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Abstract. In this paper, we introduce a new cryptanalysis method for
stream ciphers based on T-functions and apply it to the TSC family
which was proposed by Hong et al.. Our attack are based on linear ap-
proximations of the algorithms (in particular of the T-function). Hence,
it is related to correlation attack, a popular technique to break stream
ciphers with a linear update, like those using LFSR’s.

We show a key-recovery attack for the two algorithms proposed at
FSE 2005 : TSC-1 in 225.4 computation steps, and TSC-2 in 248.1 steps.
The first attack has been implemented and takes about 4 minutes to
recover the whole key on an average PC. Another algorithm in the fam-
ily, called TSC-3, was proposed at the ECRYPT call for stream ciphers.
Despite some differences with its predecessors, it can be broken by sim-
ilar techniques. Our attack has complexity of 242 known keystream bits
to distinguish it from random, and about 266 steps of computation to
recover the full secret key.

An extended version of this paper can be found on the ECRYPT
website [23].

1 Introduction

1.1 Background

Together with block ciphers, stream ciphers are the second important family of
symmetric encryption primitive. They work by generating a long pseudo-random
sequence (generally called the keystream) from a short key. Then, a message is
encrypted by a simple XOR with the keystream and the decryption works the
same way. The keystream should not be distinguishable from a random sequence
to make the cipher secure. Even if the cryptographic security is the main issue,
the efficiency of the algorithm has also to be taken in account. Indeed, speed is
the main advantage of stream ciphers over block ciphers.

Nowadays, designing a stream cipher is risky and the existence of good block
ciphers has brought some issues about the future of stream ciphers [2, 24]. How-
ever, some particular domains continue to be active. For example, fast software-
oriented stream ciphers may still be needed, as well as hardware-oriented designs
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with a small footprint for resource constrained devices. A call for primitive has
recently been launched by the european ECRYPT project and many new algo-
rithms have been proposed for this occasion [6, 7].

A classical approach for stream cipher design is the use of Linear Feedback
Shift Registers (LFSR). Such primitives have to be combined with nonlinear
Boolean functions to break the linearity. Due to the apparition of new attacks
(like algebraic attacks [1, 4]), new primitives have been introduced to replace
LFSR’s. A nice example are the Triangular-functions (T-functions) by Klimov
and Shamir [13, 14]. They are a new class of mappings, with the property to be
computable from Least Significant Bits (LSB) to Most Significant Bits (MSB).
This is well suited for implementations, because many operations available on
processors (like +,*,XOR,OR,AND) are T-functions. T-functions are not (nec-
essarily) linear and, for appropriate choices, they can be permutations with one
single cycle, which is useful for stream ciphers design. Klimov and Shamir also
extended their theory to multi-word T-functions and provided some results in
other domains such as block ciphers and hash functions [12, 15, 16, 17].

The first T-function Based Stream Ciphers (TFBSC) were proposed in the
original papers by Klimov and Shamir. More recently, Hong et al. proposed
a new class of single cycle T-functions, which have the property to use S-
boxes [10]. They described two new algorithms. The first one, TSC-1, is de-
signed for hardware environment and the second, TSC-2, can be implemented
very efficiently in software. Several attacks have also been published. At Asi-
acrypt 2004, Mitra and Sarkar [22] described a time-memory trade-off attack
which breaks some of the algorithms proposed by Klimov and Shamir. Kün-
zli, Junod and Meier recently found distinguishing attacks applicable to many
TFBSC’s [19]. Taking into account these results, Hong et al. proposed a new
algorithm, called TSC-3 at the ECRYPT competition for stream cipher [7].
This algorithm is an improvement over its two predecessors, in order to thwart
the published attack [11]. However, the basic construction remains roughly the
same.

1.2 Contribution of the Paper

Our contribution in this paper is to present a new cryptanalysis method
for TFBSC’s. Our idea is to mount a statistical attack using linear approx-
imations of the cipher. First, we linearize the behavior of the T-function by
considering several consecutive steps. Next, we linearize other components, like
the output function. Then we describe how to recover the secret key by com-
bining all these linear approximations. This framework is closely related to cor-
relation attacks against LFSR-based stream ciphers [21, 25] and also to linear
cryptanalysis against block ciphers [20].

It applies very efficiently to the TSC family. Indeed, we can break TSC-1 with
time complexity of 225.4 steps and data complexity of 221.4 keystream words.
Similarly, TSC-2 can be broken with 244.1 data and 248.1 time. We implemented
the first attack against TSC-1. It needs about 4 minutes to recover the whole
initial secret key (Pentium-III 700 MHz).
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Table 1. Summary of attacks against the TSC family

Algorithm Type of Attack Time Data
TSC-1 Distinguishing [18, 19] 222 222

TSC-1 Distinguishing 219 215

TSC-1 Key-recovery attack 225.4 221.4

TSC-2 Distinguishing[19] 234 234

TSC-2 Key-recovery attack 248.1 244.1

TSC-3 Distinguishing 242 242

TSC-3 Key-recovery attack 266 234

This cryptanalysis method also applies against the ECRYPT proposal TSC-3,
although some adaptations are needed. In particular, the linear approximations
we use are a little bit more complicated than in the case of TSC-1 and TSC-
2. We describe how to distinguish the output of TSC-3 from random data by
processing about 242 keystream words. This observation can be extended to a
key-recovery attack with time complexity of 266 and data complexity of about
234 keystream bits.

These attacks are the first key recovery attacks against the TSC family (dis-
tinguishing attacks have already been pointed out in [18, 19]). Table 1 summa-
rizes all these results. We also point out some important requirements for the
design of T-function based stream ciphers. In particular, the existence of good
linear approximations of the T-function over several consecutive steps should be
avoided.

To begin, we review the basic properties of T-functions. Secondly, we overview
the existing TFBSC and the existing attacks. In Section 4, we give a general
framework to attack TFBSC. Next, we describe how this framework applies to
break TSC-1, TSC-2 and TSC-3.

2 Introduction to T-functions

We give a short review of T-functions results; readers can see [12] for further
details.

2.1 Single-Word T-functions

Basically, a single-word T-function is a mapping on a n-bit word where the bit
i of the output can depend only on bits 0, 1, · · · , i of the input. For example,
most arithmetic operations, like addition, subtraction and multiplication are T-
functions. It is also the case of most logical operations (OR,AND,XOR). These
operations are called primitive operations. They are useful because they are
available on most processors and can generally be executed in one clock cycle.

Moreover, the composition of two T-functions is a T-function, which allows
to design a large number of such functions. Klimov and Shamir developed tools
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in order to study their invertibility and their cycle structure. In particular, some
families provide a great feature: a single cycle of maximal length. However, single-
word T-functions are not useful by themselves as n is usually limited on modern
processors (to 32 or 64 bits). To increase the state size, it is better to use, for
instance 4 words of 64 bits instead of one word of 256 bits.

2.2 Multi-word T-functions

The definition of T-functions can be extended to multi-word T-functions: the bit
i of any output word depends only on bits 0 to i of each input word.

More formally, let x represent m words of n bits each denoted by xi with
0 ≤ i < m. We get x = (xj)

m−1
j=0 . Also, [xj ]i will refer to the i-th bit of a word

xj , seen as an integer:

[xj ] =
n−1∑

i=0

[xj ]i2i.

Then [x]i denotes the layer of i-th bits of the m words xi composing x. Thus
we also get:

[x]i =
m−1∑

k=0

[xk]i2k.

Here is a clear depiction:

x1

x2

x3

x0

=x =

[x]0[x]i

Definition 1. A (multi-word) T − function is a map

T :

⎧
⎨

⎩

({0, 1}n)m −→ ({0, 1}n)m

x �−→ T(x) = (Tk(x))m−1
k=0

sending an m-tuple of n-bit words to another m-tuple of n-bit words, where each
resulting n-bit word is denoted as Tk(x), such that for each 0 ≤ i < n, the i-
th bits of the resulting words [T(x)]i are functions of just the lower input bits
[x]0, [x]1, . . . , [x]i.

We can also define a mapping from n-bit words to n-bit words in which the bit
i of the output depends only on bits 0, 1, . . . , i − 1 of the input. Such mappings
are called parameters and are useful to construct interesting T-functions.
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2.3 Properties of T-functions

We focus on multi-word T-functions, since they are the most interesting for
stream cipher design. Basically, two properties can be expected :

– invertibility : This avoids a loss of entropy, if the T-function is used to
update the state of a stream cipher.

– single-cycle : It is important for security that the sequence of internal states
has a large period. A single cycle of maximal length 2nm is even better, but
is possible only if the T-function is invertible.

Klimov and Shamir proposed a method to construct T-functions which exhibits
the single-cycle property. Their analysis is based on odd and even parameters
(see [15] for more details).

Another approach was recently proposed by Hong et al [10] : Let x = (xk)m−1
k=0

and y = (yk)m−1
k=0 be two multi-words and let α be a single word. We note x ⊕ y

and α · x defined as :

x ⊕ y = (xk ⊕ yk)m−1
k=0 and α · x = (α ∧ xk)m−1

k=0 .

We also note ∼ α the bitwise complement of α.

Theorem 1. Let S be a single cycle S-box and let α be an odd parameter. If So

is an odd power of S and Se is an even power of S, the mapping

T (x) = (α(x) · So(x)) ⊕ (∼ α(x) · Se(x))

defines a single cycle T-function.

3 Existing TFBSC’s

3.1 Klimov and Shamir’s Ciphers

After introducing the concept of T-functions, Klimov and Shamir proposed sev-
eral examples of TFBSC [15, 16]. All are based on a similar construction.

Let C0 be an odd number, C1 = 0x12481248 and C3 = 0x48124812. We
set a0 = x0 and ai+1 = ai ∧ xi+1 for i = 0, 1, 2. We also have α = α(x) =
(a3 + C0) ⊕ a3. The following mapping is a single cycle T-function operating on
64-bit words:

T

⎛

⎜⎜⎝

x3
x2
x1
x0

⎞

⎟⎟⎠ �−→

⎛

⎜⎜⎝

x3 ⊕ ( α ∧ a2) ⊕ (2x0(x1 ∨ C1))
x2 ⊕ ( α ∧ a1) ⊕ (2x0(x3 ∨ C3))
x1 ⊕ ( α ∧ a0) ⊕ (2x2(x3 ∨ C3))
x0 ⊕ α ⊕ (2x2(x1 ∨ C1))

⎞

⎟⎟⎠ (1)

Mitra and Sarkar described [22] a time-memory trade-off attack on a stream
cipher based on (1) with a very simple output function. They analyzed the
multiplicative part of the update function and managed to recover the initial
secret key in 240 time, 224 space and less than five 128-bit blocks of keystream.
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3.2 The TSC Family

Hong et al. provided two TFBSC’s deduced from their new single-cycle T-
functions family given in Theorem 1. For all algorithms, the number of words is
m = 4. While Klimov-Shamir’s proposal are software-oriented designs (with the
use of integer multiplication), the TSC family is S-box oriented. In particular,
the authors have suggested an implementation method for TSC-1 and TSC-3
which could make them suitable as hardware-oriented designs.

TSC-1
TSC-1 uses 4 words of n = 32 bits each, hence the internal state has size 128

bits. First a single-cycle S-box S1 operating on 4 bits is defined :

S1[16] = {3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12};

The following function is an odd parameter :

α(x) = (p + C) ⊕ p ⊕ 2s,

where C = 0x12488421, p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3.
According to Theorem 1 with So = S1 and Se = S2

1 , the following T-function is
single-cycle :

T (x) = (α(x) · S1(x)) ⊕ (∼ α(x) · S2
1(x)). (2)

Finally, 32 output bits are produced after application of T by:

f(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3), (3)

where the symbol ≪ denotes left rotation. Every addition is done modulo 232.
It is proven that the period of this T-function is 2128.

TSC-2
TSC-2 is quite similar to TSC-1. It uses a different S-box :

S2[16] = {5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0};

and the following odd parameter:

α2(x) = (p + 1) ⊕ p ⊕ 2s.

According to Theorem 1 with So = Id and Se = S2 :

x �−→ x ⊕ (α2(x) · (x ⊕ S2(x))).

is single-cycle. Finally 32 keystream bits are obtained by:

f2(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3).
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TSC-3
At the ECRYPT competition for stream ciphers [11], Hong et al. proposed

the stream cipher TSC-3. It differs from its two predecessors regarding several
elements :

– First, it uses 4 words of size 40 bit each. This breaks the 32-bit oriented
architecture, but it does not matter since the cipher is primarily designed
for hardware implementations. In addition, this increases the state size to
160 bits. Therefore the expected level of security is 280, which can be reached
by generic attacks, such as time-memory-data trade-offs [3].

– Secondly, each layer is still updated by S-boxes, but the branching function
is more complex than for TSC-1 or TSC-2. Indeed, the parameter is made
of 2 words p0 and p1. For the i-th layer, one first computes the value

tmp = 2 ∗ [p1]i + [p0]i ∈ {0, 3}

According to the value of tmp, [x]i is update using either S, S2, S5 or S6

where S is the same S-box as in TSC-1.
– The output function is also modified in TSC-3. One first starts by initializing

4 variables yi of 32 bits each, by removing the 8 LSB’s from each xi. Then,
the yi’s are permuted depending on the value of the least significant layer of
the sate, [x]0. Therefore there are 24 = 16 possible permutations. Afterward,
the output function looks very much like the ones used in TSC-1 and TSC-2 :

f(y) = (y0≪9 + y1≫2)≪8 + (y2≪7 + y3)≫9

– An initialization mechanism has also been added in order to set up the state
from a key and an IV of variable length. This mechanism is based on the
T-function itself, but is not described here.

For more information about these elements of TSC-3, the reader should refer
directly to the specifications [10] or to the ECRYPT website [6].

4 Linear Cryptanalysis Against TFBSC’s

4.1 Context

Attacks based on linear approximations have many applications in cryptanalysis.
For instance, Matsui’s attack is the best cryptanalysis of DES [20] and more gen-
erally linear cryptanalysis has many applications for block ciphers. In the field
of stream ciphers, popular attacks based on linear approximations have been
developed for LFSR oriented designs and are generally referred to as correla-
tion attacks [21, 25]. Also linear cryptanalysis for stream ciphers has already
been suggested [5, 8] and has already been applied, for instance by Golic against
RC4 [9].

In the case of TFBSC, the idea of using linear approximations was first
introduced by Künzli, Junod and Meier. At the rump session of FSE 2005, they
presented a distinguishing attack against the TSC-1 requiring about 222 known
keystream bits [18]. This idea is further developed in [19].
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4.2 A Framework for Linear Cryptanalysis of TFBSC’s

The attack we propose is composed by three steps :

1. find a linear approximation of the T-function. This provides a proba-
bilistic relation between bits from the internal state of the stream cipher at
different instants.

2. find a linear approximation of the output function. This provides a
probabilistic relation between keystream bits and internal state bits.

3. combine both approximations. One goal may be to find relations in-
volving keystream bits only, in order to obtain a distinguisher. But a more
interesting idea is to guess some key bits in order to eliminate some terms
in the approximations and therefore to increase the bias.

The general idea of this framework is to remove the non-linearity provided
by the T-function. While steps 1 and 2 are almost always possible, it can be
hard to combine the approximations in step 3.

More formally, let [xj ]ti represent the value of the bit i from register j at time
t. In the first step, we look for equations of the form :

Pr

⎛

⎝
⊕

i,j

[xj ]ti =
⊕

i,j

[xj ]t+δ
i

⎞

⎠ =
1
2
(1 + ε)

for some δ and with |ε| as big as possible. For the purpose of the attacks against
TSC-1 and TSC-2, it turns out that we are only interested in the particular
linear relations of the form :

[xj ]ti = [xj ]t+δ
i

This corresponds to the probability for a given bit in the internal state to flip
between time t and time t + δ, also called the bit-flip probability. While the
design criteria of the TSC family [10, 11] and the first known attacks [18, 19]
focused on these bit-flip properties, there is no reason to restrict the analysis
to such particular cases. The cryptanalysis of TSC-3 (see Section 7) is a good
example of attack where other types of linear approximations are needed.

The second step depends on how complex is the output function, but it is
generally possible to find linear approximations for the algorithms of the TSC
family. For instance, suppose we find a probabilistic linear relation between sev-
eral state bits [xj ]ti and several keystream bits [s]tk, at time t. We combine this
relation with the first step, to obtain a linearized relation of the form :

⊕

i,j

([xj ]ti ⊕ [xj ]t+δ
i ) =

⊕

k

([s]tk ⊕ [s]t+δ
k ) (4)

which is equal to 0 with probability 0.5 (1 + ε) and hopefully |ε| 
 0.
In the third step, we try to propose distinguishing attacks and key recovery

attacks based on relation (4). A useful trick for T-functions, is that when we
guess the i LSB’s of each register in the initial state, we can predict these i
LSB’s at every instant because of the triangular structure.
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5 The TSC-1 Case

In this section, we apply our framework to the TSC-1 case and show an efficient
key-recovery attack. We explain the attack by following the three steps of our
framework.

5.1 First Step

We want to approximate the behavior of the state-update function between time
t and time t+ δ. By looking at the update function (2), we observe that the i-th
layer’s update depends on one parameter bit only, [α(x)]i. Depending on this
bit, the 4 bits of the layer are updated using either S1 or S2

1 :

[T(x)]i =

⎧
⎨

⎩

S2
1([x]i) if [α(x)]i = 0

S1([x]i) if [α(x)]i = 1

We assume that the parameter is uniformly distributed. Then

Pr ([α(x)]i = 0) = Pr ([α(x)]i = 1) =
1
2

for i �= 0. This property has been verified experimentally. We construct a binary
tree describing the update of the i-th layer (see Figure 1). We start from an
unknown 4-bit value a and each branch corresponds to a value of [α(x)]i. After
j advances, there are 2j leaves in the tree, each corresponding to a power of

S3(a)

S4(a)

S4(a)

S5(a)

S4(a)

S5(a)

S5(a)

S6(a)

S2(a)

S3(a)

S3(a)

S4(a)

S2(a)

S(a)

a

level 0 level 1 level 2 level 3

[x]i [T(x)]i [T2(x)]i [T3(x)]i

Fig. 1. Possible Evolutions of the i-th layer for TSC-1
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S1. Let Kj
i be the number of occurrence of Si

1 at the level j of the tree. The
coefficients Kj

i can be computed by the formula:

Kj
i =

(
j

i − j

)
with i ≥ j.

Using these coefficients, we can compute the probabilities of each output value
after j advances, for each value of a. Then, we search for linear approximations
between bits of the i-th layer at time t and at time t + j. In the case of TSC-1,
we restrict our analysis to particular linear approximations where the same bit
is considered twice (known as bit-flip probabilities). The authors of TSC-1 took
them into account for the design, so the S-box has probability 1/2 to flip each
input bit. The same holds for all powers Si

1 of the S-box, except for i = 4, 8, 12
and 16. So nothing will be observed at the level 1 in the tree, but at further
levels, the "weak" powers may appear with high coefficients. We explored the
tree at depth j and computed the bit-flip probabilities for several values of j. The
results are given in Table 2 (due to some symmetry properties, the probability is
the same for the 4 input bits). We observe that the strongest bias are obtained
with j = 3, 5, 8, 11. An example of good linear approximation is :

Pr
(
[xi]t1 ⊕ [xi]t+3

1 = 1
)


 0.64 =
1
2
(1 + 0.28).

for all i = 0, . . . , 3.
In Table 7 of the Appendix, we give experimental results. They show that the

observed bias match the theoretical analysis. Therefore the initial assumption
that the parameter bits are uniformly distributed is satisfied. The only
exception concerns the LSB of the registers. Indeed, the parameter bit is constant
at position 0, so the previous assumption no longer holds. This analysis explains
what Künzli et al. observed [18] with j = 8 and 11, although the best bias is
obtained with j = 3.

5.2 Second Step

In this step, we want to "linearize" the behavior of the output function of TSC-
1 defined by (3). This function uses addition and left rotation on 32-bit words.

Table 2. TSC-1 : Bit Flip Probabilities for Different Depth j of the Tree

j P |ε| j P |ε|
1 0.5000 0.0000 9 0.5264 0.0528
2 0.5937 0.1874 10 0.4143 0.1714
3 0.6406 0.2812 11 0.3993 0.2014
4 0.5078 0.0156 12 0.4849 0.0302
5 0.4219 0.1562 13 0.5587 0.1174
6 0.4473 0.1054 14 0.5507 0.1014
7 0.5479 0.0958 15 0.4972 0.0056
8 0.5996 0.1992 16 0.4717 0.0566
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Left rotation is already linear, so we only have to linearize the additions. This
can be naturally done by introducing a carry bit. For instance, when adding
two integers a0 and a1, we can express the i-th bit of the result by the linear
expression :

[a0]i ⊕ [a1]i ⊕ Ri

where Ri depends on layers < i.
Consider the addition of n integers of 32 bits called a0, . . . , an−1. We note

A =
∑n−1

k=0 ak and R(i) the i-th carry. For n = 2 terms, the carry is simply one
bit, but more generally, it is an integer formally defined by :

R(i) =
∑n−1

k=0 (ak mod 2i) − (
∑n−1

k=0 (ak mod 2i)) mod 2i

2i
.

with R(0) = 0. The linearized expression of the i-th bit of A is given by :

[A]i =

[
n−1∑

k=0

ak

]

i

= [R(i)]0 ⊕
n−1⊕

k=0

[ak]i. (5)

In the case of TSC-1, the output function is composed by an addition with 2
terms (E = x0≪9 + x1) and an addition with 3 terms (S = E≪15 + x2≪7 + x3)
where S represents the output. Hence, using linearized relations (5), for any bit
i we have: ⎧

⎪⎨

⎪⎩

[E]i = [x0](i+23) ⊕ [x1](i) ⊕ [RE(i)]0

[S]i = E(i+17) ⊕ [x2](i+25) ⊕ [x3](i) ⊕ [RS(i)]0

where RE and RS represent the carry for the 2-term and 3-term addition re-
spectively. All indexes are taken modulo 32. We can note that RE(i) ∈ {0, 1}
and RS(i) ∈ {0, 1, 2}. Finally, we obtain :

[S]i = [x0](i+8) ⊕ [x1](i+17) ⊕ [RE(i + 17)]0 ⊕ [x2](i+25) ⊕ [x3](i) ⊕ [RS(i)]0.

which is a linear approximation of the output function.
We would like to XOR this relation at two instants t and t + δ for instance

with δ = 3, since this is the value identified in the first step. We already now the
bit-flip probabilities of the register bits. Now the problem is to determine the
bit-flip probabilities of the carry bits between t and t + 3.

5.3 Bit Flip Property of Carries

Basically, each input bit in the additions E and S is flipped with a known
probability, different from 0.5. As a consequence, we may expect that the carries
also flip with probabilities different from 0.5. The goal of this Section is to
evaluate this probability.



384 F. Muller and T. Peyrin

We define the "general carry" as [RG(i)] = [RE(i+17)]⊕[RS(i)]. We also call
XRG(i) = [RG(i)]t0 ⊕ [RG(i)]t+3

0 and Xj(i) = [xj ]ti ⊕ [xj ]t+3
i . From the previous

section, we get :

[S]ti ⊕ [S]t+3
i = XRG(i) ⊕ X0(i + 8) ⊕ X1(i + 17) ⊕ X2(i + 25) ⊕ X3(i)

From the first step, we know that Pr(Xj(i) = 1) = 1
2 (1 + εj

i ). The biases εj
i

are given in Table 7 in the Appendix. So the only remaining term is XRG(i).
Experimentally, we observed that

Pr(XRG(i) = 1) =
1
2
(1 + εG

i ) with |εG
i | 
 0

and that εG
i apparently depends on the position i considered. Unfortunately, we

also observed that the two "internal" carries RS(i) and RE(i) are not indepen-
dent, so it is not possible to handle them separately.

To explain this bias, we model the phenomenon as a Markov chain. Indeed,
carries at layer i + 1 are computed only from the carries at layer i and from the
terms in the addition, so we do not need to remember what happened previously.
We implemented a recursive algorithm to evaluate the following probability,
starting from the least significant bit i = 0 :

Pri(a, b, c, d) = Pr ( (RS(i)t = a) ∧ (RS(i)t+3 = b)
∧(RE(i + 17)t = c) ∧ (RE(i + 17)t+3 = d))

for all possible a, b, c, d ∈ {0, 1, 2}2 × {0, 1}2. To compute Pri+1(a, b, c, d), we
examine all cases at layer i : we try all values of the terms in the addition, we
try all values of the carries at layer i, and we compute the new carries. Each
event at layer i is associated with its corresponding probability, and we increment
accordingly the probabilities of layer i + 1. After examining all cases, we know
Pri+1(a, b, c, d). Then, we increment i and jump to the next layer 1.

In the end, we obtain the bit-flip probability of the general carry by :

Pr(XRG(i) = 1) =
∑

a,b,c,d|LSB(a)⊕LSB(b)⊕c⊕d=1

Pri(a, b, c, d).

The experiments on TSC-1 returned the same probabilities as our computation
by a Markov chain. These results are listed in the rightmost column of Table 7
(see the Appendix). We now have biased linear approximations which involve
only TSC-1’s output bits and internal state bits, so we can continue to the third
step.

1 There is a slight technicality, since the layer 0 actually depends from the layer 31
due to the left rotation, so we do not know how to initialize the recursion. Actually,
probabilities are quite independent from the initial value, so we can handle this
difficulty.
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5.4 Third Step

Distinguishing Attacks
It is easy to use a bias on the output of a stream cipher for a distinguishing

attack : one just produces enough keystream bits and checks if the bias is satisfied
or not. For a bias ε, it it well known that about ε−2 samples are needed. As an
example, Künzli et al. pointed out a distinguisher requiring 222 output bits for
TSC-1 [18]. Similarly, our previous analysis provides a distinguishing attack. For
example, consider the layer i = 1 of the output. We have

[S]t1 ⊕ [S]t+3
1 = XRG(1) ⊕ X0(9) ⊕ X1(18) ⊕ X2(26) ⊕ X3(1)

Assuming the terms are independent, the bias are just multiplied, so

Pr
(
[[S]t1 ⊕ [S]t+3

1 = 1
)

= 0.5 (1 + εD)

with :

εD = ε(X0(9)) × ε(X1(18)) × ε(X2(26)) × ε(X3(1)) × ε(XRG(1))
= 0.2834 ∗ 0.2824 ∗ 0.2732 ∗ 0.2812 ∗ (−0.0874)
= −2−10.86

using Table 7 in the Appendix. This gives a data complexity of ε−2
D 
 221.7

keystream bits, which is slightly better than [19].

Key Recovery Attacks
As pointed out in Section 4.2, if we guess the i LSB’s of each register in the

initial state, we can predict these bits at any moment. This idea can be used to
eliminate many terms in the linear approximations.

First, let us guess the LSB of each register. There are 24 = 16 possibilities.
For any instant t, we can predict these LSB and thus eliminate all terms of the
form Xi(0) in the linear approximations. For instance, we can predict [S]t0 ⊕
[S]t+3

0 ⊕ X3(0) which is biased with

ε = −0.2826 ∗ 0.2818 ∗ 0.2826 ∗ 0.1906 = −2−7.86

according to Table 7 of the Appendix. This bias will be observed only for the
correct guess. So, with a sufficient amount of data, we can find which of the 16
guesses is correct. The process can be repeated to successively guess all layers of
the initial state, starting from the least significant ones.

The complexity of guessing each layer depends on the best bias that can be
found. For the first step of the attack, the bias is ε = −2−7.86 so we need

M = ε−2 = 215.72

keystream bits to find the correct guess. The time complexity is about

T = 215.72 × 24 = 219.72
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Table 3. Possible Attack Schedule for TSC-1

round
bit position

attacked
register
attacked

number of
known terms

bias
obtained

time
complexity

0 0 3 1 2−7.86 219.72

1 1 3 1 2−9.03 222.06

2 9 2 1 2−9.41 222.82

3 10 2 1 2−9.29 222.58

4 11 2 1 2−9.33 222.66

5 12 2 1 2−9.39 222.78

6 13 2 1 2−9.31 222.62

7 7 3 2 2−7.48 218.96

8 0 0 2 2−6.04 216.08

9 1 0 2 2−7.21 218.42

10 10 3 2 2−7.47 218.94

11 11 3 2 2−7.46 218.92

12 19 2 2 2−7.49 218.98

13 20 2 2 2−7.51 219.02

14 21 2 2 2−7.50 219.00

15 15 3 3 2−4.81 213.62

16 8 0 3 2−6.07 216.14

17 9 0 3 2−5.76 215.52

18 10 0 3 2−5.64 215.28

19 11 0 3 2−5.63 215.26

20 12 0 3 2−5.69 215.38

21 13 0 3 2−5.66 215.32

22 14 0 3 2−5.64 215.28

23 15 0 4 2−2.94 29.88

24 24 3 4 2−3.84 211.68

25 0 2 4 2−2.39 28.78

26 1 2 4 2−3.52 211.04

27 10 1 4 2−3.82 211.64

28 11 1 4 2−3.81 211.62

29 12 1 4 2−3.82 211.64

30 13 1 4 2−3.83 211.66

31 14 1 4 2−3.82 211.64

steps. If we stop the attack after this step, we obtain a distinguishing attack
which is slightly better than [19]. At each step, we can choose between several
linear approximations (one for each of the 32 keystream bits). We always pick the
position which gives the best results (see Table 3 for more details). Note that after
guessing the layer 7, we can eliminate two terms in the linear approximations,
so the complexity drops. Similarly, the complexity drops after the layer 15 (3
terms are eliminated) and after the layer 23 (4 terms are eliminated). The full
cost of the attack is dominated by the first layers (layer number 2 in particular).
The total complexity is of 221.4 data and 225.4 time.

6 The TSC-2 Case

The attack against TSC-2 is similar to the attack against TSC-1. The only
difficulty is that the bit-flip probability for the register x0 is almost balanced,
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because the authors have used a particular S-box. Unfortunately, due to some
second order effects, we can still obtain good linear approximations of the T-
function. Details can be found in the extended version of this paper [23].

The resulting complexity is of 248.1 time and 244.1 data to recover the secret
key. This result is worse than for TSC-1, mostly because the output function is
quite complicated (6 terms are used instead of 4), so the observed bias is much
smaller.

7 The TSC-3 Case

Since TSC-3 has some particular features compared to the two previous algo-
rithms, the application of the attack is not exactly the same. However, it roughly
follows the same framework.

7.1 First Step

The updating of any layer [x]i of the state can still be represented in a tree-
oriented fashion, although it is no longer a binary tree (each node has 4
branches). Let us first suppose that the parameter words are uniformly dis-
tributed. Then, after applying the T-function, [T (x)]i has probability 1/4 to be
equal to any of the Sj([x]i), for j = 1, 2, 5, 6. Similarly, after t updates, one
can easily compute the probability for [T t(x)]i to be equal to each power of the
S-box2. This is summarized in Table 4. Then we can apply essentially the same

Table 4. Exploration of the tree for TSC-3: Probability that [T t[x]]i = Sj([x]i)

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t = 1 0 1/4 1/4 0 0 1/4 1/4 0 0 0 0 0 0 0 0 0
t = 2 0 0 1/16 1/8 1/16 0 1/8 1/4 1/8 0 1/16 1/8 1/16 0 0 0
t = 3 0.047 0.047 0.016 0.016 0.047 0.047 0.016 0.047 0.141 0.141 0.047 0.047 0.141 0.141 0.047 0.016
t = 4 0.039 0.063 0.094 0.063 0.023 0.031 0.047 0.031 0.023 0.063 0.094 0.063 0.039 0.094 0.141 0.094

analysis than for TSC-1 and TSC-2. However, here we are not interested only in
bit-flip properties. Linear relations involving one input bit and another output
bit may be of interest, because the registers are permuted in the output function,
so we may compare bits belonging to different registers in the next steps of the
attack. So we focus on the linear relations of the form :

[xj ]ti = [xj′ ]t+δ
i (6)

for two different register indexes j, j′ ∈ {0, 3} and for some depth δ. While the
S-box of TSC-3 (the same as the one used in TSC-1) has good bit-flip properties,
such advanced linear approximations have not been taken into account by the
designers.
2 Remember that S16 = I .
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Table 5. Probability that [xj ]ti = [xj′ ]t+δ
i

Case δ = 1

�������Input
Output [x0]ti [x1]ti [x2]ti [x3]ti

[x0]t+1
i 0.5 0.53125 0.46875 0.5

[x1]t+1
i 0.46875 0.5 0.5 0.46875

[x2]t+1
i 0.5 0.53125 0.5 0.53125

[x3]t+1
i 0.53125 0.5 0.46875 0.5

Case δ = 2

�������Input
Output [x0]ti [x1]ti [x2]ti [x3]ti

[x0]t+2
i 0.515625 0.515625 0.5 0.5

[x1]t+2
i 0.5 0.515625 0.46875 0.5

[x2]t+2
i 0.5 0.5 0.515625 0.515625

[x3]t+2
i 0.5 0.5 0.5 0.515625

Case δ = 3

�������Input
Output [x0]ti [x1]ti [x2]ti [x3]ti

[x0]t+3
i 0.51172 0.49610 0.51172 0.50391

[x1]t+3
i 0.50391 0.51172 0.49610 0.51172

[x2]t+3
i 0.49610 0.48828 0.51172 0.49610

[x3]t+3
i 0.48828 0.49610 0.50391 0.51172

From Table 4, it is easy to derive the probability that relation (6) holds,
for any pair of positions (j, j′). These results do not depend on which layer
i we consider although some side effects are observed at the least significant
positions3. The results for certain values of δ are given in Table 5. They have
been verified experimentally, by running the cipher on a random initial state.

7.2 Second Step

In the case of TSC-3, the output function is not directly applied to the state
registers, but to 4 registers y0, y1, y2 and y3 which are truncated and permuted
copies of the state registers x0, x1, x2 and x3. First we linearize the output func-
tion as we did for TSC-1 and TSC-2 :

[S]i = [y0](i+17) ⊕ [y1](i+26) ⊕ [y2](i+2) ⊕ [y3](i+9) ⊕ [RG(i)]0

where RG(i) is the "general carry", defined as before. Then, we replace the
bits from the registers yi by the appropriate bits from the state registers xi.
Because of the truncation and the permutation, we have [yj ]i = [xπ(j)]i+8 where
π is a 4-bit permutation determined by the layer [x]0 of the internal state. The

3 Contrarily to TSC-1 or TSC-2, these side effects are not bothering for TSC-3, since
layers 0 to 7 are discarded by the output function.
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linear approximations depend on this permutation. Suppose that we are in the
particular case where :

[x]t0 = 4

Then the next value of this layer is :

[x]t+1
0 = 1

Looking at the permutations π associated with these particular values, we get

[S]ti = [x0]t(i+25) ⊕ [x1]t(i+34) ⊕ [x3]t(i+10) ⊕ [x2]t(i+17) ⊕ [RG(i)]t0

and

[S]t+1
i = [x1]t+1

(i+25) ⊕ [x0]t+1
(i+34) ⊕ [x2]t+1

(i+10) ⊕ [x3]t+1
(i+17) ⊕ [RG(i)]t+1

0

Using the Table 5, we observe that :

Pr([x0]t(i+25) = [x1]t+1
(i+25)) = 0.46875

Pr([x1]t(i+34) = [x0]t+1
(i+34)) = 0.53125

Pr([x3]t(i+10) = [x2]t+1
(i+10)) = 0.53125

Pr([x2]t(i+17) = [x3]t+1
(i+17)) = 0.46875

These 4 probabilities are of the form 0.5 (1 ± 2−4). We tried to consider other
values of [x]0 than 4, but it seems to be the best choice, since the highest prob-
abilities in Table 5 appear. Combining the two relations at instants t and t + 1,
we get :

[S]ti ⊕ [S]t+1
i = [RG(i)]t0 ⊕ [RG(i)]t+1

0

with probability 0.5 (1 + ε) and |ε| = (2−4)4 = 2−16.
Like for TSC-1 and TSC-2, the carries from the additions involved in the

output function are not independent from each other. So it is not easy to ex-
press simply the probability that [RG] changes between t and t + 1. Like before,
modeling this phenomenon by a Markov chain could provide more precise re-
sults, but we choose to measure the probability experimentally for the sake of
simplicity. Results for several values of i are given in Table 6. For some well-
chosen positions (typically those were one of the carries is guaranteed to be 0),
the probability deviates significantly from 0.5. We observed biases as high as
ε 
 2−3 for "good" positions such as i = 8 or i = 23. As a consequence,

[S]t23 ⊕ [S]t+1
23

is equal to 0 with probability of 0.5 (1 + ε) and |ε| 
 2−16 × 2−3 = 2−19.
This bias is only valid when [x0]t = 4, which is the case for exactly one

position over 16 in the keystream sequence. It is straightforward to determine
which positions should be analyzed if we guess the 4 LSB’s of the initial state.
In the next section, we show how to exploit this bias for distinguishing and
key-recovery attacks.
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Table 6. TSC-3 : Bias measured experimentally on the Carry

Position Pr([RG]ti ⊕ [RG]t+1
i ) Position Pr([RG]ti ⊕ [RG]t+1

i )
i = 0 0.5001 i = 16 0.4993
i = 1 0.4921 i = 17 0.4998
i = 2 0.4968 i = 18 0.4997
i = 3 0.4989 i = 19 0.4998
i = 4 0.5001 i = 20 0.5003
i = 5 0.5003 i = 21 0.5002
i = 6 0.5004 i = 22 0.4996
i = 7 0.4999 i = 23 0.4452
i = 8 0.4442 i = 24 0.4862
i = 9 0.4871 i = 25 0.4962
i = 10 0.4967 i = 26 0.4995
i = 11 0.4999 i = 27 0.5003
i = 12 0.4996 i = 28 0.5005
i = 13 0.4997 i = 29 0.4997
i = 14 0.5002 i = 30 0.4996
i = 15 0.4997 i = 31 0.5007

7.3 Third Step

If we exploit positions 8 or 23 of the output word, we showed in the previous
section a bias of the order of ε = 2−19. This can be used to distinguish TSC-3’s
output sequence from random data, provided ε−2 = 238 samples are given. Since
only one position out of 16 in the output sequence is useful, it means that :

M = 16 × 238 = 242

output words are needed. In addition, we must try all values for the initial state’s
LSB, so the time complexity is about

T = 24 × 238 = 242

computation steps.
To mount a key-recovery attack, we start by guessing the 9 least significant

layers of the initial state (36 bits in total), in order to predict [x]t8 for all t. This
layer is also the least significant layer of the registers yi, and it turns out that it
is also used in one of the "best" linear approximations : [S]t23 ⊕ [S]t+1

23 .
Therefore, we can eliminate one term in this approximation which increases

the bias from 2−19 to 2−15. Once we found the correct guess for these 36 state
bits, it is straightforward to continue the attack, like we did for TSC-1 and TSC-
2. The first step is clearly the most expensive, because we must guess 36 bits at
the same time. So, the time complexity is

T = 236 × (215)2 = 266

computation steps. The data complexity of this attack is only :

M = 16 × 230 = 234

output words.
These two attacks show that the stream cipher TSC-3 does not reach the

expected security level.
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8 Criteria for Future Design

First, we can notice that the 3 separate steps in our linear cryptanalysis frame-
work are always possible, to some extent.

– The periodicity of the least significant layers in multi-word T-functions is
always small, by construction. The periodicity of the i-th layer is always 2mi

at most for a state of m words. Therefore the following linear relation always
holds with probability 1 :

[xj ]ti ⊕ [xj ]t+2mi

i = 0

Other approximations can exist depending on the nature of the T-function,
as illustrated in the case of the TSC family.

– For any choice of the output function, there exist linear approximations
between input and output bits. Unless the function is very complex (but it
is generally not the case, because the output function needs to be fast), it is
likely that approximations with good probability can even be found.

– If the approximations of step 1 and step 2 can be combined, it is generally
feasible to exploit these biased relations into a key-recovery attack.

Therefore the difficulty does not lie in finding linear approximations or exploit-
ing them, but on combining all approximations to describe the complete cipher.
This is something we did not manage to do for Klimov and Shamir’s proposal for
instance [16]. It is likely that T-function will receive a lot of attention in the fu-
ture for stream cipher design. To prevent the application of linear cryptanalysis,
we suggest to use several safeguards.

– Never use the least significant half of the registers in the output function,
because of the small periodicity (this countermeasure was already applied
by Klimov and Shamir in several proposals, and TSC-3 has also taken a step
in this direction compared to its two predecessors).

– Use rotations in the output function in order to combine the bits from all
registers. The output function of TSC-1 or TSC-3 is probably too simple,
which makes the analysis easier.

– Try to avoid simple linear approximations for the T-functions over several
consecutive steps. For the S-box based T-functions proposed by Hong et al.,
it is an open problem to say if this is possible. It seems that the current
proposals do not provide enough diffusion, but maybe for an appropriate
instantiation, the existence of good linear approximations may be avoided.
This is an interesting topic for future research.

– Try to take advantage of the "complex" operations which are available on
processors. For instance, we believe it is a good idea to use the integer mul-
tiplication, when possible, even in the output function.

All these countermeasures may have a negative impact on the encryption speed,
but this must be put into the balance with the increased level of security.
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9 Conclusion and Comments

In this paper, we give a general framework of linear cryptanalysis for stream
ciphers using a T-function. The idea consists in linearizing separately the T-
function and the output function, and then connecting both approximations.
We successfully applied it to the TSC family of stream ciphers but we believe it
can have many applications against this emerging family.

We managed to find a key recovery attack requiring 221.4 data with 225.4 time
for TSC-1, and 244.1 data with 248.1 time for TSC-2. The attack against TSC-1
has been implemented and requires about 4 minutes of analysis on an average
PC. Thus, TSC-1 and TSC-2 are not secure enough for stand-alone use.

An advanced version of our attack also allows to break TSC-3, one of the
stream ciphers recently proposed for the ECRYPT project. This attack is very
interesting because the designers took into account distinguishing attacks by
Künzli et al. and added countermeasures. However, our general framework still
allows to break the cipher. TSC-3 can be distinguished from random by process-
ing 242 output words, and its secret key can be recovered with 266 computation
steps and 234 known output words.

For future designs of stream ciphers, we suggest to benefit from complex
operations that allow T-functions. For instance, integer multiplication has good
diffusion properties and prevents good linear approximations. Moreover, we rec-
ommend never to use LSB’s of the state registers in the output function.
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Appendix

Table 7. TSC-1 for t/t + 3: Bit Flip Probabilities of the Registers and of the LSB of
the General Carry

bit
position

register 0 register 1 register 2 register 3 LSB(RG)

0 0.5000 0.5000 0.5000 0.5000 0.5953
1 0.6406 0.6406 0.6406 0.6406 0.4563
2 0.6479 0.6479 0.6479 0.6479 0.4948
3 0.6446 0.6446 0.6446 0.6446 0.5247
4 0.6442 0.6442 0.6442 0.6442 0.5328
5 0.6427 0.6427 0.6427 0.6427 0.5343
6 0.6356 0.6356 0.6356 0.6356 0.5356
7 0.6412 0.6412 0.6412 0.6412 0.5352
8 0.6413 0.6413 0.6413 0.6413 0.5263
9 0.6417 0.6416 0.6416 0.6417 0.5337
10 0.6417 0.6417 0.6417 0.6417 0.5355
11 0.6364 0.6364 0.6364 0.6364 0.5357
12 0.6408 0.6408 0.6409 0.6409 0.5354
13 0.6412 0.6411 0.6412 0.6412 0.5352
14 0.6416 0.6416 0.6415 0.6416 0.5354
15 0.6417 0.6416 0.6416 0.6417 0.4348
16 0.6364 0.6364 0.6364 0.6363 0.4952
17 0.6408 0.6409 0.6409 0.6408 0.5253
18 0.6412 0.6412 0.6412 0.6412 0.5332
19 0.6416 0.6416 0.6417 0.6416 0.5349
20 0.6364 0.6364 0.6364 0.6364 0.5355
21 0.6409 0.6408 0.6408 0.6409 0.5359
22 0.6412 0.6412 0.6412 0.6413 0.5355
23 0.6365 0.6365 0.6365 0.6365 0.5360
24 0.6408 0.6408 0.6408 0.6409 0.5349
25 0.6413 0.6413 0.6413 0.6413 0.5266
26 0.6366 0.6365 0.6366 0.6366 0.5333
27 0.6409 0.6408 0.6408 0.6409 0.5351
28 0.6414 0.6413 0.6413 0.6412 0.5357
29 0.6365 0.6366 0.6365 0.6365 0.5357
30 0.6408 0.6409 0.6408 0.6408 0.5355
31 0.6412 0.6412 0.6412 0.6412 0.5351
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