN , r) �= (p(n1), . . . , p(nN)) con-
ditioned on PGen(n1, . . . , nN , r) �= ⊥ is negligible.

Unfortunately, the current understanding of the distribution of the primes does
not allow a strict analysis of the probability that PGen(n1, . . . , nN , r) = ⊥.
Instead we give a heuristic analysis in Cramér’s probabilistic model of the primes.

Definition 4 (Cramér’s Model). For each integer n, let Xn be an indepen-
dent binary random variable such that Pr[Xn = 1] = 1/ lnn. An integer n is
said to be prime∗ if Xn = 1.

The idea is to consider the primality of the integers as a typical outcome of
the sequence (Xn)n∈Z. Thus, when we analyze the generator we assume that
the primality of an integer n is given by Xn, and our analysis is both over the
internal randomness of PGen and the randomness of Xn.

Lemma 2. In Cramér’s model the probability that PGen(n1, . . . , nN , r) = ⊥ is
negligible.

We stress that zero-knowledge and soundness of the modified protocol are not
heuristic. The zero-knowledge property holds for arbitrarily distributed integers
pi. Soundness follows from Lemma 1. It is only completeness that is argued
heuristically. Although this is not always clear, similar heuristic arguments are
common in the literature, e.g. to generate safe primes and to encode arbitrary
messages in Gq. We assume that Lemma 2 is true from now on.

Although we now have a public-coin protocol it requires many random bits.
This can be avoided by use of a pseudo-random generator PRG as suggested by
Groth [28]. Instead of choosing n1, . . . , nN randomly and sending these integers
to the prover, the verifier chooses a random seed s ∈ [0, 2K1 − 1] and hands this
to the prover. The prover and verifier then computes (n1, . . . , nN) = PRG(s)
and computes the primes from the integers as described above. The output
(p1, . . . , pN) may not appear to the prover as random, since he holds the seed s.
However, we prove in the full version [50] that if we define Pj = PGen(PRG(s))
and let P1, . . . , Pj−1 ∈ Z

N
q be any linearly independent vectors, the probability

that Pj ∈ Span(P1, . . . , Pj−1) or pj,i = pj,l for some i �= l is negligible for all
1 ≤ j ≤ N . This is all we need in our application.

Universal Verifiability and Random Oracles. If the Fiat-Shamir heuristic
is applied to a proof of a shuffle, any outsider can check, non-interactively, that
a mix-server behaves correctly. If the verification involves no trusted parameters

288 D. Wikström

the resulting mix-net is called “universally verifiable”. In our protocol the RSA
parameters (N,g,h) must be trusted by the verifier and we do not see how these
can be generated from public coins. Thus, if the Fiat-Shamir heuristic is applied
to our protocol the result is not really universally verifiable.

However, we can achieve universal verifiability under the root assumption in
class groups with prime discriminant. A class group is defined by its discrim-
inant ∆. It is conjectured that finding non-trivial roots in a class group with
discriminant ∆ = −p for a prime p is infeasible (cf. [29]). The idea would be
to generate a prime p of suitable size from random coins handed to the prover
by the verifier in the first round. Then the integer part of the protocol would
be executed in the class group defined by ∆ = −p. With this modification the
protocol gives a universally verifiable mix-net.

5.5 Complexity

Comparing the complexity of protocols is tricky, since any comparison must
take place for equal security rather than for equal security parameters. The
only rigorous method to do this is to perform an exact security analysis of
each protocol and choose the security parameters accordingly. Various opti-
mization and pre-computing techniques are also applicable to different degrees
in different protocols and in different applications. Despite this we argue in-
formally, but carefully, in the full paper [50] that the complexity of our pro-
tocol is at least as good as that of the most efficient previous proofs of a
shuffle.

More precisely, our protocol requires 5 rounds as the previously known most
round efficient proof of a shuffle [21] involving decryption. Furthermore, for prac-
tical parameters, e.g. K1 = 2048, K2 = 1024, K4 = 160, K3 = 100, and K5 = 50,
the complexity is less than 2.5N and 1.6N general exponentiations in Gq for the
prover and verifier. With optimizations as in [21] this corresponds to 0.5N and
0.8N general exponentiations in Gq, which indicates that the protocol is at least
as fast as that in [21].

6 Secure Realization of FRDP
ZK

In this section we transform the proof of a shuffle into a secure realization of
FRDP

ZK in a (FRSA, FCF, FBB)-hybrid model, where FRSA is an RSA common
reference string functionality, and FCF is a coin flipping functionality.

Functionality 4 (RSA Common Reference String). The ideal RSA Com-
mon Reference String, FRSA, with mix-servers M1, . . . , Mk and ideal adversary
S proceeds as follows.

1. Generate two random K2/2-bit primes p and q such that (p − 1)/2 and
(q − 1)/2 are prime and compute N = pq. Then choose g and h randomly
in QRN. Finally, hand ((S, RSA,N,g,h), {(Mj, RSA,N,g,h)}k

j=1) to CI .

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 289

There are protocols [6, 16] for generating a joint RSA modulus, but these
are not analyzed in the UC-framework, so for technical reasons we cannot apply
these directly. If these protocols cannot be used to give a UC-secure protocol,
general methods [11] can be used since this need only be done once.

Functionality 5 (Coin-Flipping). The ideal Coin-Flipping functionality,
FCF, with mix-servers M1, . . . , Mk, and adversary S proceeds as follows.

1. Set JK, = ∅ for all K.
2. On reception of (Mj , GenerateCoins, K) from CI , set JK ← JK ∪ {j}. If

|JK | > k/2, then set JK ← ∅ choose c ∈ {0, 1}K and hand
((S, Coins, c), {(Mj, Coins, c)}k

j=1) to CI .

It is not hard to securely realize the coin-flipping functionality using a UC-
secure verifiable secret sharing scheme (cf. [1]). Each mix-server Mj chooses a
random string cj of K bits and secretly shares it. Then all secrets are recon-
structed and c is defined as ⊕k

j=1cj .
Finally, we give the protocol which securely realizes FRDP

ZK . This is essentially
a translation of Protocol 2 into a multiparty protocol in the UC-setting.

Protocol 3 (Zero-Knowledge Proof of Decryption-Permutation). The
protocol πDP = (M1, . . . , Mk) consists of mix-servers Mj and proceeds as follows.

Mix-Server Mj. Each mix-server Mj proceeds as follows.

1. Wait for (RSA,N,g,h) from FRSA. Then hand (GenerateCoins, NK1) to
FCF and wait until it returns (Coins, (g′1, . . . , g′N)). Then map these strings
to elements in Gq by gi = (g′i)

(p−1)/q mod p (recall that Gq ⊂ Z
∗
p).

2. On input (Prover, (g, z, y, L, L′), (w, x)), where ((g, z, y, L, L′), (w, x))∈LRDP

(a) Hand (Prover, (g, z, 1, 1), w) and (Prover, (g, y, 1, 1), x) to FRC
ZK .

(b) Denote by W the first message of the prover in Protocol 2. Then hand
(Write, W, W) to FBB.

(c) Then hand (GenerateCoins, K1) to FCF and wait until it returns
(Coins, s). Then set P = PGen(PRG(s)). If P = ⊥ go to Step 2c, other-
wise let P be the primes used by the prover in Protocol 2.

(d) Denote by C the second message of the prover in Protocol 2. Hand
(Write, C, C) to FBB. Then hand (GenerateCoins, K4 − 1) to FCF and
wait until it returns (Coins, c′). Let c = c′ +2K4−1 be the final challenge
in Protocol 2.

(e) Denote by R the third message of the prover in Protocol 2. Hand
(Write, R, R) to FBB.

3. On input (Question, Ml, (g, z, y, L, L′)), where L, L′ ∈ G2N
q and (z, y) ∈ Gq

(a) Hand (Question, Ml, (g, z, 1, 1)) to FRC
ZK and wait until it returns

(Verifier, Ml, bz,l). Then hand (Question, Ml, (g, y, 1, 1)) and wait un-
til it returns (Verifier, Ml, by,l). If bz,lby,l = 0 output (Verifier, Ml, 0).

(b) Then wait until (Ml, W, W) appears on FBB. Hand (GenerateCoins, K1)
to FCF and wait until it returns (Coins, s). Then set P = PGen(PRG(s)).
If P = ⊥ go to Step 3b, otherwise let P be the primes used by the verifier
in Protocol 2.

290 D. Wikström

(c) Wait until (Ml, C, C) appears on FBB. Then hand (GenerateCoins, K4−
1) to FCF and wait until it returns (Coins, c′), and until (Ml, R, R) ap-
pears on FBB. Let c = c′ + 2K4−1 be the final challenge in Protocol 2.
Then verify (W, P, C, c, R) as in Protocol 2 and set bj = 1 or bj = 0
depending on the result.

(d) Hand (Write, Judgement, Ml, bj) to FBB and wait until
(Ml′ , Judgement, Ml, bl′) appears on FBB for l′ �= j. Set b = 1 if |{bl′ |
bl′ = 1}| > k/2 and otherwise b = 0. Output (Verifier, Ml, L, L′, b).

Theorem 3. The ideal functionality FRDP
ZK is securely realized by πDP in the

(FRC
ZK , FCF, FRSA, FBB)-hybrid model with respect to Mk/2-adversaries under the

DL-assumption and the strong RSA-assumption.

Corollary 2. The composition of πMN, πC, πDP, securely realizes FMN in the
(FSKS, FCF, FRSA, FBB)-hybrid model with respect to Mk/2-adversaries under
the DDH-assumption and the strong RSA-assumption.

As indicated in the body of the paper all assumptions except the assumption
of a bulletin board can be eliminated. The assumption of a bulletin board can
only be eliminated for blocking adversaries (cf. [49]).

7 Conclusion

We have introduced a novel way to construct a mix-net, and given the first
provably secure sender verifiable mix-net. We have also introduced a novel ap-
proach to construct a proof of a shuffle, and shown how this can be used to
securely realize the ideal zero-knowledge proof of knowledge functionality for a
decrypt-permutation relation. Combined, this gives the first universally compos-
able mix-net that is efficient for any number of mix-servers.

Acknowledgments

I thank Johan H̊astad for excellent advise, in particular for discussing efficient
generation of the primes. I also thank Mårten Trolin for discussions.

References

1. M. Abe, S. Fehr, Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography, to appear at Crypto 2004. (full version at
Cryptology ePrint Archive, Report 2004/118, http://eprint.iacr.org/, May,
2004).

2. M. Abe, Universally Verifiable mix-net with Verification Work Independent of the
Number of Mix-centers, Eurocrypt ’98, pp. 437-447, LNCS 1403, 1998.

3. M. Abe, Flaws in Some Robust Optimistic Mix-Nets, In Proceedings of Information
Security and Privacy, 8th Australasian Conference, LNCS 2727, pp. 39-50, 2003.

http://eprint.iacr.org/

A Sender Verifiable Mix-Net and a New Proof of a Shuffle 291

4. R. C. Baker and G. Harman, The difference between consecutive primes, Proc.
Lond. Math. Soc., series 3, 72 (1996) 261–280.

5. D. Beaver, Foundations of secure interactive computation, Crypto ’91, LNCS 576,
pp. 377-391, 1991.

6. D. Boneh, and M. Franklin, Efficient generation of shared RSA keys, Crypto’ 97,
LNCS 1233, pp. 425-439, 1997.

7. J. Buus Nielsen, Universally Composable Zero-Knowledge Proof of Membership,
manuscript, http://www.brics.dk/~buus/, April, 2005.

8. R. Canetti, Security and composition of multi-party cryptographic protocols, Jour-
nal of Cryptology, Vol. 13, No. 1, winter 2000.

9. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, http://eprint.iacr.org/2000/067 and ECCC TR 01-24. Extended ab-
stract appears in 42nd FOCS, IEEE Computer Society, 2001.

10. D. Chaum, Untraceable Electronic Mail, Return Addresses and Digital Pseudo-
nyms, Communications of the ACM - CACM ’81, Vol. 24, No. 2, pp. 84-88, 1981.

11. R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally Composable Two-Party
and Multi-Party Secure Computation, 34th STOC, pp. 494-503, 2002.

12. I. Damg̊ard, E. Fujisaki, A Statistically-Hiding Integer Commitment Scheme Based
on Groups with Hidden Order, Asiacrypt 2002, LNCS 2501, pp. 125-142, 2002.

13. Y. Desmedt, K. Kurosawa, How to break a practical MIX and design a new one,
Eurocrypt 2000, pp. 557-572, LNCS 1807, 2000.

14. T. El Gamal, A Public Key Cryptosystem and a Signiture Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory, Vol. 31, No. 4, pp.
469-472, 1985.

15. P. Feldman, A practical scheme for non-interactive verifiable secret sharing, 28th
FOCS, pp. 427-438, 1987.

16. P. Fouque and J. Stern, Fully Distributed Threshold RSA under Standard Assump-
tions, Cryptology ePrint Archive, Report 2001/008, 2001.

17. A. Fujioka, T. Okamoto and K. Ohta, A practical secret voting scheme for large
scale elections, Auscrypt ’92, LNCS 718, pp. 244-251, 1992.

18. E. Fujisaki, T. Okamoto, Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations, Crypto 97, LNCS 1294, pp. 16-30, 1997.

19. J. Furukawa, K. Sako, An efficient scheme for proving a shuffle, Crypto 2001,
LNCS 2139, pp. 368-387, 2001.

20. J. Furukawa, H. Miyauchi, K. Mori, S. Obana, K. Sako, An implementation of a
universally verifiable electronic voting scheme based on shuffling, Financial Cryp-
tography ’02, 2002.

21. J. Furukawa, Efficient, Verifiable Shuffle Decryption and its Requirements of Un-
linkability, PKC 2004, LNCS 2947, pp. 319-332, 2004.

22. O. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental Game, 19th
STOC, pp. 218-229, 1987.

23. O. Goldreich, Foundations of Cryptography, Cambridge University Press, 2001.
24. S. Goldwasser, L. Levin, Fair computation of general functions in presence of im-

moral majority, Crypto ’90, LNCS 537, pp. 77-93, 1990.
25. S. Goldwasser, S. Micali, Probabilistic Encryption, Journal of Computer and Sys-

tem Sciences (JCSS), Vol. 28, No. 2, pp. 270-299, 1984.
26. P. Golle, S. Zhong, D. Boneh, M. Jakobsson, A. Juels, Optimistic Mixing for Exit-

Polls, Asiacrypt 2002, LNCS, 2002.
27. N. Groth, A Verifiable Secret Shuffle of Homomorphic Encryptions, PKC 2003, pp.

145-160, LNCS 2567, 2003.

http://www.brics.dk/~buus/

292 D. Wikström

28. N. Groth, Personal Communication, 2004.
29. J. Buchmann, S. Hamdy, A Survey on IQ Cryptography, In Public-Key Cryptog-

raphy and Computational Number Theory, Walter de Gruyter, pp. 1-15, 2001.
30. M. Jakobsson, A Practical Mix, Eurocrypt ’98, LNCS 1403, pp. 448-461, 1998.
31. M. Jakobsson, Flash Mixing, In Proceedings of the 18th ACM Symposium on

Principles of Distributed Computing - PODC ’98, pp. 83-89, 1998.
32. M. Jakobsson, A. Juels, Millimix: Mixing in small batches, DIMACS Techical report

99-33, June 1999.
33. M. Jakobsson, A. Juels, An optimally robust hybrid mix network, In Proceedings of

the 20th ACM Symposium on Principles of Distributed Computing - PODC ’01,
pp. 284-292, 2001.

34. S. Micali, P. Rogaway, Secure Computation, Crypto ’91, LNCS 576, pp. 392-404,
1991.

35. M. Michels, P. Horster, Some remarks on a reciept-free and universally verifiable
Mix-type voting scheme, Asiacrypt ’96, pp. 125-132, LNCS 1163, 1996.

36. M. Mitomo, K. Kurosawa, Attack for Flash MIX, Asiacrypt 2000, pp. 192-204,
LNCS 1976, 2000.

37. A. Neff, A verifiable secret shuffle and its application to E-Voting, In Proceedings
of the 8th ACM Conference on Computer and Communications Security - CCS
2001, pp. 116-125, 2001.

38. A. Neff, Verifiable Mixing (Shuffling) of ElGamal Pairs, preliminary full version of
[37], http://www.votehere.com/documents.html, Mars, 2005.

39. V. Niemi, A. Renvall, How to prevent buying of votes in computer elections, Asi-
acrypt’94, LNCS 917, pp. 164-170, 1994.

40. W. Ogata, K. Kurosawa, K. Sako, K. Takatani, Fault Tolerant Anonymous Chan-
nel, Information and Communications Security - ICICS ’97, pp. 440-444, LNCS
1334, 1997.

41. P. Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, Eurocrypt ’99, LNCS 1592, pp. 223-238, 1999.

42. C. Park, K. Itoh, K. Kurosawa, Efficient Anonymous Channel and All/Nothing
Election Scheme, Eurocrypt ’93, LNCS 765, pp. 248-259, 1994.

43. B. Pfitzmann, Breaking an Efficient Anonymous Channel, Eurocrypt ’94, LNCS
950, pp. 332-340, 1995.

44. B. Pfitzmann, A. Pfitzmann, How to break the direct RSA-implementation of mixes,
Eurocrypt ’89, LNCS 434, pp. 373-381, 1990.

45. B. Pfitzmann, M. Waidner, Composition and Integrity Preservation of Secure Re-
active Systems, 7th Conference on Computer and Communications Security of the
ACM, pp. 245-254, 2000.

46. P. Ribenboim, The new book of prime number records, 3rd ed., ISBN 0-38794457-5,
Springer-Verlag, 1996.

47. K. Sako, J. Killian, Reciept-free Mix-Type Voting Scheme, Eurocrypt ’95, LNCS
921, pp. 393-403, 1995.

48. D. Wikström, Five Practical Attacks for “Optimistic Mixing for Exit-Polls”, In
proceedings of Selected Areas of Cryptography (SAC), LNCS 3006, pp. 160-174,
2003.

49. D. Wikström, A Universally Composable Mix-Net, Proceedings of First Theory of
Cryptography Conference (TCC ’04), LNCS 2951, pp. 315-335, 2004.

50. D. Wikström, A Sender Verifiable Mix-Net and a New Proof of a Shuffle, Cryptol-
ogy ePrint Archive, Report 2005/137, 2005, http://eprint.iacr.org/.

http://www.votehere.com/documents.html
http://eprint.iacr.org/

	Introduction
	Previous Work
	Contributions
	Outline of the Paper

	Notation
	The Universally Composable Security Framework

	The Ideal Mix-Net
	A Sender Verifiable El Gamal Based Mix-Net
	Our Modification
	Sender Verifiability
	A Technical Advantage
	Preliminaries
	The Mix-Net

	A New Efficient Proof of a Shuffle
	Our Approach
	An Honest Verifier Statistical Zero-Knowledge Computationally Convincing Proof of Knowledge of a Decryption-Permutation
	Security Properties
	Generation of Primes from a Small Number of Public Coins
	Complexity

	Secure Realization of FZKRDP
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

