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Abstract. Most prior designated confirmer signature schemes either
prove security in the random oracle model (ROM) or use general zero-
knowledge proofs for NP statements (making them impractical). By
slightly modifying the definition of designated confirmer signatures, Gold-
wasser and Waisbard presented an approach in which the Confirm and
ConfirmedSign protocols could be implemented without appealing to
general zero-knowledge proofs for NP statements (their Disavow protocol
still requires them). The Goldwasser-Waisbard approach could be instan-
tiated using Cramer-Shoup, GMR, or Gennaro-Halevi-Rabin signatures.

In this paper, we provide an alternate generic transformation to con-
vert any signature scheme into a designated confirmer signature scheme,
without adding random oracles. Our key technique involves the use of
a signature on a commitment and a separate encryption of the random
string used for commitment. By adding this “layer of indirection,” the
underlying protocols in our schemes admit efficient instantiations (i.e.,
we can avoid appealing to general zero-knowledge proofs for NP state-
ments) and furthermore the performance of these protocols is not tied
to the choice of underlying signature scheme. We illustrate this using
the Camenisch-Shoup variation on Paillier’s cryptosystem and Peder-
sen commitments. The confirm protocol in our resulting scheme requires
10 modular exponentiations (compared to 320 for Goldwasser-Waisbard)
and our disavow protocol requires 41 modular exponentiations (compared
to using a general zero-knowledge proof for Goldwasser-Waisbard). Pre-
vious schemes use the encryption of a signature paradigm, and thus run
into problems when trying to implement the confirm and disavow pro-
tocols efficiently.

1 Introduction

Digital signatures allow one party to sign a message and have the resulting
message-signature pair be verifiable by anyone. There are, however, situations
when the signer may want to limit signature recipient’s ability to present the
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signature to others. Chaum and van Antwerpen [9] introduced the notion of
Undeniable Signatures to help achieve this aim. Such signatures require the
involvement of the original signer each time they are verified. Of course, this
approach places excessive responsibility on the signer to be available and to
not act maliciously. As an alternate approach, Jakobsson et al. [18] introduced
Designated Verifier signatures which can only be validated by a specific user
(who the signer can designate). However, the recipient cannot convince another
party of the signature’s validity, which is a desirable feature in many situations.

Chaum [7] introduced the notion of a designated confirmer signature (DCS),
which overcomes both these limitations. Such signatures require the assistance
of a trusted third party called the confirmer. Given a signature σ that the signer
issues, the confirmer can execute a special Confirm protocol to prove that a
signature σ is a valid signature on a message m, or a Disavow protocol to show
that σ is not a valid signature on a message m. Without the confirmer, however,
no party can determine whether σ is a valid signature for m or not.

Applications of Designated Confirmer Signatures. Designated con-
firmer signatures have several cryptographic applications. For example, Asokan
et al. demonstrate their use for “optimistic” fair exchange, in which a trusted
third party need be involved only if cheating is suspected; the third party plays
the role of confirmer [1]. Chaum notes that they are useful for integrity-critical
content, such as virus updates, which is updated as part of a subscription ser-
vice. In this application, without the assistance of the confirmer (for a fee), the
content cannot be verified [7]. Therefore, efficient designated confirmer schemes
are of practical as well as theoretical interest.

Definitional Issues in DCS Schemes. Okamoto provided the first formal
definition of a designated confirmer signature [21]. His scheme is simple to de-
scribe: use an ordinary signature scheme to sign a message, then use an ordinary
public-key encryption scheme to encrypt the resulting signature with the desig-
nated confirmer’s public key. General zero-knowledge proofs for NP statements
can be used to provide the Confirm and Disavow protocols. Of course such proofs
involve a reduction step to an NP-complete language (e.g., the language repre-
senting graphs that are three colorable), and cannot really be used in practice.
Work on designated confirmer schemes continued, and it became clear that the
correct definition had numerous subtleties, involving issues including coercion of
the signer, handling multiple signers with the same confirmer, and others. We fo-
cus on two key issues in the definition of designated confirmer signature schemes
that will affect our construction. Firstly, we must consider whether to require
designated confirmer signatures to be simulatable. Michels and Stadler, following
Okamoto, adopt a definition that requires “invisibility” of designated confirmer
signatures [26,21]; i.e., there exists a simulator who can create a “valid-looking”
designated confirmer signature for any message m. Secondly, we must consider
whether the Confirm and Disavow protocols are required to be zero-knowledge
or instead may satisfy some weaker property. Previous definitions, such as those
of Michels and Stadler, have included both these requirements [26]. Subsequent
designated confirmer schemes were proposed by Camenisch and Michels [4], and
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by Camenisch and Shoup [6]. Other than the Okamoto scheme just mentioned,
the remaining schemes all have security proofs in the random oracle model [2].

Goldwasser and Waisbard were interested in coming up with schemes that
were provably secure without appealing to random oracles and without appealing
to generic zero-knowledge proofs [17]. They found a clever way to approach this
goal. They first argued that the previous definitions are too strong and do not
capture the motivating applications of designated confirmer signature schemes.
They modified Okamoto’s original definition to require only that an adversary
cannot verify signatures unless specifically assisted by the designated confirmer.
Following the definition, they then show constructions of designated confirmer
signatures for some specific signature schemes using strong witness hiding proofs
of knowledge as a tool.

While Goldwasser and Waisbard can completely circumvent the use of ran-
dom oracles, their Disavowal protocol still requires a generic zero-knowledge
proof. Also, their witness hiding proofs of knowledge have soundness error 1

2
and so are repeated λ times, where λ is the security parameter, to reduce the
error. The efficiency of their protocols depends on the specific signature scheme.
For example, with Cramer-Shoup as the underlying signature scheme each rep-
etition costs 2 exponentiations in the underlying group [17].

Confirmer Commitments Revisited. Our approach is to use a Paillier-based
instantiation of the confirmer commitment idea of Michels and Stadler [26]. A
confirmer commitment is a special type of commitment scheme with a public
key. Anyone can use the public key to create a commitment to a message m,
but only the holder of the corresponding secret key can prove or disprove the
resulting commitment is a commitment to the message m.

Michels and Stadler noted that signing a confirmer commitment would be
an “obvious” approach to building a designated confirmer signature scheme [26].
This is because the confirmer commitment can only be matched to a message
m by the confirmer, who holds the secret key. Unfortunately, their definition
required “invisibility” for confirmer signatures, namely that given any message,
there exists a simulator that can produces a “valid-looking” designated con-
firmer signature on that message. This ruled out the approach a priori, because
signatures from the underlying signature scheme cannot be simulated for an ex-
istentially unforgeable signature scheme; any such simulator would imply the
existence of a forger. As Goldwasser and Waisbard have argued, however, such
requirements are too strong when we only care that no adversary can convince
others that a signature is valid. We show in this paper that replacing the simu-
lation requirement with the more natural non-verifiability of signatures require-
ment allows us to prove that the “obvious” scheme is secure.

We stress that, by itself, this observation is not enough. A more serious
problem with the approach of confirmer commitments, as shown by Camenisch
and Michels [4], is that the construction of confirmer commitments proposed
by Michels and Stadler is actually not secure when multiple signers share the
same confirmer [26]. Therefore it is not trivial to create a secure designated con-
firmer signature scheme from confirmer commitments, even with the weakened
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definition. While Camenisch and Michels sketch a fix for the Michels and Stadler
construction, they do not give a full proof of security. Finally, while Camenisch
and Michels define a generic transformation and prove it secure, efficient instan-
tiation depends on the details of the underlying signature scheme; we analyze
their suggested instantiation, which uses RSA with Full Domain Hash, in Sec-
tion 5 [4]. We give a transformation in Section 4 that achieves security and
efficiency given any signature scheme existentially unforgeable against chosen
message attack. Instead of giving a new definition for confirmer commitments,
however, we simply prove directly in Section 4 that the resulting scheme is a
secure designated confirmer scheme.

Camenisch and Shoup’s Approach. Camenisch and Shoup introduced new
protocols for verifiable encryption and proving inequality of discrete
logarithms [6]. Goldwasser and Waisbard note that these protocols are of in-
terest in the designated confirmer setting [17]. Indeed, Camenisch and Shoup
sketch a construction of designated confirmer signatures as part of their work on
verifiable encryption. While we will use the protocols of Camenisch and Shoup
in our construction, the way in which we use them is different. We sign a com-
mitment and then encrypt information needed to open the commitment, while
Camenisch and Shoup perform a verifiable encryption of a signature directly.

Because the Camenisch-Shoup approach encrypts a signature directly, the
efficiency of Confirm and Disavow depends essentially on the underlying signature
scheme. Their sketch suggests the use of Schnorr signatures [24], together with
a trick for reducing the validity of a Schnorr signature to an equality of discrete
logarithms. Details of the resulting scheme are not given, but are due to appear
in a forthcoming paper. Since this paper is not yet available, in Section 5 we
flesh out what we suspect the details to be to allow for comparison between our
approach and theirs.

We highlight one such detail that affects our construction of DCS schemes:
the Camenisch-Shoup protocols as described satisfy only special honest-verifier
zero-knowledge. Special honest-verifier is not a strong enough property in the
context of an adversary for DCS schemes, because the DCS adversary may act
as a cheating verifier during Confirm and Disavow protocols. We show how to use
techniques of Cramer, Damgard, and MacKenzie to fix this problem [13].

Finally, we note that the Camenisch-Shoup sketch suggests the use of Schnorr
signatures, which require random oracles. Adapting their approach to a new sig-
nature scheme without random oracles is not trivial. We briefly outline difficulties
with several such schemes in Section 5. Our approach, in contrast, works for any
signature scheme without modification and easily yields a designated confirmer
signature that does not need random oracles.

Our contributions. We make three contributions. First, we show that adopt-
ing the Goldwasser-Waisbard definition [17] allows us to prove that the ap-
proach of signing a commitment yields a designated confirmer signature scheme
using any secure signature scheme as a building block. We specify a generic con-
struction (based on any signature scheme, encryption scheme, and commitment
scheme) and prove it secure without the use of random oracles. Second, we give
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Random Oracle Signature Confirm Disavow

GW [17] No Cramer-Shoup [10] 2λ exps generic ZKP
GW [17] No GMR [16] 2λ exps generic ZKP
GW [17] No GHR [14] 2λ exps generic ZKP
CS [6] Yes Schnorr [24] 10 exps 41 exps
CM [4] Yes RSA-FDH 24λ exps 60λ exps

Our scheme No Any 10 exps 41 exps

Fig. 1. Comparison of our approach to Goldwasser-Waisbard, Camenisch-Shoup, and
Camenisch-Michels. Here λ is a security parameter. We achieve efficient Confirm and
Disavow protocols without using random oracles. Section 5 explains these results in
detail.

an instantiation using Pedersen Commitments [23] together with Camenisch and
Shoup’s [6] variant of Paillier’s cryptosystem [22]. This approach achieves Con-
firm and Disavow protocols without appealing to generic zero-knowledge proofs
and without appealing to random oracles independent of the choice of signature
scheme. The resulting Confirm protocol requires 5 exponentiations (compared to
320 for Goldwasser-Waisbard) and our Disavow protocol requires 17,000 mod-
ular multiplications (whereas Goldwasser-Waisbard require a potentially very
expensive generic zero-knowledge proof). Of course, we base our security on the
security of Paillier’s cryptosystem and on the security of Pedersen commitments,
whereas Goldwasser and Waisbard require different assumptions than we do; we
elaborate on this, and other aspects of the comparison, in Section 5. Third,
we show that the resulting Confirm and Disavow protocols are zero-knowledge
(whereas Goldwasser-Waisbard provide strong witness hiding proofs of knowl-
edge), even against cheating verifiers, by combining the Camenisch-Shoup pro-
tocols with techniques of Cramer, Damgard and MacKenzie [13].

2 Preliminaries

Throughout λ is a positive integer denoting the security parameter. The security
parameter is an implicit input to the algorithms discussed throughout the paper
(and we omit it from the list of inputs when it might be otherwise clear from
context). Let negl(λ) denote a negligible function; i.e., one that grows smaller
than 1/λc for all c and all sufficiently large λ. For a positive integer a, we let
[a] denote the set {0, . . . , a− 1}. If Alg(·, ·, . . .) is a probabilistic algorithm, then
Alg(x1, x2, . . .) is a probability space over the random choices made by Alg. We let
x ←− Alg(x1, x2, . . .) denote the experiment of running Alg on inputs x1, x2, . . .,
where x is a discrete random variable denoting the outcome. Note that Alg
implicitly induces a distribution on the possible outputs. For a set S, we let |S|
denote the number of elements in S. If S is defined by a mathematical group,
then |S| is the group order. If S is equipped with a probability distribution
D, we let x D←− S denote the experiment of choosing x ∈ S according to D.
We typically let the underlying distribution be the uniform distribution R. In
our context an adversary (denoted by A, F , etc. depending on the situation)
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is a probabilistic polynomial time random access machine with oracle access to
some number κ of oracles, each of which is capable of computing some specified
function. If (f1, . . . , fκ) is a κ-tuple of (oracle implemented) functions, and A is
a κ-oracle adversary, then Af1,...,fκ denotes the adversary augmented with its
oracles. An adversary may also have oracle access to a protocol, in which case the
adversary provides protocol inputs from one side of the protocol (e.g., a verifier
in an interactive proof system) and has oracle access to the responses from the
other side of protocol (e.g., a prover in an interactive proof system). As above,
the adversary on a given set of inputs induces a probability space, and we can
associate a discrete random variable to the output of the experiment of running
the adversary on a given set of inputs equipped with a given set of oracles. We
now describe some of the tools required for our construction.

Proofs of Knowledge. Some of our protocols will be proofs of knowledge
(PoK), as defined by Bellare and Goldreich [3]. Informally, an interactive proof
(P, V ) for a relation R = {α, β} is a proof of knowledge if there exists a prob-
abilistic polynomial time knowledge extractor E who can extract a witness β
given oracle access to a (possibly cheating) prover. The knowledge extractor is
allowed to rewind the prover if necessary. The knowledge error of a ZKPoK
quantifies the success probability of the extractor in terms of the prover’s prob-
ability of convincing the verifier. Specifically, let P be a prover with respect to
α. We say that the proof of knowledge has knowledge error κ(α) if, when the
prover succeeds with probability ε(α) the knowledge extractor EP succeeds with
probability at least ε(α)− κ(α).
Zero-Knowledge Proofs. The well-known Chaum-Pedersen protocol
for proving equality of discrete logarithms and the Camenisch-Shoup proto-
cols (which we describe below), are special honest-verifier zero-knowledge Σ-
protocols [19] (SHVZK). This means that the protocols are public-coin and can
be simulated assuming an honest verifier (i.e., a verifier that picks challenges
uniformly at random). The special property means there is a simulator that,
given the challenge of a verifier, can create the prover’s messages.

The zero-knowledge proofs in our DCS scheme, however, must be zero-
knowledge even against arbitrarily cheating verifiers. Moreover, we must be care-
ful that our ZK proofs in our scheme not only reveal nothing about the witness,
but also that the transcripts of a “real-world” interaction between the prover
and a verifier in the ZK proof are indistinguishable from a transcript that a
probabilistic polynomial-time simulator can generate using rewindable black-
box access to the verifier. Such ZK proof protocols can be found in [15,13]. For
our efficient instantiation, we prefer the Cramer-Damgard-Mackenzie (CDM) ap-
proach, in which a prover P proves knowledge of a witness w for x to verifier V
using SHVZK Σ-protocols in both directions, roughly as follows:

– Part 1: V commits to a value e and proves knowledge of e;
– Part 2: P gives a witness-indistinguishable proof of knowledge of either the

verifier’s value e or the witness w.

When applied to SHVZK 3-round proofs of knowledge, this approach yields
a zero-knowledge proof of knowledge (ZKPoK) with negligible knowledge error,
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neglible soundness error, and which remains perfect zero-knowledge even against
malicious adversaries. Specifically, there exists a simulator SV ′

that, given ac-
cess to an arbitrary verifier V’, outputs a transcript identically distributed to the
transcript of interactions between the prover and V ′. We will use this simulator
extensively in the reduction algorithm of our DCS scheme’s proof of security.
Strictly speaking, the SHVZK 3-round proof of knowledge must satisfy an addi-
tional condition, namely that an associated “commitment relation” also have a
3-round proof of knowledge. Fortunately, as we will see, this is the case for our
efficient instantiation, because we can leverage an efficient discrete logarithm
protocol given by Cramer et al. [13]

Camenisch-ShoupVerifiableEncryption.WeuseanadaptationofCamenisch
and Shoups’s Paillier-based encryption scheme, which allows verifiable encryption
of discrete logarithms. The scheme relies on the decisional composite residuosity
assumption (DCRA). Let P,Q be Sophie-Germain primes – i.e., P = 2p + 1 and
Q = 2q+1 for primes p, q. LetN = PQ. The DCRA states, roughly, that it is hard
to distinguish random elements of Z

∗
N2 from random elements of the subgroup con-

sisting of allN -th powers of elements inZ
∗
N2. The originalDCRA introducedby [22]

does not require the use of Sophie-Germain primes, though they are required by [6]
and by us for technical reasons. As pointed by [6], it is clear that as long as Sophie-
Germain primes are sufficiently dense in the set of primes (as is believed to be true),
then the DCRA without the Sophie-Germain restriction implies the DCRA with
the Sophie-Germain restriction.

We give a sketch of the encryption scheme; details can be found in [6].
The user creates a composite modulus N = PQ as above. The user’s pub-
lic key includes a collision-resistant hash function H , h = 1 + N , a random
g′ ∈ (Z/N2

Z)∗, and values g = g′2N , y1 = gx1 , y2 = gx2 , and y3 = gx3 for
secrets x1, x2, x3 ∈ [N2/4].

To encrypt r with a “label” L ∈ {0, 1}∗, the sender chooses t ∈R [N/4] and
computes (u, e, v) with u = gt, e = yt

1h
r, and v = abs((y2y

H(u,e,L)
3 )t), where

abs(a) = N2−a mod N2 if a > N2/2 else abs(a) = a mod N2. The ciphertext is
(u, e, v, L). A user with the private key can decrypt (u, e, v, L) as follows. First,
it checks that abs(v) = v and u2(x2+H(u,e,L)x3) = v2. If the check fails, the user
outputs ⊥ and halts. Otherwise, it computes r̂ = (e/ux1)2k for k = 2−1 mod N .
If r̂ is of the form hr for some r ∈ [N ], it outputs r; otherwise, it outputs ⊥.

To obtain a verifiable encryption scheme from the basic encryption scheme
above, one uses an additional composite modulus N2 = P2Q2, where P2 =
2p2 + 1 and Q2 = 2q2 + 1 are safe primes, along with elements g2, h2 ∈ Z

∗
N2

of
order p2q2. Optionally, one may use a third group – e.g., a group Γ of prime
order ρ with generators γ and δ for which the discrete logarithm problem is not
known to be vulnerable to subexponential attacks – to improve efficiency. We
view (N2, g2, h2, Γ, γ, δ) as a common reference string. We require N2 �= N and
|Γ | < N2−k−k′−3 for security parameters k and k′ as described in [6].

Now, suppose that α = γr for r ∈ [ρ]; then, r can be verifiably encrypted
as follows. The sender computes (u, e, v) as before, generates s ∈R [N2/4], sets
� = gm

2 h
s
2, and then provides the following ZKPoK:
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PK{(t, r, s) : u2 = g2t ∧ e2 = y2t
1 h

2r ∧ v2 = (y2y
H(u,e,L)
3 )2t (1)

∧ α = γr ∧ � = gm
2 h

s
2 ∧ r ∈ [ρ]} . (2)

The verifiability aspect of the encryption scheme relies on the strong RSA as-
sumption – namely that, given N2 and z ∈ Z

∗
N2

, it is hard to find x ∈ Z
∗
N2

and
e ≥ 2 such that xe = z mod N2. One could alternatively avoid using the third
group Γ by setting requiring N2 < N2−k−k′−3, setting a = gr

2, and prove the
same equalities as above except those involving �. Notice, however, that if we
do use the third group, then the last proof simply becomes a group membership
check.

3 Model and Definition of Designated Confirmer
Signatures

We describe designated confirmer signatures (DCS) following the exposition
of [17]. The model comprises three parties: a signer S, a verifier V , and a des-
ignated confirmer C. A designated confirmer signature scheme supports the fol-
lowing (probabilistic polynomial-time) algorithms:

– DCGen: takes as input 1λ, and outputs two pairs of keys (SGkS ,VFkS) and
(PkC , SkC). The first pair constitutes S’s signing and verification keys, and
the second consists of C’s public and private keys. For simplicity of exposition
we denote DCGen as a single algorithm; in an actual implementation, the
signer and confirmer would generate their key pairs separately, using distinct
algorithms SGen and CGen, so that C does not learn SGkS and S does not
learn SkC .

– Sign: takes as input a message m and SGkS . It outputs a signature σ such
that Verify(m,σ,VFkS) = Accept.

– Verify: takes as input m,σ,VFkS and outputs Accept if σ is an output of
Sign(m, SGkS).

Further, a DCS scheme must support the following protocols:

– ConfirmedSign(S,V): an interactive protocol between S and V with common
input (m,VFkS ,PkC). The output is a pair (b, σ′) where b ∈ {Accept,⊥}
and σ′ is S’s designated confirmer signature. For some V , the ConfirmedSign
protocol must be complete and sound. For completeness, we require that
there is some S such that for any (valid) signer and confirmer keys, and
for any message m, the ConfirmedSign protocol outputs a (Accept, σ′) where
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept. For soundness, we re-
quire that for all signers S′, if the result of running ConfirmedSign results in
an Accept, then

Pr[Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥] < negl(λ).

In other words, S′ cannot convince V that an “un-extractable” designated
verifier signature is valid.
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– ReconfirmedSign(S,V): an interactive protocol between S and V with common
input (m,VFkS ,PkC , σ′) for designated confirmer signature σ′. The output is
b ∈ {Accept,⊥}. The completeness and soundness requirements are similar
to those of ConfirmC,V below. In our scheme, the ReconfirmedSign protocol is
identical to ConfirmedSign (except that ReconfirmedSign takes σ′ as input)
and to the Confirm protocol (except that a signer takes the place of the
confirmer); so, we omit further discussion of ReconfirmedSign.

– Extract: takes as input m,σ′, SkC ,VFkS and returns a string σ such that
Verify(m,σ,VFkS) outputs Accept if σ is an output of Sign(m, SGkS), and
outputs ⊥ otherwise.

– Confirm(C,V): an interactive protocol between C and V with common input
(m,σ′,VFkS ,PkC). The output is b ∈ {Accept,⊥}. The protocol must be both
complete and sound. For completeness, we require that there is some C such
that if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept then b = Accept.
For soundness, we require that for all confirmers C′ if

Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥,

then Pr[Confirm(C′,V)(m,σ′,VFkS ,PkC) = Accept] < negl(λ).
– Disavowal(C,V): an interactive protocol between confirmer C and verifier V

with common input (m,σ′,VFkS ,PkC). The output is b ∈ {Accept,⊥}. The
protocol must be complete and sound. For completeness, we require that
there is a confirmer C such that if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) =
⊥ then Disavowal(C,V) = Accept. For soundness, we require that for all
confirmers C′, if Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept, then
Pr[Disavowal(C′,V)(m,σ′,VFkS ,PkC) = Accept] < negl(λ).

For the purposes of the security model, we also define OutputDCS(S,V), a two-
move stunted version of ConfirmedSign(S,V) in which V queries m and S outputs
a DCS σ′ on m (without “confirming” its correctness).

We now state the security requirements of a DCS scheme in detail.

Definition 1. Below, we assume that the adversary has access to a collec-
tion O = {ConfirmedSign(S,A),ReconfirmedSign(S,A),Confirm(C,A), Disavow(C,A),
Extract(C,A)} of five oracles for: 1) receiving a confirmed signature on an mes-
sage of its choice (via the ConfirmedSign(S,A) oracle); 2) executing the prover’s
role in the ReconfirmedSign(S,A) interactive protocol; 3) executing the prover’s
role in the Confirm(C,A) interactive protocol; 4) executing the prover’s role in the
Disavow(C,A) interactive protocol; and 5) extracting an ordinary signature from
a designated confirmer signature.

1. Security for verifiers. Security for verifiers follows from the soundness
requirement above – informally, that an adversary must not be able, even if
the adversary compromises the private keys of S and C, to create a (m,σ′)
that will be confirmed (either in ConfirmedSign or Confirm) even though
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = ⊥ (“Case 1”), or that will be
disawowed even though Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept
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(“Case 2”). Formally, we define the advantage of the adversary AdvfoolV(A):=
Pr[bfoolV1 = 1 ∨ bfoolV2 = 1 ∨ bfoolV3 = 1], where (bfoolV1, bfoolV2, bfoolV3) are
defined by the experiment in Figure 2. For compactness, use “Case 1” and
“Case 2” to refer to the verification condition that the adversary’s output
(m,σ′) must satisfy. We say a scheme is secure for verifiers if AdvfoolV(A) <
negl(λ) for all probabilistic polynomial time algorithms A.

2. Security for signers. Informally, an adversary should be able to create a
DCS (m,σ′

0) that is extractable or confirmable (either in ConfirmedSign or
Confirm) only if σ′

0 is somehow “equivalent” to a DCS (m,σ′
1) that it received

in response to a ConfirmedSign query on m. We say (m,σ′
0) and (m,σ′

1) are
equivalent if R(m,σ′

0, σ
′
1) = 1 for some specified efficiently computable rela-

tion R. For example, if DCS signatures are strongly existentially unforgeable,
it may be appropriate to say R(m,σ′

0, σ
′
1) = 1 only when σ′

0 = σ′
1. However, R

need not be that restrictive; it depends on the DCS scheme. In the experiment
in Figure 2, Lsig is a list that is viewed as containing the (m,σ′

1) associated
to the ConfirmedSign output, as well as all (m,σ′) for which R(m,σ′, σ′

1) = 1.
In the figure, for compactness, we say (e.g.) σ′ /∈ Lsig rather than the more
accurate (m,σ′) /∈ Lsig, since m will be clear from the context. Formally, we
define A’s advantage AdvimpS(A) to be the probability that the experiment
returns 1. We say a scheme is secure for signers if AdvimpS(A) < negl(λ) for
all probabilistic polynomial time algorithms A.

3. Transcript Simulatability. The confirmation or disavowal of a designated
confirmer signature σ′ should not be transferable – e.g., the transcript of a
proof of knowledge in ConfirmC,V1(m,σ′,VFkS ,PkC) should not convince V2

( �= V1) that σ′ signs m. To ensure that V1’s transcript is unconvincing, we
require that transcripts be simulatable. To model this in the experiment in
Figure 2, first A0 outputs two messages m0 and m1 and some state s, next
a DCS σ′ on one of the messages is output, and then A1, A′

1 and A2 play
a game in which A′

1 tries to make its output (when the DCS signs m1) look
indistinguishable from A1’s output (when the DCS signs m0); A2 attempts
to distinguish whether its input τ came from A1 or A′

1. In the game, A1

gets almost complete access to the oracles O; the only restriction is that
(m,σ′) /∈ Lext, where Lext is a list that is viewed as containing each (mi, σ

′
i)

that has been queried by A1 to the Extract oracle, as well all (m′
i, σ

′
i
′) for

which R(m,σ′
i, σ

′
i
′) = 1; otherwise A1 could trivially give A2 indisputable

proof that m0 was signed – the extraction of σ′. On the other hand, we give
A′

1 very limited access to O; it can make only q OutputDCS queries, where
A1 makes at most q ConfirmedSign queries. We give A2 access to a limited
set of oracles Olim – specifically, A2 cannot make any O query on (m0, σ

′′)
if R(m0, σ

′, σ′′) = 1 or on (m1, σ
′′) if R(m1, σ

′, σ′′) = 1; otherwise, its dis-
tinguishing task becomes trivial. If A2 has negligible advantage, this suggests
that A1’s potentially authentic transcript that m0 was signed is no more con-
vincing or informative than A′

1’s simulated transcript that (falsely) “proves”
that m0 was signed. In the security proof, A′

1 will use A1 as a subroutine,
and will simulate correct responses to A1’s O queries on σ′ and equivalent
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Exp-NoFoolVerifier:

1. (SGkS , VFkS , SkC, PkC)← DCGen(1λ)
2. (m,σ′

1, τ1, τ2, τ3)← AO
0 (π, SGkS , SkC)

3. (bfoolV1, σ
′
0)← ConfirmedSign(A1(τ1),V)(π, m) in Case 1

4. bfoolV2 ← Confirm(A2(τ2),V)(π, m, σ′
1) in Case 1

5. bfoolV3 ← Disavowal(A3(τ3),V)(π, m, σ′
1) in Case 2

6. Return bfoolV1 ∨ bfoolV2 ∨ bfoolV3.

Exp-NoImpSigner:

1. (SGkS , VFkS , SkC, PkC)← DCGen(1λ)
2. (m,σ′)← AO(π, SkC)
3. bimpS ← Verify(m,σ, VFkS)

for σ = Extract(m,σ′, SkC , VFkS)
4. Return (bimpS ∧ (σ′ /∈ Lsig)).

Exp-TranscriptSimulatability:

1. (SGkS , VFkS , SkC, PkC)← DCGen(1λ)
2. (m0, m1, s)← AO

0 (π, SGkS)

3. b
R←− {0, 1}

4. (b, σ′)← ConfirmedSign(S,V)(π, mb)

5. If b = 0, τ ← AO
1 (b,m0, m1, s, σ

′);
else, τ ← A′

1
OutputDCS

(b, m0, m1, s, σ
′)

6. Return 1 iff b = AOlim
2 (m0, m1, τ, σ′)

and σ′ /∈ Lext.

Fig. 2. Experiments for definition of DCS security. Above, π is shorthand for
(1λ, VFkS , PkC).

DCS’s. Formally, we define the advantage of the adversary Advtrans(A) to be
max{0,Pr[experiment returns 1]− 1/2}.

In our model, we allow that σ′ may convince verifier V2 above that the signer
indeed signed some message m. In this sense, the transcript is not perfectly sim-
ulatable; only the ZK proofs are. Accordingly, in the security model, A′

1 needs
access to ConfirmedSign; without some DCS’s generated by S, A′

1 has no hope
in our scheme of making its output indistinguishable from A1 (which has almost
unrestricted access to O). Thus, our model is weaker than that in [21]. However,
we believe that our model, especially given our very efficient instantiation, is
suitable for real-world settings, where it would be easy (e.g.) for the confirmer
to publish a few “dummy” signatures by the signer during each time period to
camouflage the presence or absence of a “real” (meaningful) signature. Again, we
are inspired here by the discussion of Goldwasser and Waisbard [17], which em-
phasizes capturing only the “non-verifiability” of a DCS, although our definition
differs from theirs.

How the Model Prevents Confirmer Impersonation. Of course, for a
DCS scheme to be secure, it should be infeasible for an adversary A (even if
it has SGkS) to impersonate the confirmer by performing an Extract, Confirm,
Disavowal, or ConfirmedSign associated to a pair (m,σ′) contained in Lsig \
Lext. Interestingly, this requirement is already covered by a combination of our
Exp-NoFoolVerifier and Exp-TranscriptSimulatability experiments. For exam-
ple, suppose that there is an adversary (B0,B1,B2) that “breaks” Confirm in that
(m′

0, s
′) ← BO

0 (π, SGkS), (σ′′, τ ′) ← BO
1 (π, s′), Confirm(B2(τ ′),V)(π,m′

0, σ
′′) =

Accept for (m′
0, σ

′′) ∈ Lsig \ Lext with non-negligible probability, where (s′, τ ′)
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is state information that is forwarded, and where B1 makes only a polyno-
mial number q of O queries. Then, (A0,A1,A2) can use (B0,B1,B2) to break
Exp-TranscriptSimulatability with non-negligible probability, as follows.A0 runs
B0, relays B0’s O queries and the responses, sets m0 = m′

0 and outputs (m0,m1).
If b = 0 in Exp-TranscriptSimulatability, A1 runs B1 and relays B1’s O queries
and the responses, except that it responds to one of B1’s ConfirmedSign queries
on m0 by using a ReconfirmedSign query on (m0, σ

′). B1 outputs (σ′′, τ ′) and
A1 sets τ = τ ′; σ′′ is equivalent to σ′ with probability at least 1/q. Finally,
if σ′′ is equivalent to σ′, A2 runs Confirm(B2(τ),V)(π,m0, σ

′′). If the output is
Accept, A2 outputs ‘0’; otherwise, it outputs a random bit. Since the output is
Accept with non-negligible probability, and since an output of Accept implies
Verify(m′,Extract(m′, σ′, SkC ,VFkS),VFkS) = Accept with overwhelming proba-
bility assuming AdvfoolV(A) < negl(λ), A2’s advantage is non-negligible.

Using the approach above, one can show that, for any (m′
0,m

′
1) adaptively

chosen by B0, B1 has a negligible probability of outputing a DCS σ′′ on m′
0

that B2 can disavow on m′
1. However, for the special case of Disavowal, one may

want to require something stronger: that for any m′
0 adaptively chosen by B0,

B1 has a negligible probability of outputing an m′
1 and a DCS σ′′ on m′

0 that
B2 can disavow on m′

1. Our scheme satisfies this requirement, but it may not be
necessary in general. If the message space is super-polynomial, and if a verifier
V could merely check that m′

1 was generate randomly and independently of
(m′

0, σ
′′), it would already believe that the probability that σ′′ is a DCS on m′

1

is negligible. Thus, it does not seem unreasonable to allow that (B1,B2) may be
able to disavow some message with respect to a DCS σ′′ in Lsig \Lext on m′

0. It
is an open question whether a more efficient DCS exists that meets the weaker
requirement.

4 Our Transformation

The Generic Construction. We first describe a generic scheme that trans-
forms any traditional signature scheme into a DCS scheme; the transforma-
tion also requires an IND-CCA2 secure encryption scheme and a statistically-
hiding computationally-binding commitment scheme C. The scheme also uses
zero knowledge proofs secure against cheating verifiers, as discussed in Section
2. After describing our scheme generically, we provide an efficient instantiation.

– DCGen: S uses a secure digital signature scheme DSS = (SGen, Sign,Verify),
and creates a key pair (VFkS , SGkS)← SGen(1λ). C uses an IND-CCA-2 en-
cryption scheme PKE = (CGen,Enc,Dec), and creates key pair (PkC , SkC)←
Gen(1λ). Note that C need not participate in any setup other than creating
and publishing a key pair.

– Sign: To sign a message m with auxiliary information c, S creates a statis-
tically hiding and computationally binding commitment ψ = C(m, r) to the
message m using randomness r and creates σ∗ = Sign((ψ, c,VFkS), SGkS).
The basic signature is σ = (σ∗, c, r). S’s verification key VFkS is signed
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together with the commitment to prevent a signature issued by one signer
from being fed to the Confirm oracle with a different signer’s public key.

– ConfirmedSign: In addition to the above steps in the Sign procedure, S also
computes the ciphertext c = Enc(PkC , r). The designated confirmer signature
is σ′ = (σ∗, ψ, c) for σ∗ = Sign((ψ, c,VFkS), SGkS). The signer also performs
a ZK proof of knowledge of a value r such that ψ = C(m, r) and c =
Enc(PkC , r).

– Confirm: C first checks that (ψ, c,VFkS) has been signed with SGkS using the
provided VFkS , and aborts if the check fails. Then, C performs a ZK proof
of knowledge of a value r such ψ = C(m, r).

– Disavow: To disavow a purported signature σ′ = (σ∗, ψ, c) on message m, C
does the following. C first checks if c is a valid encryption of some r. If not,
it performs a ZK proof of knowledge that the string is not a well-formed
encryption. Otherwise, C computes r′ = Dec(SkC , c). If ψ �= C(m, r′), then C
provides a ZKPoK of a value ρ such that ψ �= C(m, ρ) and ρ = Dec(SkC , c).

– Extract: On input σ′ = (σ∗, ψ, c) and m, C computes r′ = Dec(SkC , c) and
confirms that ψ = C(m, r′) and σ∗ = Sign((ψ, c,VFkS), SGkS). If so, it
outputs r′; else, it outputs ⊥.

Notice that all the statements involving zero-knowledge proofs can be expressed
as NP statements (and have a short witness). Therefore, we can, in theory,
instantiate the above scheme in polynomial time for any suitably secure encryp-
tion scheme, commitment scheme, and signature scheme. Of course using generic
zero-knowledge proofs for NP-statements is not very practical. Therefore, we now
describe how to instantiate the encryption and commitment schemes so that the
resulting zero-knowledge proofs of knowledge are simple and efficient.

Efficient Instantiation for Any Signature Scheme. We show how to
efficiently instantiate the above scheme. The underlying encryption scheme PKE
is the scheme by Camenisch and Shoup discussed in Section 2. The commit-
ment scheme C(m, r) will be a Pedersen-type commitment scheme over group
Γ of prime order ρ, with generators γ and δ, as described in Section 2. We can
use any secure signature scheme. Then, our confirm and disavow protocols use
the CDM ZK proofs as described in Section 2. With these choices, the under-
lying zero-knowledge proofs are efficient (using the CDM techniques for prov-
ing equality and inequality of discrete logarithms together with the Camenisch-
Shoup verifiable encryption of the randomness used for the Pedersen commit-
ment). Moreover, we can plug in any secure signature scheme and the com-
plexity of the Confirm, Disavow, and Extract are essentially independent of this
choice.
Security Analysis. We now state a theorem that our generic transformation
yields a secure designated confirmer signature scheme. We require that the sig-
nature schemes be existentially unforgeable under chosen message attack, that
our commitment schemes be hiding and binding, and the encryption scheme be
secure against chosen ciphertext attack. The security for our efficient Paillier-
based instantiation follows.
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Theorem 1. Let DSS = (SGen, Sign,Verify) be any signature scheme existen-
tially unforgeable against chosen message attack, and let PKE = (Gen,Enc,Dec)
be any IND-CCA2 secure encryption scheme and C(M, r) be any statistically-
hiding computationally-binding commitment scheme with perfect zero-knowledge
proofs of knowledge for committed values secure against cheating verifiers. Then
the DCS scheme obtained by our generic conversion is a secure DCS scheme.

Proof. (Sketch). In this proof, we say that the relation R(m,σ′, σ′′) equals 1 in
our scheme if σ′ = (σ∗, ψ, c), σ′′ = (σ∗′, ψ′, c′), and (ψ, c) = (ψ′, c′); otherwise,
it equals 0. Also, below, a second algorithm (say, B) will construct the necessary
zero knowledge proofs in response to to A’s O queries by using a (possibly
rewinding) simulator. For example, assuming we use the CDM protocol [13] for
our ZK proofs, B proceeds as follows: upon receivingA’s commitment to its value
e together with a proof of knowledge of e, B extracts e by using the knowledge
extractor E together with A. Then B can complete Part 2 of the CDM protocol
by using its knowledge of e. As Cramer et al. argue, B’s proof in Part 2 is witness
indistinguishable; so, B’s simulation is sound.

Now, suppose the theorem is false. Then there exists a probabilistic polyno-
mial time adversary A that can break the security of the DCS scheme. Specifi-
cally, at least one of AdvimpS(A),AdvimpC(A), AdvfoolV(A), or Advtrans(A) is not
negligible in the security parameter. We consider the resulting cases.

The AdvimpS(A) Case. If AdvimpS(A) is not negligible, then the adversary has
a non-negligible probability of successfully outputting a DCS (m,σ′) for which
Verify(m,Extract(m,σ′, SkC ,VFkS),VFkS) = Accept and σ′ /∈ Lsig. From A, we
can construct an algorithm B that either constructs an existential forgery of the
underlying signature scheme, or violates the binding property of the commitment
scheme as follows.

The algorithm B generates (SkC ,PkC) and gives (π, SkC) to A. Then B re-
sponds to A’s ConfirmedSign query on a message m′ by choosing a random r′,
setting ψ = C(m′, r′), generating an appropriate ciphertext c that encrypts r′,
and then using its oracle access to Sign to obtain a signature on (ψ, c). For
Confirm, Extract and Disavowal queries, B uses SkC . Suppose that A outputs a
pair (m,σ′) with σ′ = (σ∗, ψ, )̧ with (m,σ′) /∈ Lsig. B uses SkC to perform Extract
on σ′, thereby obtaining σ = (σ∗, r, c). If (m′, σ′) ∈ Lsig for some m′, then B
must have responded to A’s ConfirmedSign query on m′ by generating a random
r′ for which ψ = C(m′, r′) = C(m, r); since m′ �= m, this violates the binding
property of the commitment scheme. Otherwise, if there is no message m′ for
which (m′, σ′) ∈ Lsig, B outputs σ as an existential forgery of the signature
scheme (on the message (ψ, c,VFkS)).

The AdvimpC(A) Case. Suppose that AdvimpC(A) is not negligible. Then, from
A, we can construct an algorithm B that breaks the chosen-ciphertext security
of the underlying encryption scheme.

The algorithm B runs as follows. It picks two random messages r0 and r1
for the “find” stage of the encryption game, and receives a challenge ciphertext
Enc(rb) for a random b. Then B runsA as a subroutine. B responds to A’s Extract
queries by using its access to the decryption oracle of the encryption scheme.
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Then B responds to one of A’s q ConfirmedSign queries by flipping a coin b′,
setting ψ = C(m, rb′ ) and c = Enc(rb), querying the Sign oracle for a signature
σ∗ on (ψ, c,VFkS), and setting σ′ = (σ∗, ψ, c). To construct a (potentially false)
“proof” that the rb′ embedded in ψ is identical to the rb embedded in c, B uses
the simulator SA for the ZK proof of knowledge of rb, treating the adversary as a
cheating verifier. Because the ZK proof of knowledge is complete and because the
transcripts output by the simulator are identically distributed to the interaction
between the real prover and the adversary, the adversary will accept the “proof.”

For other ConfirmedSign queries byA, B acts as follows: B generates a random
r as in the actual scheme, sets ψ = C(m, r) and c = Enc(r), and queries the
Sign oracle for a signature σ∗ on (ψ, c,VFkS); it responds with (σ∗, ψ, c) and the
appropriate proofs of knowledge.
B responds to a Confirm or Disavowal query on (σ∗, ψ, c,VFkS ,m) by deter-

mining whether σ∗ is a valid signature on (ψ, c,VFkS).
If so, and if B has not queried (ψ, c,VFkS) to the Sign oracle, B aborts. If

(ψ, c,VFkS) has already been signed, then B recovers its log of the action it per-
formed in the ConfirmedSign query corresponding to (ψ, c,VFkS); in particular,
it recovers the values of (r′,m′) that it used to generate ψ. Then, if m = m′ (and
Confirm is therefore appropriate), it proves (using a “false” proof via the simula-
tor, if necessary) that this value of r′ is encrypted in c. Analogously, if m �= m′

(and Disavowal is therefore appropriate), B can provide a proof of knowledge of
an r′ such that r′ is encrypted in c and C(m, r′) �= ψ.

Eventually, with non-negligible probability, A outputs some (m,σ′) ∈ Lsig \
Lext. Let σ′ = (σ∗, ψ, c). If A performs a successful Confirm, Disavowal or
ConfirmedSign using (m,σ′), B uses A together with the knowledge extractor
E to extract the value r encrypted in c. Now there are two cases. In the first
case, c = Enc(rb) – i.e., the challenge ciphertext for B – with probability neg-
ligibly close to 1/q. Notice that because the zero-knowledge proof is perfect
zero-knowledge, the use of the simulator to construct proofs does not affect
this probability. If c = Encrb, then B outputs b as its guess; otherwise, B se-
lects b uniformly at random. In the second case, c �= Enc(rb). In this case, we
can violate the soundness of the underlying ZKPoK: the execution of Confirm
or ConfirmedSign on c constitutes an interaction that violates soundness of the
proof of knowledge.

The Advtrans
Case. We construct A′

1 by using A1 as a subroutine; later, we
show that if A2 can distinguish which output came from A1, this violates the
IND-CCA2 security of the encryption scheme.

We construct A′
1 as follows. To generate τ , A′

1 runs A1 on input (m1, s, σ
′).

A′
1 responds to A1’s permitted O queries by using its access to O. For Confirm

queries on (m1, σ
′) (or on (m1, σ

′
1) for which R(m1, σ

′, σ′
1) = 1)and disavowal

queries on (m0, σ
′) (or equivalent DCS’s), A′

1 uses the rewinding technique to
construct the needed (false) ZK proofs. Eventually, A1 outputs a string τ ′; A′

1

outputs τ = τ ′ and terminates. Let 1/2 + ε0 be the probability that A2 outputs
b when A′

1 generates its output in this manner.
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Now, consider the following modified experiment ModExp, whose only dif-
ference from the experiment in Figure 2 is that we replace A1 with A′′

1 . We
construct A′′

1 as follows. To generate τ , A′′
1 runs A1 on input (m0, s, σ

′). A′′
1

responds to A1’s permitted O queries by using its access to O. For Confirm
queries on (m0, σ

′) (or equivalent DCS’s) and disavowal queries on (m1, σ
′) (or

equivalent DCS’s), A′′
1 uses the simulator to construct the needed ZK proofs.

Eventually, A1 outputs a string τ ′; A′′
1 outputs τ = τ ′ and terminates. Let

1/2 + ε1 be the probability that A2 outputs b when A′′
1 generates its output in

this manner.
The only difference between the two experiments is A1’s view; in ModExp,

A1 obtains simulated proofs of true statements in response to its Confirm query
on (m0, σ

′) and disavowal query on (m1, σ
′). Thus, if |ε0 − ε1| is non-negligible,

then A2 distinguishes interactions with the simulator from interactions with the
true prover, contradicting the zero-knolwedge property of the ZK proofs.

The only difference between the algorithms A′
1 and A′′

1 in ModExp is that
the former simulates a (false) Confirm on (m1, σ

′), while the latter simulates a
true Confirm (and similarly for Disavowal queries). Thus, if |ε1| is non-negligible,
an adversary B can use (A0,A1,A′

1,A′′
1) to break the IND-CCA2 security of

the encryption scheme. Specifically, B runs (A0,A1,A′
1,A′′

1 ) and obtains the
messages m0 and m1. Then B selects m0 and m1 in the find stage of the IND-
CCA2 encryption game. Finally, B guesses the bit b. We see that if |ε1| is non-
negligible, then B wins the encryption game with non-negligible probability.

The AdvfoolV(A) Case. Finally, if AdvfoolV(A) is not negligible, then the adver-
sary can generate fake valid zero-knowledge proofs with non-negligible probabil-
ity, violating soundness.

5 Evaluation

Our Efficient Instantiation. For our efficient instantiation, Confirm requires
proving equality of discrete logarithms, specifically proving knowledge of an r
such that e

ux1
2 = γ. This can be accomplished using protocols of Chaum and

Pedersen in four exponentiations. To achieve general-verifier ZK, the techniques
of Cramer et al. result in a 4-round protocol with 10 total exponentiations [8,13].

The Disavow protocol requires proving inequality of discrete logarithms,
which we do by using the techniques of Camenisch and Shoup [6]. From the
Preliminaries, the resulting proof consists of five clauses, four of which prove
statements about discrete logarithms and the final clause shows that a commit-
ted value r is in a specified range. Because we work over a group with public
prime order and the range is just the order of the group, the range test reduces
to a simple group membership test costing one exponentiation. For the other
four clauses, we can apply the optimized protocol of Cramer et al. to obtain
general-verifier ZK at the cost of 4 rounds and 10 exponentiations per clause;
with sequential composition this gives us 16 total rounds and 41 total exponen-
tiations. We remark that a more efficient protocol appears possible by using the
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results of Cramer et al. on monotone composition of SHVZK protocols, but this
result is already better than a generic zero-knowledge proof [13].

Comparison to Goldwasser-Waisbard. Both our approach and Goldwasser-
Waisbard use a weakened definition of designated confirmer signatures which
requires non-verifiability of unconfirmed signatures. Goldwasser-Waisbard use
this weakening to explore strong witness hiding proofs of knowledge (WHPOKs)
for Confirm protocols, and we use this weakening to explore a different way of
creating designated confirmer signatures [17].

While the strong WHPOKs constructed by Goldwasser and Waisbard are
more efficient than generic zero-knowledge proofs, they still require substantial
practical overhead. For example, the strong WHPOK described for the case of
Cramer-Shoup signatures uses a zero-knowledge proof of knowledge (ZKPOK) of
an ith root as a subroutine. Each such proof of an ith root requires an exponen-
tiation; with the suggested parameters this uses a 161-bit exponent. Two proofs
are needed for the WHPOK, which then must be repeated λ times to reduce
the soundness error. As a result, Confirm requires 2λ exponentiations. Further,
Disavow still requires a generic ZKPOK; Goldwasser and Waisbard note that
there appears to be no easy way to extend their approach to obtain an effi-
cient Disavow, since it is not clear what witness is supposed to be “hidden.”
The efficiency requirements for the strong WHPOK exhibited for the GMR and
Gennaro-Halevi-Rabin signatures are similar. While Goldwasser and Waisbard
do exhibit a more efficient WHPOK for the case of RSA signatures, the resulting
DCS signatures are existentially forgeable.

Our Confirm, in contrast, requires 10 exponentiations. Further, our Disavow
protocol is more efficient than the generic ZKPOK used by Goldwasser-Waisbard,
although less efficient than Confirm. Finally, our protocols are zero-knowledge in-
stead of witness-hiding.

The main advantage of Goldwasser-Waisbard is that they have exhibited ef-
ficient strong WHPOK using the same assumptions as the underlying signature
scheme. Our approach, in contrast, requires the “extra” composite residuosity
assumption for the Paillier scheme. We note, however, that for each new sig-
nature scheme, new effort must be exerted to find efficient strong WHPOK
without adding new assumptions. Conversely, one could look for protocols in
our framework that require different assumptions for Confirm and Disavow. For
example, if one were willing to live with an inefficient Disavow , we could replace
the Camenisch-Shoup encryption with an arbitrary IND-CCA2 scheme and con-
struct an efficient Confirm assuming only hardness of discrete logarithms.

Comparison to Camenisch-Michels. Camenisch and Michels give a generic
scheme for constructing designated confirmer signatures. They propose a specific
instantiation with RSA signatures and Cramer-Shoup encryption [4]. Security
for the underlying RSA signature is achieved by using full-domain hash, so the
resulting scheme has a proof of security only in the Random Oracle model. Their
Confirm protocol requires proving 12 statements regarding equalities and proofs
that committed numbers are in a specific interval, while their Disavow protocol
has 20 such statements. They note in their Remark 4 that because these proofs
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involve double discrete logarithms the verifier uses only binary challenges. As a
result, the proof must be repeated λ times for soundness [4]. We optimistically
estimate that each clause takes 3 exponentiations, leading to a total of 36λ
exponentiations for Confirm and 60λ for Disavow.

Comparison to Camenisch-Shoup. In their paper on verifiable encryption,
Camenisch and Shoup observe that, following Asokan et al., a designated con-
firmer Schnorr signature can be created where Confirm requires proving only a
single equality of discrete logarithms [6,1]. The details are due to appear in a
forthcoming paper. Because this paper is not yet available, we speculate on the
details to make a reasonable comparison to our work. Let (γ, γx) be a public
key for a Schnorr signature, where γ is a generator of a group G and x is the
secret key. Then a Schnorr signature on m is the triple (β, c, s), where β = γr

for a random r, c = H(β,m), and s = r + xc mod ρ, for ρ the order of G. The
DCS Schnorr output is then the 4-tuple (β, c, δ, ψ), where δ = γs and ψ is an
encryption of s with the confirmer’s public key. Anyone can check that δ = βγc

to verify the consistency of the signature. Then the confirmer need only prove
or disprove that ψ = E(logγ δ) to Confirm or Disavow.

In this special case, the Camenisch-Shoup approach is as efficient as our
scheme for Confirm and Disavow; indeed, we use their protocols for proving in-
equality of discrete logarithms. Unfortunately, the Schnorr scheme requires ran-
dom oracles, so as sketched the approach does not produce a scheme with a proof
in the standard model.

If we review the Cramer-Shoup, Goldwasser-Micali-Rivest, and Gennaro-
Halevi-Rabin signature schemes with proofs of security in the standard model,
then we see that these schemes do not appear to have the same reduction as
Schnorr from validity to equality of discrete logarithms. For example, Cramer-
Shoup requires proving knowledge of an i’th root, which does not translate
straightforwardly to a statement about equality of discrete logarithms. In con-
trast, our use of a commitment adds a “layer of indirection” that allows us to
achieve efficiency for every signature scheme. As a result, we can use any of these
signature schemes to obtain an efficient designated confirmer signature with a
proof in the standard model.

Finally, we note that the Camenisch-Shoup approach requires, as we do, a
Paillier-type encryption and the associated composite residuosity assumption for
efficient implementation. Therefore both their approach and ours require pos-
sibly introducing extra assumptions beyond those of the underlying signature
scheme.

6 Conclusion

We have shown that weakening the definition of designated confirmer signa-
tures, as suggested by Goldwasser and Waisbard, can yield a big payoff in the
efficiency of generic designated confirmer signature schemes. By using a com-
mitment scheme to add a “layer of indirection,” we used the techniques of
Camenisch and Shoup to exhibit efficient Confirm and Disavow protocols for
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any underlying signature scheme. Going further, we could look for commitment
schemes and efficient protocols based on different assumptions. For example, can
we adapt the techniques of Camenisch and Lysyanskaya [5] to obtain an even
more efficient instantiation based on bilinear mappings? We could also investi-
gate the strong witness hiding proofs of knowledge approach of Goldwasser and
Waisbard with an eye towards weakening the assumptions required for efficient
instantiation.
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