Skip to main content

Weighted Localized Clustering: A Coverage-Aware Reader Collision Arbitration Protocol in RFID Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3820))

Abstract

This paper addresses a weighted localized scheme and its application to the hierarchical clustering architecture, which results in reduced overlapping areas of clusters. Our previous proposed scheme, Low-Energy Localized Clustering (LLC), dynamically regulates the radius of each cluster for minimizing energy consumption of cluster heads (CHs) while the entire network field is still being covered by each cluster in sensor networks. We present weighted Low-Energy Localized Clustering(w-LLC), which has better efficiency than LLC by assigning weight functions to each CH. Drew on the w-LLC scheme, weighted Localized Clustering for RFID networks(w-LCR) addresses a coverage-aware reader collision arbitration protocol as an application. w-LCR is a protocol that minimizes collisions by minimizing overlapping areas of clusters.

This work was in part funded by SK Telecom under Contract Number KU-R0405721 to Korea University and by KOSEF (Grant No. R01-2005-000-10267-0).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mhatre, V., Rosenberg, C.: Design Guidelines for Wireless Sensor Networks: Communication, Clustering and Aggregation. Elsevier Ad Hoc Networks 2(1), 45–63 (2004)

    Article  Google Scholar 

  2. Younis, O., Fahmy, S.: HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks. IEEE Trans. on Mobile Computing 3(1), 366–379 (2004)

    Article  Google Scholar 

  3. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. on Wireless Comm. 1(4), 660–670 (2002)

    Article  Google Scholar 

  4. Gupta, G., Younis, M.: Load-Balanced Clustering for Wireless Sensor Networks. In: Proc. of IEEE ICC, AK, USA (May 2003)

    Google Scholar 

  5. Pan, J., Hou, Y.T., Cai, L., Shi, Y., Shen, S.X.: Topology Control for Wireless Sensor Networks. In: Proc. of ACM MobiCom, CA, USA (September 2003)

    Google Scholar 

  6. Kim, J., Kim, E., Kim, S., Kim, D., Lee, W.: Low-Energy Localized Clustering: An Adaptive Cluster Radius Configuration Scheme for Topology Control in Wireless Sensor Networks. In: Proc. of IEEE VTC, Stockholm, Sweden (May 2005)

    Google Scholar 

  7. Akyildiz, I.F., Su, W.L., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Elsevier Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  8. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges: Scalable Coordination in Sensor Networks. In: Proc. of ACM MobiCom, WA, USA (August 1999)

    Google Scholar 

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  10. Aurenhammer, F.: Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  11. Yin, S., Lin, X.: Adaptive Load Balancing in Mobile Ad Hoc Networks. In: Proc. of IEEE WCNC (March 2005)

    Google Scholar 

  12. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, Chichester (1993)

    MATH  Google Scholar 

  13. Liu, D.C., Nocedal, J.: On the Limited Memory BFGS Method for Large Scale Optimization. In: ACM Mathematical Programming (December 1989)

    Google Scholar 

  14. Zhou, F., Chen, C., Jin, D., Huang, C., Min, H.: Evaluating and Optimizing Power Consumption of Anti-Collision Protocols for Applications in RFID Systems. In: Proc. of ACM ISLPED (2004)

    Google Scholar 

  15. Waldrop, J., Engels, D.W., Sarma, S.E.: Colorwave: An Anticollision Algorithm for the Reader Collision Problem. In: Proc. of IEEE ICC, AK, USA (May 2003)

    Google Scholar 

  16. Law, C., Lee, K., Siu, K.-Y.: Efficient Memoryless Protocol for Tag Identification. In: Proc. of ACM DIALM (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, J., Lee, W., Jung, J., Choi, J., Kim, E., Kim, J. (2005). Weighted Localized Clustering: A Coverage-Aware Reader Collision Arbitration Protocol in RFID Networks. In: Yang, L.T., Zhou, X., Zhao, W., Wu, Z., Zhu, Y., Lin, M. (eds) Embedded Software and Systems. ICESS 2005. Lecture Notes in Computer Science, vol 3820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599555_52

Download citation

  • DOI: https://doi.org/10.1007/11599555_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30881-2

  • Online ISBN: 978-3-540-32297-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics