Incentive Compatible Multiagent Constraint
Optimization

Adrian Petcl and Boi Falting$

Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Liei$Switzerland)
{adrian. petcu, boi.faltings}@pfl.ch
http://1iamw. epfl.ch

Abstract. We presentin this paper an incentive-compatible distributed optimiza-
tion method applied to social choice problems. The method works by dimgpu
and collecting VCG taxes in a distributed fashion. This introduces a certain re
silience to manipulation from the problem solving agents. An extension of this
method sacrifices Pareto-optimality in favor of budget-balance: the soduthoo-

sen are not optimal anymore, but the advantage is that the self inteeggats
pay the taxes between themselves, thus producing no tax surplus. Thisagdisn
unwanted incentives for the problem solving agents, ensuring theirfaitds.

1 Introduction

In this paper we concentrate on social choice problems,iwdnie ubiquitous in our so-
ciety. Typically, such problems include a set of public gesi, that take some decisions
based on the preferences expressed by a set of (privatasadgba goal is to adopt the
set of decisions that best match the preferences expregsee private agents, possibly
subject to a set of feasibility constraints.

In systems with self interested agents, it is often a proliemuarantee optimal
outcomes because each agent may have the incentive to raeithe system in a
way that is profitable to itself. Such manipulations steerfthal outcome away from a
global optimum which is otherwise achievable.

The VCG tax mechanism is a way to ensure that the agents ifystens are always
better off by declaring their true preferences, thus allgafior the optimal outcome to
be chosen. The mechanism works by fining the participatiregnisgwith taxes which
are proportional to the damage that they cause to others, Tihel agents do not have
an incentive to understate their valuations because treomg chosen would not be
the best for them, and do not overstate because that wouldéra high amount of tax
they would have to pay for hurting the others.

Traditionally, such mechanisms have been studied andeapplicentralized sys-
tems. Feigenbaum and Shenker started in [5] a new line ofrelsen Distributed
Algorithmic Mechanism Design (DAMDDAMD is a fusion of the more traditional
algorithmic-oriented Al and the recent interest in disitéd computing and incentive
compatibility in multiagent environments. They focus onlticast cost sharing and in-
terdomain routing problems. This work is similar in spirithvtheirs, but our focus is
on constraint optimization applied to public decision peois.

Parkes and Shneidman present in [10] an approach for ineecdimpatible dis-
tributed computation. The goal in their approach is to diste the computation to
the self interested agents themselves, and take the cotiopaiecourden off the center.
They use VCG taxes to makaithfulnesgsee also [12]) an ex-post Nash equilibrium:
the agents have the incentive to execute the correct digaritvithout manipulation.
Their approach requires the presence of a center that seleatutcome, enforces i,
and collects taxes. Trusted channels between the centéh@adents are required such
that the agents report their types to the center.

In our approach both the optimization itself, and the corapaih of VCG taxes are
done in a distributed fashion by the agents controlling thblip decision variables.
We present also a budget balanced extension of the algotiitaheliminates all inter-
est of the problem solving agents (public entities) in thebpgm, therefore ensuring
faithfulness in the sense of [12].

In the following, we present in Section 2 some definitions aoigtion, in Section 3
the basic optimization algorithm that will be used in thippg and in Section 4 a VCG-
based extension of the basic optimization method. SectipreSents a randomized
algorithm that is budget balanced. Section 6 presents empntal results on meeting
scheduling problems, and Section 7 concludes.

2 Definitions & Notation

Definition 1. A discretemultiagent constraint optimization problgiMCOP) is a tuple
<A, X,D,C,R > such that:

A={A,..., A} is a set of selfish agents interested in the optimizationlprab

X ={Xy,..., X, } is the set of public decision variables/solving agents;

D ={d,,...,d,} is a set of finite domains of the variablés

C = {ca,...,cq} is a set of constraints, where a constraintis a functionce; :
din X .. X dy, — {—00,0} that returns O for all allowed combinations of values of the
involved variables, and-co for disallowed ones. ‘

R = {r1,...,m,} is a set of relations, where a relatiorj is a functiond;; x .. x
d;i; — R specified by agenti; which denotes how much utilit; assigns to each
possible combination of values of the involved variablegétive values can be thought
of as costs)R; is the set of relations specified by agetjt

This framework allowes us to model social choice-like peoi$, where a set of
"public” agents X jointly choose an overall optimal outcome out of a set of poss
ble solutions. The feasibility of a solution is decided bg &tonstraints irC, which
are domain dependent, and are imposed by the agénfehe choice between sev-
eral feasible solutions is made according to the prefeenédhe "private” agents
A, stated through the relatior’®. Formally, the optimal solution to such an opti-
mization problem is a complete instantiatidt* of all variables inX, s.t. X* =
argmazx (3, cr Ti(X) + 2 . cc ¢i(X)), where the values of; andc; are their cor-
responding values for the particular instantiationNotice that the second sum is either
—oo if X is an infeasible assignment, or O if it is feasible. We restur attention to
problems that have feasible solutions. Notice that simyimizing utility is sufficient

to find the optimal, feasible solution, since if any of the saints inC are unsatisfied,
the resulting overall utility is—oc.

In this paper we deal with unary and binary relations, beieg known that higher
arity relations can also be expressed in these terms wiithitodifications.

This framework is similar to a weighted CSP framework wheeesallow both posi-
tive and negative costs and we do utility maximization asogeg to cost minimization.

3 DPOP: a dynamic programming algorithm for MCOP

Each agentd; € A has a set of preferences on the outcome of the optimizatiaio pr
lem, expressed by the set of relatioRs C R. The agents4 declare their relations
to the agents it concerned by those relations. Afterwards, the agéhtexecute a
distributed optimization procedure yielding an assignimeh of the variablesX; that
maximizes the overall utility for the agentt".

The optimization algorithm of choice BPOP ([11]). DPOPis an instance of the
general bucket elimination scheme from [2], which is addte the distributed case,
and uses a DFS traversal of the problem graph as an ordering.

For now, we assume the agemtsleclare their relationsuthfully, thereforeDPOP
produces the correct optimal solution. In Section 4 we attap®CG mechanism to
DPOPto ensure truthfulness.

DPOP has 3 phases. In the first phase (see Section 3.1), the pssaidbtucture is
established. One node is chosen among the nodes¥raand a custom distributed DFS
algorithm is initiated from that node. The second phasegeeton 3.2) is a bottom-up
utility propagation, and the third phase (see section 3.8)op-down value assignment
propagation. A formal description (pseudocode) can bedatrthe end of section 3.3.

It has been proved in [11] th&POP produces a linear number of messages. Its
complexity lies in the size of th&TIL messages (th#ALUE messages have linear
size). The largedt TIL message produced by Algorithm 1 is space-exponential in the
width of the pseudotree induced by the DFS ordering used.

3.1 Pseudotrees

Definition 2. A pseudo-tree arrangement of a graph G is a rooted tree withstdme
nodes as G and the property that adjacent nodes from theraligiraph fall in the
same branch of the tree (e, and X in Figure 1).

As itis already known, a DFS (depth-first search) tree is algseudotree, although
the inverse does not always hold. We thus use as pseudotré&SarBe, generated
through a distributed DFS algorithm. Due to lack of spacecame only sketch this al-
gorithm here. The process is started from the root, and tdespass messages to their
neighbors, adding themselves in the context of these mess¥¢henever a node re-
ceives a message from a neighbor, with itself in the contegt) pseudo parent/pseudo
child relationships are established, otherwise pareitd/chlationships. The result of
this algorithm is that all nodes consistently label eaclepts parent/child or pseudo-
parent/pseudochild.

Original problem DFS from X, Pseudotree arrangement
—_—

XD o FoOCD \
) 3

a (4=}

Fig. 1. A problem graph and one of its possible rooted DFS trees.

Figure 1 shows an example of a pseudotree that we shall efier the rest of
this paper. It consists dfee edgesshown as solid lines, ansack edgesshown as
dashed lines, that are not part of the DFS tree. We call a patieigraph that is entirely
made of tree edgestree-path A tree-path associated with a back-edgé¢he tree-path
connecting the two nodes involved in the back-edge (suabespath is always unique,
and included in a branch of the tree). For each back-edgdigier node involved in
that back-edge is called theck-edge handlerBEH (e.g. 0, 1, 8).

We define the following elements (refer to Figure 1):

Definition 3. P(X) - the parent of a nod&: the single node on a higher level of the
pseudotree that is connected to the nddelirectly through a tree edge (e.&(X4) =
X5). C(X) - the children of a nodeX: the set of nodes lower in the pseudotree that
are connected to the nodg directly through tree edges (e.¢\(X1) = {X2, X5}).
PP(X) - the pseudo-parents of a nod& the set of nodes higher in the pseudotree that
are connected to the nod€ directly through back-edgePP(X4) = {X1}). PC(X)

- the pseudo-children of a nod¥: the set of nodes lower in the pseudotree that are
connected to the nod¥ directly through back-edges (e BC(Xy) = { X5, X12}).

3.2 Bottom-upUTIL propagation

Definition 4. UTIL{ - the UTIL message sent by ageki{ to agentX;; this is a
multidimensional matrix, with one dimension for each vakapresent in the con-
text. dim(UTIL!) - the whole set of dimensions (variables) of the message
dim(UTIL{) always). The semantics of such a message is similar to ay relation
having as scope the variables in the context of this messadirhensions). The size
of such a message is the product of the domain sizes of treblesifrom the context.

Definition 5. The® operator (join):UTILZ &) UTIL% is the join of two UTIL matri-

ces. This is also a matrix withim(UTIL?) Udim(UTIL],) as dimensions. The value
of each cell in the join is the sum of the corresponding celthée two source matrices.

The semantics of this operation is the creation of a newiogldtetween the union of
the variables, equivalent to the two relations.

Definition 6. The_L operator (projection): ifX, € dim(UTIL)), UTIL! L, isthe
projection through optimization of tHéTILz matrix along theX}, axis: for each tuple
of variables in{dim(UTIL}) \ X,}, all the corresponding values froBiT'IL? (one
for each value ofX}) are tried, and the best one is chosen. The result is a maithkx w
one less dimensionX().

This projection has the semantics of a precomputation obfitenal utility achieved
with the optimal values o, for each instantiation of the other variables. It can also
be seen as eliminating variab;, and producing a new relation on the rest of the
variables.

The UTIL propagation starts bottom-up from the leaves and propsggteo the
root only through tree edges. The leaf nodes initiate thie@ss, and then each node
X, relays these messages only to its parent:

— Wait for UTIL messages from all children. Perform join, project self duhe join
and send the result to the parent.

— If root node,X; receives all itdJTIL messages as vectors with a single dimension,
itself. It can then compute the optimal overall utility cesponding to each one of
its values (by joining all the incoming TIL messages) and pick the optimal value
for itself (project itself out).

Top down UTIL propagation After the bottom-up propagation, the root has global in-
formation, but all other nodes have accutdfL information only about their subtrees.
We extend th&JTIL propagation by making itnifornt now it also goes top-down, from
each node to its children. NTIL message from a parent to its child summarizes the
utility information from all the problem except the subti&fehat child.

If a node joins all the messages received from all its treghimrs (parent and
children), then that node obtains a global view of the systbos becoming logically
equivalent to the root. Projecting everything out (itsalfluded) of this join gives the
optimal value in the overall optimal solution.

The process is initiated by the root. Ea&h (root included) computes for each of
its childrenX; aUTIL] message. The computation is similar to the bottom-up one:
UTIL messages from all neighbors except the respective chilgbared, projections
are applied, and the message is send to the child.

3.3 VALUE propagation

The VALUE phase is a top-down propagation phase, initiated by theafoet receiv-
ing all UTIL messages. Based on thdd&lL messages, the root assigns itself the
optimal value that maximizes the sum of utility of all its stges (overall utility).
Then it announces its decision to its children and pseuttirelni by sending them a
VALUE(X,; < v}) message.

Upon receipt of the/ALUE message from its parent, each node is able to pick
the optimal value for itself in a similar fashion, and thentmturn, send itSYALUE
messages. When tMALUE propagation reaches the leaves, all variables in the proble
are instantiated to their optimal values, and the algorittnminates.

Algorithm 1: DPOP - distributed pseudotree optimization procedure.
DPOP(X, D, C, R): each agenK; does:
Construct DFS tree after completionX; knowsP(z), PP(i), C(i), PC(3)

Bottom-up UTIL propagation protocol
wait for UTIL messagesX, UTIL},) from all childrenX;, € C (i)

P@) _ i c

JOIN; ™ = ((@cec@) UTILc) ® (EBce{P(i)uPP(i)} Rz))
if X is rootthen startVALUE propagation, and top-dowdTIL propagation
eIsecomputeUTIL;}ff) = JOIN]" 1, and send it to P(i)
Top-down UTIL propagation protocol
5 foreach X € C(X;) do computeUTIL¥ and send it taX,

VALUE propagation protocol
6 get and store imgent_view all VALUE messagesXy < vy)
7 v} «— argmazx, (JOIN;_(” [U(P(i)),v(PP(i))])
8 SendVALUE(X; «— v;) to all C'(¢) and PC(7)

A WN P

4 VCG-based incentive compatible optimization protocol

We now consider that the ageMs € A are self interested, and thus will try to adjust
their declarations such that they obtain beneficial maaipuris of the optimization
process.

It was shown in [6] that the only possible incentive compatibechanism for opti-
mization is of the form of a VCG mechanism ([13, 1, 7]). Ephaatd Rosenschein show
in [3] for the first time how Clarke taxes can be used in mukti@gsystems for coordi-
nation problems in a way that induces incentive compatyblMe show in the following
how to compute the Clarke taxes in a distributed fashion paesent a modified version
of the DPOP algorithm that induces incentive compatibility.

Notice that sincdDPOP is a complete algorithm, it does not suffer from the non-
truthfulness problem of approximate methods, as shown lsaiNand Ronen in [9].

To be able to compute the Clarke taxes, we need a mechanismsytgtamatically
leaves out an agent from the optimization process througtheuwhole problem. We
achieve this by simply including into each UTIL message thatels through the sys-
tem, a corresponding part for each of the agentd.iNamely, al/T/ L] message sent
by agentX;; to X is the union of "UTIL? (A;)* messages andiiTIL? (—A;) mes-
sages (one for each agety). The complexity of this scheme is th2ign x O(DPOP),
wheren = |A|. A messagd/TIL!(A;)* is equivalent to a normdl'TIL] message,
but is computed by aggregating only the utility ageitobtains in the optimal solu-
tion. A messagé/T'IL](—A;) is equivalent to the utility of all agents bul;, and is
computed by aggregating the utility of all agents excéptin the solution obtained by
systematically ignoringl,’s relations.

When all propagations are completed, all ageXifsare able to compute the VCG
taxes for all agentsl;. They do this as detailed in Algorithm 2, lines 8-13. In wqrds

Algorithm 2: Truthful Distributed VCG-based optimization procedure.
ICDPOP(A, X, D, C, R)- changes from DPOP:
UTIL Propagation()

wait for UTIL messagesX, UTILE) from all childrenX;, € C(i)
foreach A; € Ado

2 JOINF (A4))" = (@CEQ UTIL@(AZ)*) @ (@Cemupm RS(A) @ Cf)
3 | JOINP (—A) = (o, UTILU=A))&(Decp, pryy RI(AN A) & CF)
4 | UTILFW(A)* = JOINS P (A)* Lx,
UTILY W (—4;) = JOINFD (= A)) Ly,
end

6 sendUT'I L message to pareitiT1L] =, {UTIL] " (A)*, UTIL™ (A1)}
7 when lastUTIL message arrives (frolf(X;)), execute Computéaxes()

=

Compute_taxes()
foreach 4; € A do
8 JOIN(A)" = &x, ETreeNeighbors(X,i)UTIL;‘ (A;)™ (see section 3.2)
9 JOIN(—Ap) = @xjeTreeNeighbom(xi)UTIL;'-(Az)*A’" (see section 3.2)
10 | UTIL(A)* = JOIN(A)* Lx
11 | UTIL(—An)=JOIN(-Ay) Lx
12 | TAX(A) =UTIL(—-A) = Y5, ,a UTIL(Ap)"
13 | cashinTAXA0D from 4,

end

the tax that4; has to pay equals the difference between the utility of theraagents in
the solution wher; is not present, and their utility whe#y, is present.

We imagine that the agenfs; can split up between themselves the amount of tax
that they collect from the agent;, in order to cover their costs for running the opti-
mization process. Because the taxes are computed in ddtstlifashion, and all agents
X compute and receive the safiel X (A;)/m from the agentsd; it is more difficult
for an agentX; to simply claim exaggerated taxes from the agehtsAlternatively, the
tax can be wasted ([3] shows that it must not return to thetagérotherwise incentive
compatibility is broken).

The resulting algorithm is described in Algorithm 2. TWRLUE phase is the same
(as in DPOP, the optimal solution is chosen).

5 Budget balanced VCG-based distributed optimization

As it was already shown in game theory ([6, 8]), all mechasispplied to general
social choice problems that generate optimal outcomes nagst VCG-like tax, and
cannot be budget balanced.

This poses sometimes a problem, since the collected taxreatecundesired in-
centives for the entity collecting it (an auctioneer wiltrimduce false bids to drive up
the prices, a power plant operator will create artificialrtfiges, etc.) In our case, the
agentsY have the incentive to manipulate the optimization suchblatsolutions are

obtained when all the agent$ are present, and good solutions are obtained when in-
dividual agents4; are left out. The differences in utility translate into VC&xeés that
they may collect afterwards. This problem can be solveceeitly throwing away the
tax (utility is wasted), or by designing a budget balancdtbste that generates no tax
surplus. Either one of these alternatives ensatgsrithm faithfulnessas defined by
Shneidman and Parkes in [12], because the ag€érds not have any interest to cheat
anymore.

It has been shown in [4] that if one renounces Pareto optiyn@iiot necessarily
optimal solutions are generated), then it is possible te labudget-balanced, incen-
tive compatible protocol that generally generates goodt&uwis. The basic idea is to
randomly leave one agent out of the optimization processnaake the others pay their
taxes to the one which was left out. The mechanism is obwdusdget balanced, since
the taxes are paid between the agents, but it is no longetdPapémal, because the
solution obtained in the end is not the optimal one (the ieiatof the excluded agent
were left out of the optimization). It was shown in [4] thagétimechanism is also incen-
tive compatible and individually rational. The solutiormifhd are good overall, since
only a single agent is excluded from the optimization. Athe, excluded agent gets the
tax surplus from the other agents as a compensation for gglpe loss that it incurred
by not having its relations included in the optimization.

We adapt this idea to our case by having the notleselect randomly an agenit;
who is going to be left out of the optimization process. Ttds de done at the same
time as choosing the root of the DFS tree, using a similar emgisim. Alternatively, the
agentsA themselves can select one of them to be excluded. Subsgqadirihe UTIL
propagations are performed ignoridg's relations.

The process is similar to the previous one applied to a proktat does not include
A,. The differences frodCDPOP are listed in Algorithm 3. The solution obtained
now is the optimum ford \ A;. Also, the taxes computed by the new algorithm are
not collected byt anymore, but by4;. Thus, the agent&” do not have any interest to
manipulate the process anymore. This holds unless cofiugith a subset of agent4;
is possible. Collusion is a well-known problem of the VCG,tsa here we assume it is
prevented by an external mechanism.

Algorithm 3: Budget balanced distributed incentive compatible opétn.
BBICDPOP(A, X, D, C, R)- changes from ICDPOP, when agety is excluded:

UTIL Propagation()

1 computelUTTL msgsUTIL =, o {UTIL " (A)", UTIL] (= A1, Ay)}

Compute_taxes()
foreach A; € {A\ A} do

2 TAX(A[) = UT[L(*A[, Ak) — ZAm#AL,Ak UTIL(Am)*(*Ak)
3 instructA; to pay 74X 1o 4,
end

6 Experimental evaluation

We experimented with distributed meeting scheduling motd. These problems can
be thought of as social choice problems if we have on one haed af agentsA who
want to schedule meetings, and on the other hand a set ofsatjemto will host these
meetings. The COP model of such problems consists of a Wadabeach meeting,
denoting its start time. There are inequality constraietsveen the meetings that share
a participant (an agemt; cannot participate in 2 meetings simultaneously). The &gen
A have preferences about the starting time of each meetiygpédmticipate in, stated
through unary constraints on the respective variables.

Random meetings are generated, each with a certain utiitedch agent. The
agentsY try to find the schedule that maximizes the overall utility iee agentsA.

Table 1 shows how our algorithm scales up with the size of ttoblpms. The
columns denote (in orden)4| is the number of self interested agen#s| is the number
of public decision variables, then the width of the resgltimoblems, the total number
of messages sent during the algorithm, the maximal messagdos simpleDPOP,
and the maximal message size for the VCG bd3eOP.

As expected, we notice that the complexity increases atvasslimensions: first
the complexity of the underlying optimization problem (givby the induced width),
and second, the number of self interested agents. The depesndf the complexity on
the induced width produces very good results for loose prab| where the interests of
the agents4 are relatively decoupled. In these cases, where not alltsgeare inter-
ested in all public variable&’, the resulting problems are loose, and easy to solve by
the agentsY. The second complexity dimension can be observed by congpadn-
secutive rows that have the same induced width, but differembers of self interested
agents, e.g: rows 20-30, 56-70 and 80-100.

In any case, the fact that the algorithm produces a lineabenaf messages (even if
they are big) is a great advantage in a distributed systermrendnlarge number of small
messages produce important overheads. For example, addgky based algorithm
like a distributed branch and bound or ADOPT explore sedqakiyne large number of
states, and produce an exponential number of small mesddgess why we think that
a dynamic programming approach likiPOPis better suited for optimization tasks in
distributed environments.

Agents (A|)|Meetings (X|)|Width|Messagedax size(DPOPMax size(ICDPOR)
10 4 2 24 64 1280
20 5 3 33 512 20480
30 14 3 95 512 30720
40 15 4 109 4096 320K
56 27 5 201 32768 3.5M
70 34 5 267 32768 4.375M
80 41 6 324 262144 40M
100 50 6 373 262144 50M

Table 1. Evaluation on distributed meeting scheduling problems.

7

Conclusions and future work

We presented an incentive-compatible distributed opttion method, that computes
and collects VCG taxes in a distributed fashion. We alsogmiea budget-balanced
extension of this method, that sacrifices Pareto-optigalihis eliminates unwanted
incentives for the problem solving agents. We believe thigtdynamic programming
approach is a very good choice for multiagent systems, &djyewhen the underlying

problems are loosly connected.

As future work, we consider using approximate version®BOP to deal with

difficult optimization problems, and computational conxitie to counter the loss of
incentive compatibility.

References

[EnY

~

10.

11.

12.

13.

. Edward H. Clarke. Multipart pricing of public goodBublic Choice 18:19-33, 1971.
. Rina Dechter. Bucket elimination: A unifying framework for proéegshard and soft con-

straints.Constraints: An International Journa¥(2):51-55, 1997.

. E.Ephrati and J.S. Rosenschein. The Clarke tax as a conseeshiamsm among automated

agents. IrProceedings of the National Conference on Artificial Intelligence, A%A\bages
173-178, Anaheim, CA, July 1991.

. Boi Faltings. A budget-balanced, incentive-compatible schemeofoalschoice. InwWork-

shop on Agent-mediated E-commerce (AMEC)Sgringer Lecture Notes in Computer Sci-
ence, 2004.

. Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechdeisign: Recent

results and future directions. Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communicatipages 1-13. ACM
Press, New York, 2002.

. J. Green and J.J. Laffont. Incentives in public decision mal@tgdies in public economics

1,1979.

. Theodore Groves. Incentives in tearBsonometrica41(4):617-31, 1973.
. R.B. Myerson and M.A. Satterthwaite. Efficient mechanisms for dateading. Journal

of Economic Theory29:265-281, 1983.

. Noam Nisan and Amir Ronen. Computationally feasible VCG mechanismsCM Con-

ference on Electronic Commerqeages 242-252, 2000.

David C. Parkes and Jeffrey Shneidman. Distributed implementatfoviiekrey-Clarke-
Groves mechanisms. Proceedings of the International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS:-@4pes 261-268, New York, USA, 2004.
Adrian Petcu and Boi Faltings. A scalable method for multiagent ainstiptimization. In
Proceedings of the 19th International Joint Conference on Atrtificialligence, IJCAI-05
Edinburgh, Scotland, Aug 2005.

Jeffrey Shneidman and David C. Parkes. Specification faithf&iinesetworks with ratio-

nal nodes. IrProc. of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC'04)

William Vickrey. Counterspeculation, auctions, and competitive seaiteters The Journal

of Finance 16(1):8—-37, 1961.

