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Abstract. This paper brings the password-based authenticated key ex-
change (PAKE) problem closer to practice. It takes into account the pres-
ence of firewalls when clients communicate with authentication servers.
An authentication server can indeed be seen as two distinct entities,
namely a gateway (which is the direct interlocutor of the client) and a
back-end server (which is the only one able to check the identity of the
client). The goal in this setting is to achieve both transparency and se-
curity for the client. And to achieve these goals, the most appropriate
choices seem to be to keep the client’s password private even from the
back-end server and use threshold-based cryptography. In this paper,
we present the Threshold Password-based Authenticated Key Exchange
(GTPAKE) system: GTPAKE uses a pair of public/private keys and, un-
like traditional threshold-based constructions, shares only the private
key among the servers. The system does no require any certification ex-
cept during the registration and update of clients’ passwords since clients
do not use the public-key to authenticate to the gateway. Clients only
need to have their password in hand. In addition to client security, this
paper also presents highly-desirable security properties such as server
password protection against dishonest gateways and key privacy against
curious authentication servers.

Keywords: Threshold Protocols, Password-based Authentication.

1 Introduction

Problem Description. Consider the familiar scenario where you are at the
airport waiting for your flight. You have checked-in and have now half an hour to
kill. What do you do? Turn on your laptop, switch on your wireless card, and pick
up the airport wireless LAN. You are prompted for a password to authenticate
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yourself and upon successful authentication a port is opened for you to browse
the Internet and/or read your e-mails. Now you may wonder what happens under
the hood. We have indeed talked to an airport gateway, often termed hotspot,
that has in turn talked to your mobile-Internet provider. T-Mobile is an example
of such a provider in the United States. The gateway has passed in an encrypted
form your password to the provider for authentication and gets back a yes/no
depending whether or not the authentication was successful.

Although this model is very attractive in practice, existing security solutions
implementing it have major drawbacks since the gateway gains some amount
of information about your password. The ideal solution is a cryptographic algo-
rithm allowing the client to securely exchange a session key with the gateway,
but the gateway does not gain any information about the password and the
authentication server does not gain any information about the session key. Ad-
ditional problems also occur if too many people, from the same provider, try to
connect to various gateways at the same time. The authentication check from
the provider would become a bottleneck. Various authentication points are very
desirable. Nevertheless, the password of the client cannot be stored at several
places, otherwise the job of hackers would be made much easier.

Scenario. To formally define a model for the above scenario, we propose a model
in which one can design a protocol among three parties (the client, the gateway
and the authentication server) which protects both the session keys and the
passwords. We indeed require the three following security notions which capture
dishonest behaviors of the client, the authentication server and the gateway
respectively: the semantic security of the sessions keys, which we model by a
Real-Or-Random (ROR) game [2] (it has been proved strictly stronger than the
more classical Find-Then-Guess (FTG) model []); the key-privacy notion [2]
which entails that the session key exchanged by two parties with the help of an
authentication server is unknown to the authentication server (and also to any
other party, granted the semantic security); the server password protection which
basically means that the gateway cannot learn any information about clients’
passwords from the authentication server.

The ultimate goal of this paper is to achieve the highest level of security in
the PAKE setting. With the above security notions, breaking into the gateway
would not help to gain any information about the passwords, however the au-
thentication server is a security hole. Breaking into the latter would leak the
authentication information. Furthermore, according to the above motivation ex-
ample, a unique authentication point may be a bottleneck. When data informa-
tion is crucial, a usual solution to protect it is to distribute it among several
servers such that a majority of them is needed to recover the initial data. More-
over, when we want to protect a cryptographic service we can split the private
information into several parts, each known by one server, so that a majority of
them is required to maintain the service without reconstructing the secret key in
a single place. Threshold cryptography is the field that provides such solutions
and allows to take into account adversaries that can break into any minority of
parties. It furthermore solves the bottleneck problem.
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Contribution. Our contribution in this paper is a provably-secure protocol
satisfying the previously mentioned requirements. We have constructed it by
defining a simple protocol, called the gateway PAKE (GPAKE) protocol, among
three parties (the client, the gateway and the authentication server). GPAKE pro-
tects the session keys and the passwords according to a formal security model
which we specify in this paper. It provides the additional property to be a vari-
ant of AuthA [5] perfectly transparent to the client. Transparency means that
a client does not (need to) know whether he is talking to a server directly or
whether the server is implemented as a gateway, an authentication server, or
even an application server. The gateway does not also (need to) know whether
the authentication server is distributed. A non-transparent protocol indeed raises
real concerns on the utilization of the protocol in practice since clients need to
first update their cryptographic stack in order to take advantage of the threshold
PAKE feature. A transparent protocol on the other hand lets only domain admin-
istrators worry about deploying the threshold PAKE feature to their users. We
have developed a threshold version (called gateway threshold PAKE (GTPAKE))
that does not break the transparency property of GPAKE, and defined its execu-
tion in our security model. Clients already running the two-party AuthA protocol
(e.g, OMDHKE [8]) will not have to upgrade their stack when administrators
add an extra layer of protection with GTPAKE!

Related Work. Several password-based key exchange protocols in the thresh-
old setting have been proposed in the past by MacKenzie et al. [14] and by Di
Raimondo and Gennaro [10], to name a few. In particular, the protocol by Di
Raimondo and Gennaro in Eurocrypt 2003 [10], which is a threshold version of
the 2-party KOY protocol [I2], is proven secure in the standard model. In that
paper, they have introduced the notion of transparent protocols, where the ini-
tial protocol and its threshold version are the same from the point of view of the
client. Unfortunately, their solution is not very efficient from a practical point of
view since it requires several rounds of communication between the client and
the server and among the servers themselves. Moreover, like previous proposals
of threshold password-based key exchange protocols, their protocol requires the
password to be shared among all the servers.

The solution we propose in this paper does not require passwords to be
shared across different servers. Instead, we only share the secret decryption key
for a public-key encryption scheme under which all passwords are encrypted.
This provides an additional feature: it is quite easy for a client to modify his
password. He just needs to send the new one encrypted under the authentication
servers’ public key.

Moreover, contrary to the hybrid model of Halevi and Krawczyk [11], where
the server has a public/secret key pair and the client only knows a password,
the client is not required to check the authenticity of the public key during the
execution of the protocol. Integrity is required only during the registration or
when the user wants to update his password.

Organization of the Paper. In Section 2] we present the formalization used
to define the execution of the GPAKE and GTPAKE protocols. Our formalization
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extends that of Abdalla et al. to the threshold setting [2]. In Section [ we
present the intractability assumptions used throughout the paper. In Section [,
we describe the GPAKE system and show that it achieves semantic security and
key privacy in a provable secure way. In Section [l we describe the GPAKE
system’s threshold version and show that it is secure —via a reduction from
the security of GTPAKE to the intractability assumptions— against dictionary
attacks.

2 Security Model

In this section, we present the security model we will use in the rest of the paper
to define the execution of our protocol for threshold password-authenticated key
exchange.

2.1 Overview

GATEWAY-ORIENTED PASSWORD-BASED KEY EXCHANGE. A gateway-oriented
password-based key exchange is a three-party protocol among a client, a gateway,
and an authentication server. The goal of protocol is to establish an implicitly
authenticated session key between the client and the gateway with the help
of the authentication server, where the authentication is done by means of a
short password. In our model, the password is known to both the client and the
authentication server, but not to the gateway. In fact, no long-term secrets are
stored in the gateway. The authentication server, on the other hand, is assumed
to know the password. While the communication channel between the gateway
and the authentication server is assumed to be authenticated and private, the
channel connecting the client to the gateway may be insecure and perhaps under
the control of an adversary.

The security goals of our gateway-oriented password-based key exchange
model are also somewhat different from those of previous models for password-
based schemes. In particular, we ask that the session key shared between the
gateway and the client should remain private to the authentication server (see
Section 22l for more details). Moreover, we also ask that the chances of the gate-
way learning some information on the password after multiple interactions with
the server, perhaps concurrently, should be negligible.

PROTOCOL PARTICIPANTS. The participants in a gateway-oriented password-
based key exchange are the client C' € C, the gateway G € G, and the authenti-
cation server S € S. We denote by U the set of all participants (i.e., i = CUGUS)
and by U a non-specific participant in &. Each client C' € C holds a password
pwo. Each server S € S holds a vector of passwords PWg = (pw)cec with an
entry for each client.

2.2 Security Model

Since we assume an authenticated and private channel between the gateway
and the server, the communication model is similar to previous one for 2-party
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authenticated key exchange. In particular, we adopt the Real-Or-Random (ROR)
security model of Abdalla et al. [2] for password-based authenticated key ex-
change protocol, which in turn implies that of Bellare et al. [4]. As in the standard
model, all the interactions between an adversary A and the protocol participants
in the ROR model are done via oracle queries. Let U? denote the instance i of a
participant U. The list of oracles available to the adversary are as follows:

— Execute(C*% G7): This query models passive attacks in which the attacker
eavesdrops on honest executions among a client instance C? and a gateway
instance G*. The output of this query consists of the messages that were
exchanged during the honest execution of the protocol.

— Send(U?,m): This query models an active attack against the client or gate-
way instance U’, in which the adversary may intercept a message and then
modify it, create a new one, or simply forward it to the intended recipient.
The output of this query is the message that the participant instance U’
would generate upon receipt of message m.

The Real-Or-Random Model [2]. In the ROR model, in addition to the
above-mentioned oracles, an attacker is also given access to a less restrictive
Test oracle. Let b be a bit chosen uniformly at random at the beginning of the

experiment defining the semantic security of session keys. The Test oracle in the
ROR model is defined as follows:

— Test(U?): If no session key for instance U’ is defined, then return the unde-
fined symbol L. Otherwise, return the session key for instance U* if b =1 or
a random of key of the same size if b = 0.

As in standard models, the Test oracle in the ROR model also tries to capture
the adversary’s ability (or inability) to tell apart a real session key from a random
one. The main difference is that it does so not only for a single session but for
all sessions. More precisely, the adversary in the ROR model is not restricted to
ask a single Test query, but it can in fact ask multiple ones. All Test queries in
this case will be answered using the same value for the hidden bit b that was
chosen at the beginning of the experiment defining the semantic security of the
session keys. That is, the keys returned by the Test oracle are either all real or all
random. However, in the random case, the same random key value is returned
for Test queries that are asked to two instances that belong to the same session
(see notion of partnering below). The goal of the adversary in the ROR model is
still the same: to guess the value of the hidden bit b used to answer Test queries.
The adversary is considered successful if it guesses b correctly.

PARTNERING. As in [2], we use the notion of partnering based on session iden-
tifications (sid), which says that two instances are partnered if they hold the
same non-null sid. More specifically, a client instance C* and a gateway instance
GY are said to be partners if the following conditions are met: (1) Both C* and
G7 accept; (2) Both C* and G’ share the same session identifications; (3) The
partner identification for C* is G’ and vice-versa; and (4) No instance other than
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C* and G7 accepts with a partner identification equal to C? or G7. In practice,
the sid is taken to be the partial transcript of the conversation among the client
and the gateway instances before the acceptance.

FRrRESHNESS. Differently from [2], we opt not to embed the notion of freshness
inside the definition of the oracles. Instead, we take the more standard approach
of explicitly defining the notion of freshness and mandating the adversary to only
perform tests on fresh instances. The two approaches are however equivalent. In
particular, we say that a instance of a client or gateway is fresh if it has accepted.

FORMAL DEFINITION. Let Succ denote the event in which the adversary is
successful. The ake — ror-advantage of an adversary A in violating the semantic
security of the protocol P in the ROR sense and the advantage function of the
protocol P, when passwords are drawn from a dictionary Dict, are respectively

AdvEerror(A) = 2. Pr[Succ] — 1 and

p,Dict
ake—ror _ ake—ror
Ava,Dict (t,R) = mjux{ Ava,Dict (A},

where the maximum is over all 4 with time-complexity at most ¢ and using
resources at most R (such as the number of queries to its oracles). The definition
of time-complexity that we use henceforth is the usual one, which includes the
maximum of all execution times in the experiments defining the security plus
the code size.

Please note that, as proven in [2], any scheme proven secure in the ROR
model is also secure in the model of Bellare et al. [4]. The converse, however, is
not necessarily true (see [2] for more details).

AUTHENTICATION. The notion of semantic security does not guarantee the ex-
istence of a partner, but only the secrecy of the session key (implicit authen-
tication). In order to address this problem, one usually adds mechanisms for
explicit authentication of client and gateway instances. In this paper, we only
consider unilateral authentication of the gateway, by which a client instance can
be ensured that it has in fact established a key with the gateway instance it
intended to. As in [7], we denote by Succg‘faLUth the probability that adversary
A successfully impersonates the gateway in an execution of the protocol. This is
the probability with which a client instance accepts without having a gateway
partner. The advantage function of the protocol can be defined as in previous
cases.

Key Privacy. The notion of key privacy was introduced in [2] to capture the
idea that the session key computed by two parties with the aid of an authenti-
cation server should only be known to those two parties and not to the server.
The goal in this case is to reduce the amount of trust one puts into the server.
In order to meet this goal, one has to consider an adversary with access to
all the secret information stored in the server and then show that such ad-
versary cannot distinguish actual session keys from random ones if we restrict
this adversary to test sessions in which the keys are shared between two ora-
cles. The latter restriction is important since an adversary with access to the
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secrets of the authentication server could always establish a key with a client
by playing the roles of the gateway and authentication server. Since one of our
main goals is to show that the key shared between the client and the gate-
way is not known to the authentication server, we also use the notion of key
privacy.

To capture the above intuition more formally, [2] considers an adversary
which has access to all the secrets held by the authentication server and to the
oracles used in the experiment defining semantic security. They then introduce a
new type of oracle, called TestPair, whose goal is to capture the adversary’s ability
to distinguish the real session key shared between any two oracle instances from
a random one. The inputs to the TestPair oracle are the specific oracle instances
whose shared session key the adversary thinks it can tell apart from a random
key.

FORMAL DEFINITION. Consider an execution of the key exchange protocol P by
an adversary A with access to all the secret held by the authentication server
as well as to the Execute, Send, and TestPair oracles. Let Succ denote the event
in which the adversary is successful in guessing the hidden bit used by TestPair
oracle when only asking TestPair queries to instances pairs that have accepted.
The kp-advantage of an adversary A in violating the key privacy of the pro-

tocol P in the ROR sense (Adv?}kalc(:(A)) and the advantage function of P

(Adv;kalc(:(t, R)), when passwords are drawn from a dictionary Dict, are then

defined as in previous definitions.

Server Password Protection. As we mentioned earlier, one of the goals of
our protocol is to guarantee that the gateway is not capable of learning the
user’s password that is stored in the server. Clearly, as in the case of semantic
security, one cannot hope for much since, in each interaction, the adversary may
be able to eliminate one candidate password from the list of possible passwords.
However, we ask that the adversary should not be able to do much better than.
That is, if the adversary interacts ¢ times with the server, then the probability
that it can distinguish the true password from a random one in the dictionary
should be only negligibly larger than O(q/N), where N is the size of the dic-
tionary. The hidden constant in this case should be as small as possible (prefer-
ably 1). Note that, in this definition, the dictionary is assumed to be uniformly
distributed.

2.3 Threshold Security Model

THRESHOLD GATEWAY-ORIENTED PASSWORD-BASED KEY EXCHANGE. A (t,k,
n)-threshold gateway-oriented password-based key exchange is an extension of
the basic gateway-oriented password-based key exchange in which the authenti-
cation server is a distributed entity. More specifically, the clients’ passwords are
no longer known to any single server. Instead, each server in the set of n au-
thentication servers is assumed to hold a share of the secret key of a public-key
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encryption scheme, under which clients’ passwords are encrypted. The authenti-
cation of any client will require the cooperation of some size-k subset of honest
servers. In addition, any adversary who learns ¢ or fewer shares of the secret key
should not learn any information about the clients’ passwords.

PARTICIPANTS. The participants in a threshold protocol are the client C' € C,
the gateway G € G, the set of authentication servers {Sy,...,S,} with S; € S,
and a trusted dealer.

Semantic Security. The definition of semantic security of threshold protocols
follows the one given above for gateway-oriented protocols. At the beginning
of the semantic security experiment, the adversary selects a subset of at most
t = k — 1 servers to corrupt. We say that the adversary is static when it chooses
the set of servers to corrupt in advance, before seeing anything. A special server,
called the combiner, will be used to perform some tasks that do not require
any secret. The combiner is also in charge of all communications between the
gateway and the other servers.

The dealer generates a public key pk and a secret key sk for an encryption
scheme. Then, he performs the secret sharing of sk and sends the part sk; to P;
along with a verification key vk;. The adversary obtains the secret key shares of
the corrupted servers, along with the public key and the verification keys.

After this phase, the adversary is given access to the same set of oracles used
in the standard security model for gateway-oriented password-based authenti-
cated key exchange protocols.

Robustness. We say that a threshold scheme is robust when it takes into
account malicious adversaries whose behavior can be different from the protocol.
To force the servers to correctly perform their job, we use proofs of validity in
our protocol. This also enables the combiner to correctly decrypt.

3 Diffie-Hellman Assumptions

In this section, we recall the definitions of standard Diffie-Hellman assumptions
and introduce some new variants, which we use in the security proof of our
protocol. We also present some relations between these assumptions.

3.1 Classical Assumptions

Henceforth, we assume a finite cyclic group G of prime order p generated by an
element g. We also call the tuple G = (G, g, p) a represented group.

Computational Diffie-Hellman Assumption: CDH. The CDH assump-
tion, in a represented group G, with respect to the basis X, states that given
two elements X’ = X% and Y = X", where u and v were drawn at random from
Z,, it is hard to compute Y’ = Y* = X"*. This can be defined more precisely

by considering an experiment Expédh(A, X), in which we select an exponent u
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in Z,, an element Y in G, compute X’ = X", and then give both X’ and Y
to A. Let Y’ be the output of A. Then, the experiment Expth(A,X ) outputs
1if Y’ = Y™ and 0 otherwise. We define the advantage of A in violating the
CDH assumption with respect to X as Advi*(A, X) = Pr[Exp&i™(A, X) = 1],
the advantage of A in violating the CDH assumption (with a random basis) as

Advi™(A) = Ex [Adedh(A X)] and the advantage functions, Advi™ (¢, X)

and Advg™(t), as the maximum values of Advi™(A, X) and AdvE™(A) over
all A with time-complexity at most .

Tt is also often assumed that, independently of what the value of X is (as
long as it is a generator, of order p), the CDH problem with respect to the basis
X is hard: the maximal value of AdvcGlh (t, X) over all generators X is small for
any reasonable t.

Decisional Diffie-Hellman Assumption: DDH. Roughly, the DDH assump-
tion, with respect to the basis X, states that the distributions (X, X’ = XY,
Y'=Y") and (X, X' = X" Y,Z = Y") are computationally indistinguishable
when Y is drawn at random from G, and u and v are drawn at random from Z,,.
As before, we can define the DDH assumption more formally by defining two
experiments, Expad™™(4, X) and Expa™ ™44, X). In both experiments,
we compute two random values X’ = X% and Y as before. But in addition to
that, we also provide a third input, which is Y* in Expddh real(.A, X) and Y7,
for a random v, in Expa™ ™44, X). The goal of the adversary is to guess a
bit indicating the experiment he thinks he is in. We define the advantage of A
in violating the DDH assumption, with respect to the basis X, Advddh(A, X),
as Pr[Expa™™(4, X) = 1] — Pr[Expi™"™ (A X) = 1], and advantage of
A in violating the DDH assumption (with random basis) as Advi™(A) =

Ex {Advddh (A, X)} The advantage functions Advg™ (t, X) and Advi®(t) are

then defined in a similar manner as above.

Again, it is also often assumed that, independently of what X is (as long as
it is a generator, of order p), the DDH problem with respect to the basis X is
hard: the maximal value of Adv%dh(t, X) over all generators X is small for any
reasonable t.

3.2 Password-Based Chosen-Basis Diffie-Hellman Assumptions

The actual proofs of security of our protocol use password-related versions of the
above Diffie-Hellman assumptions, in which the adversary has some control over
the basis, hence the name password-based chosen-basis decisional/computational
Diffie-Hellman assumptions. They make use of a dictionary D = {Uy,...,Un}
of size N. Then, we assume that when the adversary has not correctly predicted
the password (1 chance over N), he has no significant advantage. Hence, its
overall advantage cannot be significantly larger than 1/N.

We start by presenting the password-based chosen-basis computational
Diffie-Hellman assumption.
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Definition 1 (PCCDH). Let G = (G, g,p) be a represented group and let A be
an adversary. Consider the following experiment, where D is a dictionary of N
elements in G.
Experiment Exp%“dh(.A7 D)

(X,s) < A(find, D)

ITED. vyEG

K «— A(guess, s, Y, II)

return 1 if K = CDH(X/II,Y)

We define the advantage of A in violating the PCCDH assumption with respect
to the dictionary D, Adv pCth(A D), the advantage of A AdvpCth(A), and the

advantage functions, Advéfjc\;ih(t,l)) and Advgf]c\?h(t), as above. &

In our security proofs, we actually need a simple variation of the above prob-
lem, in which the adversary, in the second stage, outputs a set of s candidates for
the CDH value. The adversary wins if the set indeed contains K. This problem
is thus named Set Password-based Chosen-basis Computational Diffie-Hellman
Problem (SPCCDH).

We define the advantage AdepCth(A D, s) of A in violating the SPCCDH

assumption with respect to the dictionary D, the advantage AdepCth(A s)

of A, and the advantage functions Advz;p%dh(t D, s) and AdepCth(t s) as in
previous definitions.

Fortunately, the two new assumptions are not so strong, since one can prove
that the SPCCDH problem is equivalent to the CDH problem as proven in
Appendix [Bl The general result proven in Appendix [B] can be simplified in the
particular case of not so large dictionaries:

Lemma 2. Adv%ﬁ%dll(t s) < Ao+ N2s%x AdvE™ (2t + 7).

In addition to the computatlonal assumptions above, we also make use of the
following decisional assumption in our security proofs.

Definition 3 (PCDDH). Let G = (G, g,p) be a represented group and let A be
an adversary. Consider the following experiment, defined for b = 0,1, where D
is the dictionary of N elements in G.

Experiment Exppccldh(.,él7 D)

(X,Y,s) — A(find, D)

H&D; So,slﬁzp

Y Yoo, X' — (X/I)®

b — A(guess, s, X' Y’ II)

return b’
We define the advantage of A in violating the PCDDH assumption with respect
to the dictionary D, Adv pCddh(A D), the advantage of A, Adv pCddh(A), and
the respective advantage functions of G for a given value N, Adv %fi,dh(t, D) and

Advgfjd\,dh (t), as above. &
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Fortunately again, this problem is not new. It has already appeared in [3]
under the name PCDDH2. In that paper, the authors have also shown that
Adv&fj‘l,dh(t, D) and Adv&fj‘l,dh(t) cannot be significantly larger than 2/N.

4 The Gateway PAKE System

In this section, we describe GPAKE, the underlying gateway-oriented password-
based protocol used in the construction of our threshold gateway-oriented pass-
word-based protocol.

4.1 Description

Our gateway-oriented password-based protocol, GPAKE, builds upon previous
password-based key exchange protocols in [BI8IT3], which in turn are based on
the encrypted key exchange of Bellovin and Merritt [6]. Its description is given in
Figure [[l where G = (G, g, q) is a represented group; ¢ is a security parameter;
and G : U? x Dict—G, Hash; : U? x G x GH{O,l}Z, and Hashy : U2 x G x
G—{0,1}*, are random oracles.

The protocol consists of four message exchanges, two between the client and
the gateway and two between the gateway and the authentication server. Since
the channel connecting the gateway to the server is assumed to be authenticated
and private, from the client perspective, the protocol resembles almost exactly
the 2-party protocol OMDHKE in [§]. The only difference is in the key derivation
function, which does not include the password.

The protocol starts with the client choosing a random element = € Z,, and
computing X = ¢*, and encrypting it using G(C,G,pw) as a mask to obtain

Client C Gateway G Authentication Server S
G, Hashq , Hasho G, Hashq , Hashg G, Hashy , Hashg
pw € Dict pw € Dict
PW = G(C, G,pw) € G PW = G(C,G,pw) € G
unauthenticated authenticated
channel private channel

accept «— false accept «— false
x pid Zg, X — g%

c, X
X* — X x PW —

—

y By vy — gv eXLY,
s&z
X «— X*/PW
XY x xSy vy

K — XY
AuthG « Hashy (C, G, X*, Y, K)
G, Y, AuthG
& ¥, Autht

K —Y*®
AuthG’ — Hasho (C, G, X*, Y, K)
AuthG’ = AuthG?
SK « Hash1(C, G, X*,Y, K) SK « Hashy (C, G, X*, Y, K)
accept «— true accept «— true

Fig. 1. GPAKE: A gateway-oriented password-based authenticated key exchange protocol
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X*. The client then sends to the gateway both X* and its identity string C.
Upon receiving a message from the client, the gateway chooses a random ele-
ment y € Z, and computes Y = g¥, and forwards to the server both ¥ and
the value X* that it has received from the client. Upon receiving the values
(X*,Y) from the gateway, the server computes X = X*/G(C, G, pw), chooses
a random element s € Z,, computes (X = X°,Y = Y?), and sends it back to
the gateway. Upon receiving (X,Y"), the gateway computes the Diffie-Hellman
key K = X", the authenticator AuthG = Hashy(C, G, X*, Y, K) and the session
key SK = Hash;(C,G, X* Y, K), and sends (G, Y, AuthG) to the client. Upon
receiving (G,Y, AuthG), the client computes the Diffie-Hellman key K = Yx,
checks whether AuthG = Hasho(C,G, X*, Y, K), and sets the session key to
SK = Hash;(C, G, X*,Y, K) if the test passes. The session identification is de-
fined to be the transcript (C, G, X*,Y) of the conversation between the client
and the gateway.

4.2 Security

Semantic security. As the following theorem states, GPAKE is a secure
gateway-oriented password-based key exchange protocol as long as the SPCCDH
problem is hard in G. As shown in Section[3] this is equivalent to assuming that
CDH problem is hard in G. The proof can be found in the full version of this
paper [1]. Nevertheless, we note here that the proof of security assumes Dict to
be a uniformly distributed dictionary and of size smaller than 2¢.

Theorem 4. Let G = (G, g,q) be a represent group of prime order q and let Dict
be a uniformly distributed dictionary of size N = |Dict|. Let GPAKE describe the
gateway-oriented protocol associated with these primitives as defined in Figure[l
Then,

ake—ror
AdvGPAKE c.Dict (t, (exey Qfake—C) fake—G s Qactives Qtesty YHash » Hashs 5 qg) <

qgctive + qé nge qIZ-Iashl + qIZ-Iashg
+ 7, +2 ’
q q 2

2 (QHashl + QHashg) : AdVE;,dh(t + (4Qexe + 4)7—6) +

2 - Qactive (QHashl + QHashg) . Adv&dh(t + 27—6) +4- Qfake—C/N +

dh
2. Qfake—G * Adv%ﬁ?\(f: (ta (GHash; + qHaShg) )

+

where qg, qHash, , and Qiash, Tepresent the number of queries to the G, Hashy and
Hashy oracles, respectively; qoxe represents the number of queries to the Execute
oracle; Graxe—c and eaxe—G TEPresent the number of attempts of the adversary to
fake the client and the gateway, respectively; Gactive represents the total number
of queries to the Send oracle; qiest TEpTEsents the total number of queries to the
Test oracle; and 7. denotes the exponentiation computational time in G.

Remark 5. In the security model presented in Section [2, the adversary is not
allowed to corrupt gateway instances. Consequently, the proof of Theorem Ml
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does not guarantee the security of GPAKE in that scenario. Even though GPAKE
appears to be secure in the presence of such adversaries, a new proof of security
would be required in this case.

Key Privacy. As the following shows, GPAKE achieves the goal of key privacy
as long as the DDH problem is hard in G.

Theorem 6. Let G = (G, g,q) be a represent group of prime order q and let Dict
be a uniformly distributed dictionary of size N = |Dict|. Let GPAKE describe the
gateway-oriented protocol associated with these primitives as defined in Figure[dl
Then,

ke—k
AdvzP’TAKEF,)G,Dict(z57 Gexes Grest) < 2 Adqu;dh(t + (4Gexe +4)7e)

wWhere Qoxe and Gresy TEPTESENL the total number of queries to the Execute and

TestPair oracles; and 1. denotes the exponentiation computational time in G.

The proof of Theorem [B]is in [I]. It is worth mentioning that, when proving the
security of GPAKE, we do not give the server access to a Send oracle since we
assume the server to be honest but curious. We do so because, in the actual
implementation of GPAKE, the server is distributed and we assume the majority
of them to be honest (see Section [E]). We also note that, in order to prove
key privacy in scenarios where the majority of servers is corrupted, additional
modifications would need to be made to GPAKE. These modifications would
include the addition of an authenticated Diffie-Hellman protocol between C' and
G as done in [2] and a proof that the pair (X,Y) is well formed.

Server Password Protection. The server password protection of GPAKE fol-
lows directly from the password-based chosen-basis decisional Diffie-Hellman as-
sumption (PCDDH) introduced in [3] and recalled in Section Bl More specifically,
it is easy to see that the interaction between the gateway and the server corre-
sponds exactly to the security experiment for PCDDH. Since the security of the
latter was shown in [3] to be only negligibly larger than 2/N, where N is the size
of the dictionary, it follows (via a standard hybrid argument as in [3]) that, in
each interaction with the server, an adversarial gateway cannot do much better
than eliminating two passwords from the list of possible candidates with each
interaction. As a result, after ¢ interactions with the server, the advantage of a
malicious gateway would be only negligibly larger than 2¢/N.

5 The Gateway Threshold PAKE System

In this section, our goal is to distribute the authentication server in the previ-
ous gateway-oriented password-based protocol to prevent malicious adversaries
that can corrupt up to k out of n servers. The solution is robust against static
adversaries. The threshold version is transparent from the point of view of the
client since it communicates only with the gateway. The threshold version is also
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transparent from the point of view of the gateway since a special authentication
server, called the combiner, is the only server with which the gateway communi-
cates. We also assume that the channel between the gateway and the combiner
is authenticated and private. We can use signature and encryption schemes in
order to fulfill this requirement using threshold signature and encryption.

Description. Let G is a cyclic subgroup of prime order gq. We assume that
the authentication servers {Sy,...,S,} share a secret ElGamal encryption key
sk = x using Shamir scheme with threshold k. Server ¢ knows sk; = z; and has
a verification key vk; = v® where v is a generator of G. The encryption of
the password ¢ = En(PW) = (e, fc) under the public ElGamal encryption key
pk = (g,y) is authenticated in a public file. At the beginning of the protocol, the
combiner, S; wlog, receives X* = X x PW, and Y = ¢¥.

First Stage. The combiner encrypts X* into (e, f) and proves the validity
of the encryption using a zero-knowledge proof of equality of discrete-log
EDLog, ,(e/X*, f). Given X* and (e, f), where e = X* x y" and f = ¢",
then we have to show that log, (e/X*) = log,(f). Then, he broadcasts to all
servers Y, X*, (e, f) and the proof of validity EDLog, ,(e/X™, f).

Second Stage. Each authentication server S; checks the proofs and chooses
a random value s; € Z,. Then, he computes ¥; = Y% e/ = (e/e.)* and
fl = (f/fe)® along with a proof of validity that Y; and the two parts
of (e}, f;) have been raised to the same power s;: EDLogy /. (Yi,€;) and
EDLogy ;. (Yi, f). All these values are broadcast to all the servers.

Third Stage. They check all proofs and they compute the values €’* =[], e} =
e/ Lisi fs = [, fl = f/Zi% and Y* = [[,Yi. Then, they perform a
threshold decryption of (¢’®, f’®) by computing g§ = (f'*)*i. Next, they prove
the validity of the decryption by computing EDLogy. ,, (g7,vk;). Finally, they
broadcast the proof along with their decryption share g;.
sAS

ies i

by using Lagrange interpolation formula and X = X*® = €’%/f'*% using k

valid decryption shares. He sends to the gateway X and Y = Y using the

authentication and private channel.

Forth Stage. The combiner, without any secret, can compute f"** =[]

For a pictorial description of our threshold protocol, please refer to Figure 2

Security. We now analyze the security of the threshold variant we just pre-
sented. To this end, we show a reduction between an adversary A against the
threshold scheme and an attacker B against the underlying provably-secure
GPAKE protocol described in the previous section.

Theorem 7. If the underlying GPAKE protocol is semantically secure and the
DDH assumption holds in G, then GTPAKE is a semantically secure threshold
protocol against a static adversary.
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Gateway G Authentication Servers S ;
G, Hashq , Hashg G, Hashy , Hashg
pw € Dict

PW = g(C, G,pw) € G
g, v generators of G,pk = y = g%, sk = @ € Zg
sk; = @4 € Zq,vk = vTi
E ElGamal encryption scheme
¢ = Ep (PW) = (ec, fe),ec =PW x yF, fe = ¢
authenticated
private
channel

k

unauthenticated
channel

accept «— false

y B2,y — g¥
*S1 computes and broadcasts
Y, X*, (e, f) = Ep(X*), EDLogy, 4 (e/X*, f)
#S; checks the proof and computes
sS4 Fid Zq,Y; — Y7i
and e} — (e/ec)%i, f{ — (f/fc)®i,
and EDLogy- . /o (Vi el), EDLogy ¢/ 7. (Vi i)
where (e/, /) = Ep(X)
and broadcasts the proofs and Y;, e}, f
#S; checks the proofs and computes
e e, £17 < T ff
and Y — Y°, g7 « f'5%1, EDLog /s, (95, vk;)
where s = 33, s; if proofs of S; are correct
and broadcasts the proof and g‘f
%51 checks the proofs and decrypts

’
1

N Skgi
X — /S /§7S where f/75 — [[;eg a;

X,Y
— - X=X%5,Y=Y°%

K «— XY
AuthG «— Hashy (A, G, X*,Y, K)
G, Y, AuthG
G, ¥, AuthG

SK « Hash1 (A, G, X*, Y, K)
accept «— true

Fig. 2. Threshold version of the gateway-oriented password-based authenticated key
exchange protocol. Since no change is required on the client side with respect to the
non-threshold protocol in Figure [I the client side has been omitted in the diagram.

Proof. Our goal is to reduce an adversary A against the GTPAKE protocol to
an attacker B against the GPAKE protocol. We need to simulate the threshold
environment for A that can corrupt any subset of size at most k — 1 servers
from the environment of the attacker B. We essentially need to simulate the
communications among the servers, i.e. the decryption parts at the end of the
protocol and the proofs of validity.

Let i1,...,ix—1 be the set of corrupted servers. Recall z; = F(i) mod ¢ for
all 1 <i<mn,and z = F(0) mod q.

To simulate the adversary’s view, we simply choose the x;; belonging to the
set of corrupted servers at random from the set Z,. This allows us to simulate all
the messages, proofs of validity and decryption shares coming from the corrupted
servers.

Once these values are chosen, the values x; for the uncorrupted servers are
also completely determined modulo ¢, since we have k points (the k — 1 points
of the corrupted servers and the point 0). The value at point 0 is the decryption
value f/5*. However, they cannot be easily computed since F'(0) is secret and



A Simple Threshold Authenticated Key Exchange from Short Secrets 581

corresponds to the secret key of the ElGamal scheme. The ElGamal secret key
cannot be chosen by the attacker B. Indeed, as all the passwords are encrypted
using the ElGamal public key in a public file, B cannot know it, unless he re-
covers the passwords and can easily break the semantic security of the GPAKE
scheme. However, we can easily compute the decryption parts g7 = f/*% of the
uncorrupted server by using the value f/**:

S
s plsz)\® SAT
gi= e I g

jeS\{0}

where S = {0,41,...,ix-1}.

For the “proofs of validity”, one can invoke the random oracle model for the
hash function H to get soundness and perfect zero-knowledge. The soundness is
similar to that in Appendix [Al

Moreover, the interactive proof system is zero-knowledge against an honest
verifier since the adversary’s view can be simulated without knowing the values
x;. This view includes the values of the random oracle at those points where the
adversary has queried the oracle, so the simulator is in complete charge of the
random oracle. Whenever, the adversary makes a query to the random oracle,
if the oracle has not been previously defined at the given point, the simulator
defines it to be a random value, and returns the value to the adversary. When we
have to perform a fake proof for (u;, ;), since the simulator does not know z;, he
chooses at random ¢ € Z, and z € Z, and defines the values of the random oracle
at (p,q,9, 3, wi, Wi, g% /us, g% /u;°) to be c. With all but negligible probability, the
simulator has not defined the random oracle at this point before, and so it is free
to do so. It is easy to verify that the distribution produced by this simulator is
perfect.

Finally, as we need the semantic security of ElGamal encryption scheme, the
security is based on the DDH assumption. O
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A Basic Tools

A.1 Threshold Secret Sharing

Let ¢ be a prime and 1 < k < n < ¢. Shamir secret sharing over Z, is a k-
out-of n sharing where any subset of at least k parties can recover the secret,
but any subset of strictly less than k parties cannot gain any information about
the secret. It is defined as follows: the dealer knows a secret x € Z,, chooses
k — 1 random points fi,..., fr—1 € Zg, sets fo = = and define the polynomial
F(X) = Zf;é fiX7. For 1 <i<mn,let z; = F(i) € Zq be the i-th share of z.
Thanks to the Lagrange equality, we can show that if k shares are revealed, x
is completely and can be determined by interpolation. For S C Z, of cardinality
k, any i € Zq, and any j € S, there exists an element )‘ib:j = Hj,es\{j}(i —

3/ Iljes\gj3 (G — ') € Zg such that

F(i) = Z)\ij(j) mod ¢
jeSs

A.2 Zero-Knowledge Proof of Equality of Discrete Logarithm

Let G be a group of prime order ¢ with generators g and g. Let EDLog, ; be
the language of pairs (u, ) € G? such that log, u = log; u. We will use a zero-
knowledge proof of membership for the language EDLog, ;. It is not a proof of
knowledge since we only want to prove the correctness of the values computed
by the authentication servers. We use the zero-knowledge proof system due to
Chaum and Pedersen[d]. Although it happens to also be a proof of knowledge,
we will not use this property. We describe here the non-interactive version using
the Fiat-Shamir heuristic in the random oracle model.

Let (u,u) € EDLog, ; be given, so there exists r € Z, such that u = ¢g" and
i=g".

— The prover chooses t € Z, at random, computes w = ¢g* and w = g'. He
computes ¢ = H(p,q, g, g, u, &, w, w) where H is modeled as a random oracle.
Finally, he computes z = ¢t + r¢ mod ¢ and sends to the verifier, (c, z)

— The verifier checks whether the following equality holds

c=H(p,q,9,9,u,u, g /u’,g* /u)
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It is well-known that the interactive version of this proof is sound since a
cheating prover can be accepted only with probability at most 1/¢. Assume that
(u,u) ¢ EDLog,, -, then u = g" and u = g" where r # 7. If a proof is correct, then
there exists a unique z such that w = ¢*/u® and w = g#/ac, then z —rc¢ =t and
z — e = t. Therefore, we get t —t = (7 — r)c mod ¢ and since 7 — r # 0 mod g,
there is a unique value for ¢ — ¢ and so with probability 1/q, the cheating prover
is detected.

Finally, the interactive proof system is zero-knowledge against an honest
verifier

B Proof of Lemma

In this section, we show that the Set Password-based Computational Diffie-
Hellman SPCCDH problem is equivalent to the (basic) computational
Diffie-Hellman problem CDH: For proving this relation, one simply applies the
splitting lemma [I5]:

Lemma 8 (Splitting Lemma). Let S C A x B such that Pr[(a,b) € S] > a.
For any B < «, define

T= {(a,b) € AxB b/lzgg[(a,b/) €S| Zaﬂ}

Then (i) Pr[T] > (i) ¥(a,b) € T, Pryepl(a,b') € S] > a— .

Let A be an adversary against the SPCCDH problem, with success probability
a =1/N + e. Then, we can use the splitting lemma, with 8 = /2, on

A={(w,X,D)} and B={1,...,N} = D.

Our adversary B receives as input a random CDH instance (U, X). It chooses a
random tape w for A, as well as N random distinct exponents u; € Z,. It defines
U, = U", which specifies the dictionary D: with probability greater than £/2,
the success probability is greater than 1/N + €/2, over the probability space
B ={1,...,N}. It is thus a multiple of 1/N, not smaller than 1/N + v, where
v is the maximum in {1/N,e/2}. One first simply runs A with a random &,
and with probability greater than 1/N + v, one gets a first set S; with K =
CDH(X/U,Y) = CDH(X/U"*,Y). One runs A again, with another random
k" # k, and with probability greater than v, one gets a second set Sy with K’ =
CDH(X/Uy,Y) = CDH(X/U",Y). Then, CDH(X,U) = (K/K')/ (=),
By choosing two elements at random in &; and Sa, one gets CDH(X, U) with
probability 1/s%.
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