
On the Algebraic Immunity of Symmetric
Boolean Functions

An Braeken and Bart Preneel

Katholieke Universiteit Leuven
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken,bart.preneel}@esat.kuleuven.be

Abstract. In this paper, we analyze the algebraic immunity of symmet-
ric Boolean functions. The algebraic immunity is a property which mea-
sures the resistance against the algebraic attacks on symmetric ciphers.
We identify a set of lowest degree annihilators for symmetric functions
and propose an efficient algorithm for computing the algebraic immunity
of a symmetric function. The existence of several symmetric functions
with maximum algebraic immunity is proven. In this way, we have found
a new class of functions which have good implementation properties and
maximum algebraic immunity.

1 Introduction

Symmetric functions have the property that the function value is determined by
the Hamming weight of the input vector. Therefore, a symmetric function in n
variables can be defined by a vector of length n+1 which represents the function
values of the different Hamming weights of the input vectors. For this reason,
symmetric functions are very interesting functions in order to obtain low memory
in software. In hardware implementation, only a low number of gates is required
[15]. Properties such as balancedness and resiliency, propagation characteristics
and nonlinearity of symmetric functions are studied by Canteaut and Videau [3].
It is shown that these functions do not behave very well in general with respect to
a combination of the properties such as nonlinearity, degree, and resiliency, which
are important properties for resisting distinguishing and correlation attacks [2].

In 2002, several successful algebraic attacks on stream ciphers were proposed
by Courtois [5]. The success of these attacks do not depend on the classical
properties of nonlinearity or resiliency, but mainly on the weak behavior with
respect to the property of algebraic immunity. In this paper we study the re-
sistance of the symmetric functions against the algebraic attacks. We identify a
set of polynomials whose linear combinations lead to lowest degree annihilators
of a symmetric function. Since the size of this set is very small in comparison
with the general case, the algorithm for computing the algebraic immunity (AI)
of a symmetric function becomes much more efficient. We prove the existence of
several symmetric functions with optimal algebraic immunity.
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First, Sect. 2 deals with some background on Boolean functions and more in
particular on symmetric Boolean functions. Based on the identification of a set
of lowest degree annihilators of a symmetric function, we propose an algorithm
for computing the algebraic immunity of symmetric functions in Sect. 3. Sect. 4
presents several classes of symmetric functions which possess maximum algebraic
immunity. Finally, we conclude in Sect. 5.

2 Background

Let us first recall the basic background on Boolean functions together with some
properties of symmetric Boolean functions which were proven by Canteaut and
Videau [13].

Let Fn
2 be the set of all n-tuples of elements in the field F2 (Galois field

with two elements), endowed with the natural vector space structure over F2.
An element u = (u0, . . . , un−1) in Fn

2 can be represented by an integer Z2n

belonging to the interval [0, 2n − 1], i.e., u =
∑n−1

i=0 ui2i. We will use both
notations interchangeable in the rest of the paper.

A Boolean function f on Fn
2 is a mapping from Fn

2 onto F2. It can be uniquely
represented by the truth table (TT) which is the vector of length 2n consisting
of its function values. The support of the function f , sup(f) contains all vectors
x for which f(x) = 1. The (Hamming) weight wt(v) of a vector v ∈ Fn

2 is defined
as the number of nonzero positions.

Another unique representation, called the ANF, is the polynomial

f(x) =
⊕

(a0,...,an−1)∈Fn
2

h(a0, . . . , an−1)xa0
0 . . . x

an−1
n−1 , h(a) =

∑
x�a

f(x), for any a ∈ Fn
2 ,

where x � a means that xi ≤ ai for all 0 ≤ i ≤ n − 1. The degree of the poly-
nomial determines the algebraic degree of this function. The ANF of a function
consists of the modulo 2 sum of polynomials (x0 ⊕ a0 ⊕ 1) · · · (xn−1 ⊕ an−1 ⊕ 1)
for all a ∈ Fn

2 such that f(a) = 1. Denote the all-zero function or vector by 0
and the all-one function or vector by 1.

The Walsh transform Wf of a function f on Fn
2 is defined as the real valued

transformation

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+w·x .

From the Walsh transform, we derive the property of nonlinearity Nf = 2n−1 −
1
2 maxw∈Fn

2
|Wf (w)|, which represents the smallest distance between a Boolean

function and any affine function [11].
As response to the algebraic attacks, Meier et al. [10] introduced the concept

of algebraic immunity (AI) for a Boolean function f on Fn
2 . This measure defines

the lowest degree of a non-zero function g from Fn
2 into F2 for which f · g = 0

or (f ⊕ 1) · g = 0. The function g for which f · g = 0 is called an annihilator
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function of f . The set of all annihilators of f is denoted by An(f). The AI is
upper bounded by

⌈
n
2

⌉
as proven in [4].

Symmetric functions have the property that the function value of all vectors
with the same weight is equal. Consequently, the truth table of the symmetric
function on Fn

2 can be replaced by a vector vf of length n + 1 where the com-
ponents vf (i) for 0 ≤ i ≤ n represent the function value for vectors of weight i.
The vector vf is called the value vector (VV) of the symmetric function f .

The ANF representation for a symmetric function can also be replaced by a
shorter form [3, Prop. 2], called the simplified ANF (SANF). Denote the homoge-
neous symmetric function, which is the function that contains all terms of degree
i for 0 ≤ i ≤ n, by σi. Then, the SANF is a polynomial in F2[x0, . . . , xn−1]/(x2

0−
x0, . . . , x

2
n−1− xn−1) with basis elements the homogeneous symmetric functions

σi for 0 ≤ i ≤ n:

f(x) =
n⊕

i=0

λf (i)σi, λf (i) =
∑
k�i

vf (k), for 0 ≤ i ≤ n .

The vector λf = (λf (0), . . . , λf (n)) is called the simplified ANF vector (SANF
vector).

3 Annihilators of Symmetric Functions

We first distinguish a set of polynomials whose linear combinations lead to lowest
degree annihilators of a symmetric function. Based on this set, we propose an
efficient algorithm for computing the AI of a symmetric Boolean function.

Denote the homogeneous symmetric function of degree i which depends on
the j variables {xn−j , xn−j+1, . . . , xn−1} with j ≥ i by σj

i . We also use the nota-
tion of P k

l to represent the set of polynomials where each polynomial contains all
k variables {x0, . . . , xk−1} and consists of the product of at most l factors where
every factor is either the sum of two variables, one variable, or the complement of
one variable. Consequently

⌈
k
2

⌉
≤ l. Note that the variables in the polynomials

P k
l play the same role, which means that changing the indices of the variables

does not introduce new polynomials in P k
l . Therefore, we define the role of the

variables {x0, . . . , xk−1} in the polynomials of P k
l as follows. Depending on l, the

first factors involving the first variables (starting from x0, x1, . . .) may consist of
one variable, the complement of one variable or the sum of two variables. The
following factors may consist of one variable and the sum of two variables, while
the last factors consist of the sum of two variables.

Example 1. If
⌈

k
2

⌉
= l, only the polynomial (x0⊕ x1)(x2⊕ x3) · · · (xk−2⊕ xk−1)

for k even and the polynomials x0(x1⊕x2)(x3⊕x4) · · · (xk−2⊕xk−1) and (x0⊕
1)(x1⊕x2)(x3⊕x4) · · · (xk−2⊕xk−1) for k odd belong to P k

d k
2 e

. If
⌈

k
2

⌉
= l−1, the

polynomials x0x1(x2⊕x3) · · · (xk−2⊕xk−1), (x0⊕1)x1(x2⊕x3) · · · (xk−2⊕xk−1),
(x0⊕ 1)(x1⊕ 1)(x2⊕ x3) · · · (xk−2⊕ xk−1), (x0⊕ x1)(x2⊕ x3) · · · (xk−2⊕ xk−1),
belong to P k

d k
2 e+1

for k even.
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The goal of this section is to show that at least one of the lowest degree
annihilators with degree strictly less than

⌈
n
2

⌉
of a symmetric function on Fn

2 is
a linear combination of the polynomials of the following form:

n even: σ2
0Pn−2

n
2−1, σ

3
0Pn−3

n
2−1, . . . , σ

n−1
0 P 1

n
2−1, σ0,

σ4
1Pn−4

n
2−2, . . . , σ

n−1
1 P 1

n
2−2, σ1, . . . , σ

n−2
n
2−2P

2
1 , σn−1

n
2−2P

1
1 , σn

2−2, σn
2−1

n odd: σ1
0Pn−1

dn
2 e−1

, σ2
0Pn−2

dn
2 e−1

, . . . , σn−1
0 P 1

dn
2 e−1

, σ0,

σ3
1Pn−3

dn
2 e−2

, . . . , σn−1
1 P 1

dn
2 e−2

, σ1, . . . , σ
n−2

dn
2 e−2

P 2
1 , σdn

2 e−2, σdn
2 e−1.

As
⌈

k
2

⌉
≤ l, the functions σk for k ∈ {0, . . . ,

⌈
n
2

⌉
− 1} depend on 2k + 2, 2k +

3, . . . , n variables for n even and 2k+1, 2k+2, . . . , n variables for n odd in order
to obtain annihilators of degree less than or equal to

⌈
n
2

⌉
−1. We will call this set

of polynomials ANS . We now give some examples of annihilators which consist
of the linear combination of polynomials in ANS .

Example 2. Let n = 16, and suppose f is a symmetric Boolean function on
Fn

2 with value vector vf that satisfies vf (i) = 0 for i ∈ {6, 7, 10, 11}. Then the
function g(x) = σ9

2x0(x1⊕x2)(x3⊕x4)(x5⊕x6) represents an annihilator of the
function f . This follows from the fact that σ9

2 is equal to 1 only for vectors in F9
2

with weight equal to 2,3,6,7. The function x0(x1⊕x2)(x3⊕x4)(x5⊕x6) is equal
to 1 only for a subset of vectors in F7

2 with weight 4. Consequently the function
g is equal to 1 only for a subset of vectors of weight 6,7,10,11.

If the value vector in the coordinates 2 and 6 is equal to c where c ∈ {0, 1}
for a symmetric function f in 10 variables, then (x0 ⊕ 1)(σ9

2 ⊕ σ9
3) represents an

annihilator with degree 3 of f if c = 0, or f ⊕ 1 if c = 1.

Theorem 1. One of the lowest degree annihilators of a symmetric function can
be constructed by means of a linear combination of the polynomials in ANS.

Proof. Annihilators of symmetric functions are equal to 0 for all vectors of a
certain weight which belong to the support of the corresponding symmetric func-
tion. But the annihilators can be 0 or 1 for vectors which do not belong to the
support of the symmetric function. Therefore, an example of an annihilator is
the one which consists of the product of a symmetric function which depends
on the last n − k variables in order to guarantee that the function value is 1
for vectors of the same weight, together with a polynomial that depends on the
other k variables and which is 1 for a subset of vectors with fixed weight. The
polynomials P k

l in the polynomials of ANS are constructed in such way that they
are equal to 1 only for a subset of vectors which have exactly one fixed and equal
weight. Corollary 1, which is based on Lemma 1, proves that the annihilators
constructed by means of a linear combination of the polynomials in ANS have
lowest possible degree by showing that if one of the factors of the polynomials
P k

l would consist of more than 3 variables (in order to decrease the degree),
then there also exists an annihilator constructed by means of linear combina-
tions of the polynomials of ANS whose support is contained in the support of
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this annihilator and which has smaller or equal degree. Therefore, we first prove
Lemma 1. ut

Remark 1. We note that the annihilators constructed by linear combinations
of the polynomials in ANS do not determine the complete basis of the ideal
of annihilators with degree strictly less than

⌈
n
2

⌉
of a symmetric function. For

instance, the function x0σ3 on F10
2 is annihilator of all symmetric functions on

F10
2 for which vf (4) = vf (8) = 0. But the function x0σ

9
3 ∈ANS also satisfies this

property. Both functions are linearly independent. Also note that the variables
of the polynomials P k

l play the same role in the representation, and that they
only depend on the first k variables. This is possible due to the symmetry of the
symmetric function. Since we are only interested in the existence of at least one
annihilator in order to determine the AI of the function, we can restrict us for
the search of annihilators into the set functions obtained by linear combinations
of the polynomials in ANS .

Lemma 1. Let r ≥ 3 and n ≥ r − 1. Define Sn
i as the symmetric function on

n variables of degree i,

Sn
i =

⊕
0≤k≤i

cS
k σn

k where cS
k ∈ {0, 1} for all 0 ≤ k ≤ i.

Denote the set of weights in the support of Sn
i by VS. Define also S

n−(r−1)
i−(r−1) =⊕

0≤k≤i cS
k σ

n−(r−1)
k−(r−1) where σi = 0 for i < 0 and denote its support of the value

vector by VS′ . Then

{a + r − 1 : a ∈ VS′} ⊆ {a, a + 2, . . . , a + r − 1 : a ∈ VS} (1)
{a + r : a ∈ VS′} ⊆ {a + 1, a + 3, . . . , a + r : a ∈ VS} (2)

We refer to an extended version of the paper for the proof of this lemma.

Example 3. Let n = 10, r = 3. The support of the value vector of the function
σ10

0 ⊕ σ10
1 ⊕ σ10

2 ⊕ σ10
5 belongs to VS = {0, 3, 4, 5, 8}. The support of the value

vector of σ8
0 ⊕ σ8

3 belongs to VS′ = {0, 1, 2, 4, 5, 6, 8}. The theorem implies that
{2, 3, 4, 6, 7, 8, 10} ⊆ {0, 2, 3, 4, 5, 6, 7, 8, 10}.

Directly from Lemma 1, we can derive

Corollary 1. Let r be odd and r ≥ 3, then the support of Sn−r
i (x0⊕· · ·⊕xr−1)

contains the support of S
n−(2r−1)
i−(r−1) x0(x1 ⊕ x2) · · · (x2r−3 ⊕ x2r−2). The support

of Sn−r
i (x0 ⊕ · · · ⊕ xr−1 ⊕ 1) contains the support of S

n−(2r−1)
i−(r−1) (x0 ⊕ 1)(x1 ⊕

x2) · · · (x2r−3 ⊕ x2r−2). Both pairs of functions have the same degree i + 1.
Let r be even and r ≥ 4, then the support of Sn−r

i (x0 ⊕ · · · ⊕ xr−1) contains
the support of S

n−(2r−2)
i−(r−2) (x0 ⊕ x1)(x2 ⊕ x3) · · · (x2r−3 ⊕ x2r−4). Both functions

have the same degree i + 1. The support of Sn−r
i (x0 ⊕ · · · ⊕ xr−1 ⊕ 1) contains

the support of Sn−2r
i−r (x0⊕x1)(x2⊕x3) · · · (x2r−1⊕x2r−2). The last function has

degree i in comparison with degree i + 1 of the first function. This equation also
holds for r = 2.
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We conclude that if one or more factors of the polynomial P k
l would consist of

the complement of two terms or more than three terms, then there always exists
an annihilator constructed by means of a linear combination of polynomials in
ANS which has degree smaller or equal and whose support is contained in the
support of that annihilator.

Let us now compute the number of polynomials in the set ANS .

Theorem 2. The number N of polynomials in ANS is equal to

N = 3 · 2d
n
2 e − 2 ·

⌈n

2

⌉
− 3 .

Proof. We will compute the number for n even. In a similar way, the result is
obtained for n odd. Denote Rn

k for n even and 0 ≤ k ≤ n
2 − 1 as the sum of

all elements which have σi
k for i = 2k + 2, . . . , n as factor, i.e., the sum of all

elements of the sets P i
n
2−k−1 for i = 0, . . . , n− (2k + 2):

Rn
k =

n−(2k+2)∑
i=0

|P i
n
2−k−1| .

For i = n − (2k + 2), there is exactly one element in P
n−(2k+2)
n
2−k−1 , namely the

polynomial (x1 ⊕ x2) · · · (xn−2k−2 ⊕ xn−2k−3). Every decrease of i until i =
n
2 − k − 1 with 1 gives one more degree of freedom, which leads to a factor
of two more for the possible polynomials in P i

n
2−k−1. For instance, suppose the

polynomial P i
n
2−k−1 has the form (x1⊕x2)(x3⊕x4) · · · at step i. After removing

one variable at step i − 1, we can have two additional elements in P i−1
n
2−k−1

namely x1(x2 ⊕ x3) · · · and (x1 ⊕ 1)(x2 ⊕ x3) · · · . Removing another variable
leads again to two more polynomials: (x1 ⊕ x2) · · · , x1x2 · · · , (x1 ⊕ 1)x2 · · · ,
(x1 ⊕ 1)(x2 ⊕ 1) · · · . For i < n

2 − k − 1, due to the smaller number of variables,
the total number of polynomials decreases again with a factor of 2. Therefore,
we have that for 0 ≤ k ≤ n

2 − 1:

Rn
k = 2

n
2−k−2∑

i=0

2i + 2
n
2−k−1 .

Consequently, the total number of terms belonging to class 2 is equal to

N =

n
2−1∑
k=0

Rn
k = 2

dn
2 e−1∑
i=1

(2i − 1) + 2d
n
2 e − 1 .

ut
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Example 4. For n = 14, we have that

σ0 → (|P 12
6 |, . . . , |P 0

6 |) = (1, 2, 4, 8, 16, 32, 64, 32, 16, 8, 4, 2, 1)
σ1 → (|P 10

5 |, . . . , |P 0
5 |) = (1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1)

σ2 → (|P 8
4 |, . . . , |P 0

4 |) = (1, 2, 4, 8, 16, 8, 4, 2, 1)
σ3 → (|P 6

3 |, . . . , |P 0
3 |) = (1, 2, 4, 8, 4, 2, 1)

σ4 → (|P 4
2 |, . . . , |P 0

2 |) = (1, 2, 4, 2, 1)
σ5 → (|P 2

1 |, . . . , |P 0
1 |) = (1, 2, 1)

σ6 → |P 0
0 | = 1

3.1 An Algorithm for Computing AI

As shown in the previous section, one of the lowest degree annihilators of degree
less than

⌈
n
2

⌉
consists of a linear combination of the N polynomials in ANS .

As determined in Theorem 2, the size of the set ANS is much smaller than the

number of all polynomials of degree less than
⌈

n
2

⌉
which is equal to

∑dn
2 e−1

i=0

(
n
i

)
.

Table 1 shows the comparison between both numbers for dimensions n = 2k with
5 ≤ k ≤ 10. We can conclude that the difference increases with the dimension.

Table 1. Comparison of the size of annihilator-set

n 10 12 14 16 18 20Pdn
2 e−1

i=0

`
n
i

´
386 1 586 6 476 26 333 106 762 431 910

|ANS | 83 177 367 749 1 524 3 049

The main goal of the algorithm that computes the AI of a function consists in
finding suitable linear combinations within these terms. Consequently, roughly
speaking the complexity for computing the AI of a symmetric function can be
upper bounded by N2.81 ≈ 58 · 21.4n, where 2.81 corresponds to the exponent
for Gaussian elimination [1].

Moreover, the additional tricks presented in [10] can be used to accelerate
the algorithm even further. Due to the fact that we have much less functions to
combine in the algorithm for computing the AI of a symmetric function, the AI of
any arbitrary symmetric function can be computed for much larger dimensions.

Instead of checking the whole set of 2n+1 symmetric functions for functions
on Fn

2 with maximum AI, we first present some properties on the value vector of
a symmetric function with maximum AI. These properties can be immediately
derived from the existence of the annihilators constructed by means of linear
combinations of polynomials in ANS .
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3.2 Properties

Theorem 3. Let f be a symmetric Boolean function on Fn
2 with value vector

vf . If vf (
⌈

n
2

⌉
−1) = vf (

⌈
n
2

⌉
+1) for all n, or in addition for n odd vf (

⌈
n
2

⌉
−2) =

vf (
⌈

n
2

⌉
), then f can not have maximum AI.

Theorem 4. Let 2j ≤ n < 2j+1 − 1 where j ≥ 1 and f be a symmetric Boolean
function on Fn

2 with value vector vf . Define for all 0 ≤ i < 2j−1 the set Vi =
{l : l ≡ i mod 2j−1 for 0 ≤ l < n}. If there exists an i ∈ {0, . . . , 2j−1 − 1} such
that vf (k) = 0 (resp. 1) for all k ∈ Vi, then the AI of f is less than or equal to
2j−1 − 1. For n = 2j+1 − 1 where j ≥ 1, the value vector of f should be of the
form (a|ac) where a ∈ Fj

2 in order to reach the maximum AI.

Finally, we want to mention that also the condition on the weight of a
Boolean function, as derived in [6], is very strong for symmetric functions with
an odd number of variables. It implies that maximum AI can only be ob-
tained for balanced functions if n is odd. A large set of balanced functions in
n odd are the trivially balanced functions, i.e., the functions with value vector
vf (i) = vf (n − i) ⊕ 1 for all 0 ≤ i ≤

⌊
n
2

⌋
. In fact, the trivially balanced func-

tions form the whole set of balanced functions for n odd and n ≤ 128, except in
dimensions n ∈ {13, 29, 31, 33, 35,41, 47, 61, 63, 73, 97, 103} as shown in [14].

3.3 Experiments

For the computation of the AI, we can use a more efficient algorithm than the
algorithm of [10] as explained above and thus reach higher dimensions.

If n is odd, the condition of trivially balancedness is very powerful. We
checked until n ≤ 17 and can conclude that the only trivially balanced func-
tions with maximum AI have value vector vf such that

vf (i) =

0 for i <
⌈

n
2

⌉
1 for i ≥

⌈
n
2

⌉
.

(3)

In [12], the complete set of non-trivially balanced functions for n = 13 is de-
scribed. From this description, we derive that the AI of the non-trivial balanced
functions in 13 variables is less than or equal to 3 due to Theorem 4. Therefore,
we conclude that all symmetric functions in n odd and n ≤ 17 with maximum
AI have value vector defined by (3). We will show in the next section that a
symmetric function with such value vector always has maximal AI for every n
odd. Moreover, it can be easily proven that for n = 2i − 1, 2i + 1, with i ≥ 2,
only the trivially balanced functions with value vector determined by (3) have
maximum AI. In these dimensions, the property of Theorem 4 is very powerful.

For n even, we found more symmetric functions with maximum AI. In the
next section, we will theoretically prove the maximum AI for some of these
functions. The theorems will cover all symmetric functions with maximum AI
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in dimensions less than or equal to 12 and all but one in dimensions 14 and 16.
We refer to the extended version of the paper for the complete set of symmetric
Boolean functions with maximum AI in dimensions n = 6, 8, 10, 12, 14, 16.

4 Symmetric Functions with Maximum AI

In this section, we show the existence of several symmetric functions with maxi-
mum AI for all dimensions n. Let us first recall that the property of AI is invari-
ant under affine transformation in the input variables, i.e., f(x) and f(xA⊕ b),
where A is an n× n nonsingular matrix and b ∈ Fn

2 will have the same AI. This
follows from the fact that if g is annihilator of f , then g(xA ⊕ b) is annihilator
of f(xA⊕ b).

However, the AI of two functions f(x) and f(x)⊕ c ·x with c ∈ Fn
2 can differ

at most with 1. This can be easily seen as follows. Let g be annihilator of f such
that f(x) · g(x) = 0, then g(x)(c · x⊕ 1) is annihilator of (f(x)⊕ c · x) because
(f(x)⊕ c · x)g(x)(c · x⊕ 1) = f(x)g(x)(c · x⊕ 1)⊕ (c · x)g(x)(c · x⊕ 1) = 0. The
last equality follows from the fact that c · x⊕ 1 is annihilator of c · x.

We now investigate the affine transformations on the input variables which
will transform a symmetric function into a new symmetric function. Due to
the following lemma proven by Dawson and Wu, we only need to check the
transformations x 7→ xA⊕ c1, where A is a nonsingular n×n binary matrix and
c ∈ F2.

Lemma 2. [8] Let a ∈ Fn
2 \ {0, 1}. If f is a symmetric Boolean function, then

f(x⊕ a) is symmetric if and only if f is affine.

Theorem 5. In n even, the only binary linear transformation on the input vari-
ables of a symmetric function that will compute a new symmetric function on
Fn

2 is the transformation T = x 7→ xA, where A is a nonsingular n × n matrix
over F2 with the property that the sum of the elements in each row and column
of A is equal to n− 1. For n odd, no such transformations exist.

The transformation (x0, . . . , xn−1) 7→ (x0⊕1, . . . , xn−1⊕1) for all n will map
a symmetric function with value vector vf to a symmetric function with value
vector equal to the reverse of this value vector, i.e., vr

f .

Proof. A minimal requirement for a binary linear transformation x 7→ xA which
maps a symmetric function onto a symmetric function is that the weight W
of the columns and rows of A is equal, since all variables play the same role
in a symmetric function. If W is greater than 1 and smaller than n − 1, the
transformation is not bijective or does not lead to a symmetric function.

Consider n even and W = n−1. If wt(x) is odd and equal to i, then we show
that wt(xA) is equal to n − i. Denote by V = {i : xi 6= 0}. The coordinates j
with j ∈ {0, . . . , n− 1} in the vector xA are 1 if and only if the elements on the
corresponding column j of A are 1 exactly on the i positions of the set V . (Note
that it is not possible that there are i− 2k with k ≥ 1 elements in the columns
of A which are 1 and 2k elements which are 0 due to the fact that W = n− 1.)



10

The number of such columns in A is equal to
(

n−i
n−i−1

)
= n − i for i odd and

1 ≤ i ≤ n− 1.
Now we show that if wt(x) is even and equal to i, then wt(xA) = i. Denote

by V = {i : xi 6= 0}. The coordinates j with j ∈ {0, . . . , n− 1} in the vector xA
are 1 if and only if the elements on the corresponding column j of A are 1 on
exactly i− 1 positions of the set V . There are

(
i

i−1

)
= i possibilities for this to

occur.
For n odd, the transformation T is not bijective which follows immediately

from the fact that vectors of weight 0 and n are both mapped onto vectors of
weight 0.

Finally, since the transformation (x0, . . . , xn−1) 7→ (x0 ⊕ 1, . . . , xn−1 ⊕ 1)
maps a vector of weight i onto a vector of weight n − i, this transformation
corresponds to the mapping of vf (i) onto vf (n− i) for every i with 0 ≤ i ≤ n.

ut

We now present three basic classes of symmetric functions with maximum AI.
We refer to the extended version of the paper for the proofs of the theorems in
this section.

Class 1

Theorem 6. The symmetric function f in Fn
2 with value vector

vf (i) =
{

0 for i <
⌈

n
2

⌉
1 else (4)

has maximum AI. Let us denote this function f by Fk where k is equal to the
threshold

⌈
n
2

⌉
.

Remark 2. The maximum AI of this class of symmetric functions was indepen-
dently proven in [7] using a different proof method. This result was also presented
at [2].

For n even, we prove that also the function which only differs from the threshold
function Fdn

2 e in the function value of the vector (1, . . . , 1) has maximum AI.

Denote the zero vector on Fn+1
2 with 1 on position i by ei for 0 ≤ i ≤ n.

Theorem 7. The symmetric function f with value vector vFdn
2 e
⊕ en in Fn

2 for

n even has maximum AI. The degree of f is equal to n if n 6= 2i for i ≥ 1 and
equal to 2i−1 else.

Class 2
For n ≥ 8 and even, we can distinguish another class of symmetric functions
with maximum AI. These symmetric functions differ from Fn

2
in two symmetric

positions such that they possess the same weight as Fn
2
. Denote by si the all

zero vector on Fn+1
2 with 1 on positions i, n− i for 0 ≤ i < n

2 .
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Theorem 8. Let n = 2k and k ≥ 4. The symmetric function f with value vector
vF n

2
⊕ sk−4 on Fn

2 has maximum AI.

Again, the symmetric functions f which differ from the functions presented in
Theorem 8 only in the all-one vector have maximum AI for n ≥ 10. This can
be obtained by using the proof technique of Theorem 7 for showing the non-
existence of annihilators with degree less than n

2 for f and the proof technique
of Theorem 8 for f ⊕ 1.

Theorem 9. Let n = 2k and k ≥ 5. The symmetric function f with value vector
vF n

2
⊕ sk−4⊕ en on Fn

2 has maximum AI. The degree of f is equal to n if n 6= 2i

with i ≥ 1 and equal to 2i−1 else.

We also present another class of functions which differs from Fn
2

in two symmet-
ric positions. These functions coincide with the function defined in Theorem 7
for n = 8.

Theorem 10. Let f be a symmetric function on Fn
2 with n even. If

(
n
n
2

)
≡ 1

mod 4, then the function with value vector vF n
2
⊕ s0 has maximum AI.

Example 5. The numbers n = 2i for i ≥ 3 satisfy the property that
(

n
n
2

)
≡ 1

mod 4.

Class 3
For n even, the third class of functions with maximum AI differs from Fn

2
in only

one position. Therefore these functions have weight different from the weight of
the functions of class 1 or 2.

Theorem 11. Let f be a symmetric function on Fn
2 with n even. For 1 ≤ i <⌊

n
4

⌋
, if

(n
2 +t−i

t

)
≡ 1 mod 2 for all t ∈ {1, . . . , i}, then the function f with value

vector vF n
2
⊕ en−i has maximum AI.

Example 6. For n = 14, since
(
7
1

)
≡ 1 mod 2, the function value vector vF7⊕e13

has maximum AI. Also
(
7
3

)
≡ 1 mod 2,

(
6
2

)
≡ 1 mod 2,

(
5
1

)
≡ 1 mod 2, and

thus the function with value vector vF7⊕e11 represents a function with maximum
AI.

Functions Derived From Classes 1, 2, and 3
For n even, the symmetric functions from classes 1, 2, and 3 can be used to derive
other symmetric functions by means of the affine transformation (x0, . . . , xn−1) 7→
(x0 ⊕ x1 ⊕ · · · ⊕ xn−2, x1 ⊕ x2 ⊕ · · · ⊕ xn−1, . . . , xn−1 ⊕ x0 ⊕ · · · ⊕ xn−3). As al-
ready explained in the proof of Theorem 4, this transformation maps vectors of
odd weight i to vectors with weight n− i. If the weight is even, then nothing is
changed.
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Corollary 2. Let f be a symmetric functions on Fn
2 which belongs to class 1 or

2. If n = 4k, then f ⊕ σ1 has maximum AI. If n = 4k + 2, then the symmetric
function with value vector vf⊕σ1 ⊕ en

2
has maximum AI.

Let f be a symmetric functions on Fn
2 which belongs to class 3. If n = 4k,

then the function with value vector vf⊕σ1 ⊕ cen−i, where c = 1 if i is odd and
c = 0 otherwise, has maximum AI. If n = 4k + 2, then the function with value
vector vf⊕σ1 ⊕ en

2
⊕ cen−i, where c = 1 if i is odd and c = 0 otherwise has

maximum AI.

Remark 3. We want to note that the symmetric Boolean functions f derived
from the function Fdn

2 e and also Fdn
2 e ⊕ σn if n is even have very simple anni-

hilators. For instance, it can be easily seen that the functions xi1 · · ·xidn
2 e

with

0 ≤ i1 < i2 < · · · < idn
2 e ≤ n − 1 are annihilators of Fdn

2 e ⊕ 1. Moreover, they

form exactly the basis of the set of annihilators for Fdn
2 e⊕1. The basis of the an-

nihilators of Fdn
2 e⊕σn⊕1 consists of the elements {x0 · · ·xdn

2 e−1⊕xi1 · · ·xidn
2 e

:

0 ≤ i1 < i2 < · · · < idn
2 e ≤ n− 1, (i1, . . . , idn

2 e) 6= (0, . . . ,
⌈

n
2

⌉
− 1)}.

A high number of terms in the equations is another important criteria for
the algebraic attacks. Therefore, one should be very careful in choosing the taps
of the filter function and the taps of the LFSR when using these symmetric
functions in a filter generator. The annihilators of the affine equivalent functions
are more complicated. However, this does not change the situation, since one
can always replace the filter generator by an equivalent generator with different
initial state and connection polynomial of the LFSR and with filter function
equal to the affine equivalent one (see [9]).

Annihilators of degree n
2 of symmetric functions which belong to classes 2 or

3 are more complicated and consist of more terms.

Properties
Properties such as degree, weight and maximum value in the Walsh spectrum of
the functions from classes 1, 2, and 3 for n even are summarized in Table 2. The
property of degree can be easily derived by using Proposition 2 and Proposition 4
of [3]. The nonlinearity of the functions is immediately derived from the weight
since one can show that maxw∈Fn

2
|Wf (w)| = |Wf (0)|. This is proven in detail

by Dalai et. al in [7].

Table 2. Properties of Symmetric function on Fn
2 with Maximum AI for n even

Function Degree weight max |Wf |
F n

2
2blog2 nc 2n−1 + 1

2

`
n
n
2

´ `
n
n
2

´
F n

2
⊕ s n

2 −4 2blog2 nc 2n−1 + 1
2

`
n
n
2

´ `
n
n
2

´
F n

2
⊕ en−i ≥ n − i 2n−1 + 1

2

`
n
n
2

´
−

`
n

n−i

´ `
n
n
2

´
− 2

`
n

n−i

´
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The functions from class 1 for n odd are trivially balanced. The nonlinearity
of these functions is equal to 2n−1 −

(n−1
n−1

2

)
. This follows from the fact that the

restriction to the subspace xn = 0 (resp. xn = 1) is equal to the symmetric func-
tion (resp. complement of symmetric function) of class 1 in Fn−1

2 . As mentioned
in [3], trivially balanced functions satisfy the property that the derivative with
respect to the all one vector is constant, i.e., D1f = 1. Also Wf (v) = 0 for all
vectors v of even weight.

5 Conclusions

We have presented in this paper an efficient algorithm for computing the AI of
a symmetric Boolean function. We have identified several classes of symmetric
functions with maximum AI.

Since the nonlinearity of functions with maximum AI is not sufficiently high
for resisting distinguishing attacks and correlation attacks as explained in [2], we
also investigated the existence of symmetric functions with suboptimal AI and
better nonlinearity. As shown in the extended version of the paper, it seems that
it is not possible to obtain a sufficient order of AI (in the order of 7) together
with a reasonable nonlinearity (in the order of ε = 2−9) for symmetric functions
which depend on less than 32 variables. Therefore in order to use symmetric
functions in practise, one should use them as a building block for instance by
means of the direct sum with a highly nonlinear Boolean function. Examples
of functions with high nonlinearity and which have still reasonable hardware
complexity are the Boolean functions which are affine equivalent with the trace
function of the power functions.

On the other hand, it is clear that a symmetric function has lots of structure.
Therefore, it is an interesting research question whether this structure can be
exploited in an attack. Also, the use of the direct sum of two functions has
been pointed out as a possible weakness in the design. But again, no attack is
known for this. There are two straightforward ways to destroy the symmetry
and to still maintain a large set of the properties such as nonlinearity, AI and
degree. The first way is by affine transformation on the input variables which
keeps the AI, nonlinearity and degree invariant. However, this method is not a
good solution, since one can construct an equivalent cipher, with different initial
state and different connection polynomial for the LFSR(s) where the function
is again symmetric (see [9]). The second way is to add an affine function, which
keeps the nonlinearity and degree invariant, but will decrease the AI with 1 in
general. For this transformation, it is not immediately clear how to rewrite it to
an equivalent scheme where the symmetric function is again obtained.
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