
Incentive Compatible Multiagent Constraint
Optimization

Adrian Petcu1 and Boi Faltings1

Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
{adrian.petcu, boi.faltings}@epfl.ch

http://liawww.epfl.ch

Abstract. We present in this paper an incentive-compatible distributed optimiza-
tion method applied to social choice problems. The method works by computing
and collecting VCG taxes in a distributed fashion. This introduces a certain re-
silience to manipulation from the problem solving agents. An extension of this
method sacrifices Pareto-optimality in favor of budget-balance: the solutions cho-
sen are not optimal anymore, but the advantage is that the self interestedagents
pay the taxes between themselves, thus producing no tax surplus. This eliminates
unwanted incentives for the problem solving agents, ensuring their faithfulness.

1 Introduction

In this paper we concentrate on social choice problems, which are ubiquitous in our so-
ciety. Typically, such problems include a set of public entities, that take some decisions
based on the preferences expressed by a set of (private) agents. The goal is to adopt the
set of decisions that best match the preferences expressed by the private agents, possibly
subject to a set of feasibility constraints.

In systems with self interested agents, it is often a problemto guarantee optimal
outcomes because each agent may have the incentive to manipulate the system in a
way that is profitable to itself. Such manipulations steer the final outcome away from a
global optimum which is otherwise achievable.

The VCG tax mechanism is a way to ensure that the agents in the system are always
better off by declaring their true preferences, thus allowing for the optimal outcome to
be chosen. The mechanism works by fining the participating agents with taxes which
are proportional to the damage that they cause to others. Thus, the agents do not have
an incentive to understate their valuations because the outcome chosen would not be
the best for them, and do not overstate because that would induce a high amount of tax
they would have to pay for hurting the others.

Traditionally, such mechanisms have been studied and applied in centralized sys-
tems. Feigenbaum and Shenker started in [5] a new line of research in Distributed
Algorithmic Mechanism Design (DAMD). DAMD is a fusion of the more traditional
algorithmic-oriented AI and the recent interest in distributed computing and incentive
compatibility in multiagent environments. They focus on multicast cost sharing and in-
terdomain routing problems. This work is similar in spirit with theirs, but our focus is
on constraint optimization applied to public decision problems.

Parkes and Shneidman present in [10] an approach for incentive compatible dis-
tributed computation. The goal in their approach is to distribute the computation to
the self interested agents themselves, and take the computational burden off the center.
They use VCG taxes to makefaithfulness(see also [12]) an ex-post Nash equilibrium:
the agents have the incentive to execute the correct algorithm, without manipulation.
Their approach requires the presence of a center that selects an outcome, enforces it,
and collects taxes. Trusted channels between the center andthe agents are required such
that the agents report their types to the center.

In our approach both the optimization itself, and the computation of VCG taxes are
done in a distributed fashion by the agents controlling the public decision variables.
We present also a budget balanced extension of the algorithmthat eliminates all inter-
est of the problem solving agents (public entities) in the problem, therefore ensuring
faithfulness in the sense of [12].

In the following, we present in Section 2 some definitions andnotation, in Section 3
the basic optimization algorithm that will be used in this paper, and in Section 4 a VCG-
based extension of the basic optimization method. Section 5presents a randomized
algorithm that is budget balanced. Section 6 presents experimental results on meeting
scheduling problems, and Section 7 concludes.

2 Definitions & Notation

Definition 1. A discretemultiagent constraint optimization problem(MCOP) is a tuple
< A,X ,D, C,R > such that:
A = {A1, ..., An} is a set of selfish agents interested in the optimization problem;
X = {X1, ...,Xm} is the set of public decision variables/solving agents;
D = {d1, ..., dm} is a set of finite domains of the variablesX .
C = {c1, ..., cq} is a set of constraints, where a constraintci is a functionci :

di1 × ..× dik → {−∞, 0} that returns 0 for all allowed combinations of values of the
involved variables, and−∞ for disallowed ones.
R = {r1, ..., rp} is a set of relations, where a relationrj

i is a functiondi1 × .. ×
dik → R specified by agentAj which denotes how much utilityAj assigns to each
possible combination of values of the involved variables (negative values can be thought
of as costs).Rj is the set of relations specified by agentAj .

This framework allowes us to model social choice-like problems, where a set of
”public” agentsX jointly choose an overall optimal outcome out of a set of possi-
ble solutions. The feasibility of a solution is decided by the constraints inC, which
are domain dependent, and are imposed by the agentsX . The choice between sev-
eral feasible solutions is made according to the preferences of the ”private” agents
A, stated through the relationsR. Formally, the optimal solution to such an opti-
mization problem is a complete instantiationX∗ of all variables inX , s.t. X∗ =
argmaxX(

∑
ri∈R

ri(X) +
∑

ci∈C
ci(X)), where the values ofri andci are their cor-

responding values for the particular instantiationX. Notice that the second sum is either
−∞ if X is an infeasible assignment, or 0 if it is feasible. We restrict our attention to
problems that have feasible solutions. Notice that simply maximizing utility is sufficient

to find the optimal, feasible solution, since if any of the constraints inC are unsatisfied,
the resulting overall utility is−∞.

In this paper we deal with unary and binary relations, being well known that higher
arity relations can also be expressed in these terms with little modifications.

This framework is similar to a weighted CSP framework where we allow both posi-
tive and negative costs and we do utility maximization as opposed to cost minimization.

3 DPOP: a dynamic programming algorithm for MCOP

Each agentAi ∈ A has a set of preferences on the outcome of the optimization prob-
lem, expressed by the set of relationsRi ⊂ R. The agentsA declare their relations
to the agents inX concerned by those relations. Afterwards, the agentsXi execute a
distributed optimization procedure yielding an assignment X ∗ of the variablesXi that
maximizes the overall utility for the agentsA∗.

The optimization algorithm of choice isDPOP ([11]). DPOP is an instance of the
general bucket elimination scheme from [2], which is adapted for the distributed case,
and uses a DFS traversal of the problem graph as an ordering.

For now, we assume the agentsA declare their relationstruthfully, thereforeDPOP
produces the correct optimal solution. In Section 4 we adaptthe VCG mechanism to
DPOPto ensure truthfulness.

DPOPhas 3 phases. In the first phase (see Section 3.1), the pseudotree structure is
established. One node is chosen among the nodes fromX , and a custom distributed DFS
algorithm is initiated from that node. The second phase (seesection 3.2) is a bottom-up
utility propagation, and the third phase (see section 3.3) is a top-down value assignment
propagation. A formal description (pseudocode) can be found at the end of section 3.3.

It has been proved in [11] thatDPOP produces a linear number of messages. Its
complexity lies in the size of theUTIL messages (theVALUE messages have linear
size). The largestUTIL message produced by Algorithm 1 is space-exponential in the
width of the pseudotree induced by the DFS ordering used.

3.1 Pseudotrees

Definition 2. A pseudo-tree arrangement of a graph G is a rooted tree with the same
nodes as G and the property that adjacent nodes from the original graph fall in the
same branch of the tree (e.g.X0 andX12 in Figure 1).

As it is already known, a DFS (depth-first search) tree is alsoa pseudotree, although
the inverse does not always hold. We thus use as pseudotree a DFS tree, generated
through a distributed DFS algorithm. Due to lack of space, wecan only sketch this al-
gorithm here. The process is started from the root, and the nodes pass messages to their
neighbors, adding themselves in the context of these messages. Whenever a node re-
ceives a message from a neighbor, with itself in the context,then pseudo parent/pseudo
child relationships are established, otherwise parent/child relationships. The result of
this algorithm is that all nodes consistently label each other as parent/child or pseudo-
parent/pseudochild.

Fig. 1.A problem graph and one of its possible rooted DFS trees.

Figure 1 shows an example of a pseudotree that we shall refer to in the rest of
this paper. It consists oftree edges, shown as solid lines, andback edges, shown as
dashed lines, that are not part of the DFS tree. We call a path in the graph that is entirely
made of tree edges, atree-path. A tree-path associated with a back-edgeis the tree-path
connecting the two nodes involved in the back-edge (such a tree path is always unique,
and included in a branch of the tree). For each back-edge, thehigher node involved in
that back-edge is called theback-edge handler- BEH (e.g. 0, 1, 8).

We define the following elements (refer to Figure 1):

Definition 3. P(X) - the parent of a nodeX: the single node on a higher level of the
pseudotree that is connected to the nodeX directly through a tree edge (e.g.P (X4) =
X2). C(X) - the children of a nodeX: the set of nodes lower in the pseudotree that
are connected to the nodeX directly through tree edges (e.g.C(X1) = {X2,X5}).
PP(X) - the pseudo-parents of a nodeX: the set of nodes higher in the pseudotree that
are connected to the nodeX directly through back-edges (PP (X4) = {X1}). PC(X)
- the pseudo-children of a nodeX: the set of nodes lower in the pseudotree that are
connected to the nodeX directly through back-edges (e.g.PC(X0) = {X5,X12}).

3.2 Bottom-upUTIL propagation

Definition 4. UTILj
i - the UTIL message sent by agentXi to agentXj ; this is a

multidimensional matrix, with one dimension for each variable present in the con-
text. dim(UTILj

i) - the whole set of dimensions (variables) of the message (Xj ∈

dim(UTILj
i) always). The semantics of such a message is similar to an n-ary relation

having as scope the variables in the context of this message (its dimensions). The size
of such a message is the product of the domain sizes of the variables from the context.

Definition 5. The⊕ operator (join):UTILj
i ⊕ UTILj

k is the join of two UTIL matri-
ces. This is also a matrix withdim(UTILj

i)∪ dim(UTILj
k) as dimensions. The value

of each cell in the join is the sum of the corresponding cells in the two source matrices.

The semantics of this operation is the creation of a new relation between the union of
the variables, equivalent to the two relations.

Definition 6. The⊥ operator (projection): ifXk ∈ dim(UTILj
i), UTILj

i ⊥Xk
is the

projection through optimization of theUTILj
i matrix along theXk axis: for each tuple

of variables in{dim(UTILj
i) \Xk}, all the corresponding values fromUTILj

i (one
for each value ofXk) are tried, and the best one is chosen. The result is a matrix with
one less dimension (Xk).

This projection has the semantics of a precomputation of theoptimal utility achieved
with the optimal values ofXk, for each instantiation of the other variables. It can also
be seen as eliminating variableXk and producing a new relation on the rest of the
variables.

The UTIL propagation starts bottom-up from the leaves and propagates up to the
root only through tree edges. The leaf nodes initiate this process, and then each node
Xi relays these messages only to its parent:

– Wait for UTIL messages from all children. Perform join, project self out of the join
and send the result to the parent.

– If root node,Xi receives all itsUTIL messages as vectors with a single dimension,
itself. It can then compute the optimal overall utility corresponding to each one of
its values (by joining all the incomingUTIL messages) and pick the optimal value
for itself (project itself out).

Top down UTIL propagation After the bottom-up propagation, the root has global in-
formation, but all other nodes have accurateUTIL information only about their subtrees.
We extend theUTIL propagation by making ituniform: now it also goes top-down, from
each node to its children. AUTIL message from a parent to its child summarizes the
utility information from all the problem except the subtreeof that child.

If a node joins all the messages received from all its tree neighbors (parent and
children), then that node obtains a global view of the system, thus becoming logically
equivalent to the root. Projecting everything out (itself included) of this join gives the
optimal value in the overall optimal solution.

The process is initiated by the root. EachXi (root included) computes for each of
its childrenXj a UTILj

i message. The computation is similar to the bottom-up one:
UTIL messages from all neighbors except the respective child arejoined, projections
are applied, and the message is send to the child.

3.3 VALUE propagation

TheVALUE phase is a top-down propagation phase, initiated by the rootafter receiv-
ing all UTIL messages. Based on theseUTIL messages, the root assigns itself the
optimal value that maximizes the sum of utility of all its subtrees (overall utility).
Then it announces its decision to its children and pseudochildren by sending them a
VALUE(Xi ← v∗

i) message.
Upon receipt of theVALUE message from its parent, each node is able to pick

the optimal value for itself in a similar fashion, and then inits turn, send itsVALUE
messages. When theVALUEpropagation reaches the leaves, all variables in the problem
are instantiated to their optimal values, and the algorithmterminates.

Algorithm 1: DPOP - distributed pseudotree optimization procedure.
DPOP(X ,D, C,R): each agentXi does:

Construct DFS tree; after completion,Xi knowsP (i), PP (i), C(i), PC(i)

Bottom-up UTIL propagation protocol
1 wait for UTIL messages (Xk, UTILi

k) from all childrenXk ∈ C(i)

2 JOIN
P (i)
i =

““

L

c∈C(i) UTILi
c

”

⊕
“

L

c∈{P (i)∪PP (i)} Rc
i

””

3 if Xi is root then startVALUEpropagation, and top-downUTIL propagation
4 elsecomputeUTIL

P (i)
Xi

= JOIN
P (i)
i ⊥Xi

and send it to P(i)

Top-down UTIL propagation protocol
5 foreachXk ∈ C(Xi) do computeUTILk

i and send it toXk

VALUE propagation protocol
6 get and store inagent view all VALUEmessages (Xk ← v∗

k)

7 v∗
i ← argmaxXi

“

JOIN
P (i)
Xi

[v(P (i)), v(PP (i))]
”

8 SendVALUE(Xi ← v∗
i) to all C(i) andPC(i)

4 VCG-based incentive compatible optimization protocol

We now consider that the agentsAi ∈ A are self interested, and thus will try to adjust
their declarations such that they obtain beneficial manipulations of the optimization
process.

It was shown in [6] that the only possible incentive compatible mechanism for opti-
mization is of the form of a VCG mechanism ([13, 1, 7]). Ephrati and Rosenschein show
in [3] for the first time how Clarke taxes can be used in multiagent systems for coordi-
nation problems in a way that induces incentive compatibility. We show in the following
how to compute the Clarke taxes in a distributed fashion, andpresent a modified version
of theDPOPalgorithm that induces incentive compatibility.

Notice that sinceDPOP is a complete algorithm, it does not suffer from the non-
truthfulness problem of approximate methods, as shown by Nisan and Ronen in [9].

To be able to compute the Clarke taxes, we need a mechanism that systematically
leaves out an agent from the optimization process throughout the whole problem. We
achieve this by simply including into each UTIL message thattravels through the sys-
tem, a corresponding part for each of the agents inA. Namely, aUTILj

i message sent
by agentXi to Xj is the union of nUTILj

i (Al)
∗ messages and nUTILj

i (−Al) mes-
sages (one for each agentAl). The complexity of this scheme is thus2×n×O(DPOP),
wheren = |A|. A messageUTILj

i (Al)
∗ is equivalent to a normalUTILj

i message,
but is computed by aggregating only the utility agentAl obtains in the optimal solu-
tion. A messageUTILj

i (−Al) is equivalent to the utility of all agents butAl, and is
computed by aggregating the utility of all agents exceptAl, in the solution obtained by
systematically ignoringAl’s relations.

When all propagations are completed, all agentsXi are able to compute the VCG
taxes for all agentsAl. They do this as detailed in Algorithm 2, lines 8-13. In words,

Algorithm 2: Truthful Distributed VCG-based optimization procedure.
ICDPOP(A,X ,D, C,R)- changes from DPOP:

UTIL Propagation()
1 wait for UTIL messages (Xk, UTILi

k) from all childrenXk ∈ C(i)
foreachAl ∈ A do

2 JOIN
Pi
i (Al)

∗ =
“

L

c∈Ci
UTILi

c(Al)
∗
”

⊕
“

L

c∈{Pi∪PPi}
Rc

i (Al)⊕ Cc
i

”

3 JOIN
Pi
i (−Al) =

“

L

c∈Ci
UTILi

c(−Al)
”

⊕
“

L

c∈{Pi,PPi}
Rc

i (A \Al)⊕ Cc
i

”

4 UTIL
P (i)
i (Al)

∗ = JOIN
P (i)
i (Al)

∗ ⊥Xi

5 UTIL
P (i)
i (−Al) = JOIN

P (i)
i (−Al) ⊥Xi

end
6 sendUTIL message to parent,UTIL

j
i =

S

Al
{UTIL

P (i)
i (Al)

∗, UTIL
P (i)
i (−Al)}

7 when lastUTIL message arrives (fromP (Xi)), execute Computetaxes()

Compute taxes()
foreachAl ∈ A do

8 JOIN(Al)
∗ = ⊕Xj∈TreeNeighbors(Xi)UTILi

j(Al)
∗ (see section 3.2)

9 JOIN(−Am) = ⊕Xj∈TreeNeighbors(Xi)UTILi
j(Al)

−Am (see section 3.2)
10 UTIL(Al)

∗ = JOIN(Al)
∗ ⊥X

11 UTIL(−Am) = JOIN(−Am) ⊥X

12 TAX(Al) = UTIL(−Al)−
P

Am 6=Al
UTIL(Am)∗

13 cash inTAX(Al)
m

from Al

end

the tax thatAl has to pay equals the difference between the utility of the other agents in
the solution whenAl is not present, and their utility whenAl is present.

We imagine that the agentsXi can split up between themselves the amount of tax
that they collect from the agentsAl, in order to cover their costs for running the opti-
mization process. Because the taxes are computed in a distributed fashion, and all agents
X compute and receive the sameTAX(Ai)/m from the agentsAi it is more difficult
for an agentXj to simply claim exaggerated taxes from the agentsAi. Alternatively, the
tax can be wasted ([3] shows that it must not return to the agentsA, otherwise incentive
compatibility is broken).

The resulting algorithm is described in Algorithm 2. TheVALUEphase is the same
(as in DPOP, the optimal solution is chosen).

5 Budget balanced VCG-based distributed optimization

As it was already shown in game theory ([6, 8]), all mechanisms applied to general
social choice problems that generate optimal outcomes mustuse a VCG-like tax, and
cannot be budget balanced.

This poses sometimes a problem, since the collected tax can create undesired in-
centives for the entity collecting it (an auctioneer will introduce false bids to drive up
the prices, a power plant operator will create artificial shortages, etc.) In our case, the
agentsX have the incentive to manipulate the optimization such thatbad solutions are

obtained when all the agentsA are present, and good solutions are obtained when in-
dividual agentsAi are left out. The differences in utility translate into VCG taxes that
they may collect afterwards. This problem can be solved either by throwing away the
tax (utility is wasted), or by designing a budget balanced scheme that generates no tax
surplus. Either one of these alternatives ensuresalgorithm faithfulnessas defined by
Shneidman and Parkes in [12], because the agentsX do not have any interest to cheat
anymore.

It has been shown in [4] that if one renounces Pareto optimality (not necessarily
optimal solutions are generated), then it is possible to have a budget-balanced, incen-
tive compatible protocol that generally generates good solutions. The basic idea is to
randomly leave one agent out of the optimization process, and make the others pay their
taxes to the one which was left out. The mechanism is obviously budget balanced, since
the taxes are paid between the agents, but it is no longer Pareto optimal, because the
solution obtained in the end is not the optimal one (the relations of the excluded agent
were left out of the optimization). It was shown in [4] that the mechanism is also incen-
tive compatible and individually rational. The solutions found are good overall, since
only a single agent is excluded from the optimization. Also,the excluded agent gets the
tax surplus from the other agents as a compensation for the possible loss that it incurred
by not having its relations included in the optimization.

We adapt this idea to our case by having the nodesX select randomly an agentAi

who is going to be left out of the optimization process. This can be done at the same
time as choosing the root of the DFS tree, using a similar mechanism. Alternatively, the
agentsA themselves can select one of them to be excluded. Subsequently, all theUTIL
propagations are performed ignoringAi’s relations.

The process is similar to the previous one applied to a problem that does not include
Ai. The differences fromICDPOP are listed in Algorithm 3. The solution obtained
now is the optimum forA \ Ai. Also, the taxes computed by the new algorithm are
not collected byX anymore, but byAi. Thus, the agentsX do not have any interest to
manipulate the process anymore. This holds unless collusion with a subset of agentsAi

is possible. Collusion is a well-known problem of the VCG tax, so here we assume it is
prevented by an external mechanism.

Algorithm 3: Budget balanced distributed incentive compatible optimization.
BBICDPOP(A,X ,D, C,R)- changes from ICDPOP, when agentAk is excluded:

UTIL Propagation()
...

1 computeUTIL msgs:UTIL =
S

Al 6=Ak
{UTIL

P (i)
i (Al)

∗, UTIL
P (i)
i (−Al, Ak)}

Compute taxes()
foreachAl ∈ {A \Ak} do

...

2 TAX(Al) = UTIL(−Al, Ak)−
P

Am 6=Al,Ak
UTIL(Am)∗(−Ak)

3 instructAl to pay TAX(Al)
m

to Ak

end

6 Experimental evaluation

We experimented with distributed meeting scheduling problems. These problems can
be thought of as social choice problems if we have on one hand aset of agentsA who
want to schedule meetings, and on the other hand a set of agentsX who will host these
meetings. The COP model of such problems consists of a variable for each meeting,
denoting its start time. There are inequality constraints between the meetings that share
a participant (an agentAi cannot participate in 2 meetings simultaneously). The agents
A have preferences about the starting time of each meeting they participate in, stated
through unary constraints on the respective variables.

Random meetings are generated, each with a certain utility for each agent. The
agentsX try to find the schedule that maximizes the overall utility for the agentsA.

Table 1 shows how our algorithm scales up with the size of the problems. The
columns denote (in order):|A| is the number of self interested agents,|X | is the number
of public decision variables, then the width of the resulting problems, the total number
of messages sent during the algorithm, the maximal message size for simpleDPOP,
and the maximal message size for the VCG basedDPOP.

As expected, we notice that the complexity increases acrosstwo dimensions: first
the complexity of the underlying optimization problem (given by the induced width),
and second, the number of self interested agents. The dependence of the complexity on
the induced width produces very good results for loose problems, where the interests of
the agentsA are relatively decoupled. In these cases, where not all agentsA are inter-
ested in all public variablesX , the resulting problems are loose, and easy to solve by
the agentsX . The second complexity dimension can be observed by comparing con-
secutive rows that have the same induced width, but different numbers of self interested
agents, e.g: rows 20-30, 56-70 and 80-100.

In any case, the fact that the algorithm produces a linear number of messages (even if
they are big) is a great advantage in a distributed system, where a large number of small
messages produce important overheads. For example, a backtracking based algorithm
like a distributed branch and bound or ADOPT explore sequentially a large number of
states, and produce an exponential number of small messages. This is why we think that
a dynamic programming approach likeDPOP is better suited for optimization tasks in
distributed environments.

Agents (|A|) Meetings (|X |) Width MessagesMax size(DPOP)Max size(ICDPOP)
10 4 2 24 64 1280
20 5 3 33 512 20480
30 14 3 95 512 30720
40 15 4 109 4096 320K
56 27 5 201 32768 3.5M
70 34 5 267 32768 4.375M
80 41 6 324 262144 40M
100 50 6 373 262144 50M

Table 1.Evaluation on distributed meeting scheduling problems.

7 Conclusions and future work

We presented an incentive-compatible distributed optimization method, that computes
and collects VCG taxes in a distributed fashion. We also present a budget-balanced
extension of this method, that sacrifices Pareto-optimality. This eliminates unwanted
incentives for the problem solving agents. We believe that this dynamic programming
approach is a very good choice for multiagent systems, especially when the underlying
problems are loosly connected.

As future work, we consider using approximate versions ofDPOP to deal with
difficult optimization problems, and computational complexity to counter the loss of
incentive compatibility.

References

1. Edward H. Clarke. Multipart pricing of public goods.Public Choice, 18:19–33, 1971.
2. Rina Dechter. Bucket elimination: A unifying framework for processing hard and soft con-

straints.Constraints: An International Journal, 7(2):51–55, 1997.
3. E. Ephrati and J.S. Rosenschein. The Clarke tax as a consensus mechanism among automated

agents. InProceedings of the National Conference on Artificial Intelligence, AAAI-91, pages
173–178, Anaheim, CA, July 1991.

4. Boi Faltings. A budget-balanced, incentive-compatible scheme for social choice. InWork-
shop on Agent-mediated E-commerce (AMEC) VI. Springer Lecture Notes in Computer Sci-
ence, 2004.

5. Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design: Recent
results and future directions. InProceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, pages 1–13. ACM
Press, New York, 2002.

6. J. Green and J.J. Laffont. Incentives in public decision making.Studies in public economics,
1, 1979.

7. Theodore Groves. Incentives in teams.Econometrica, 41(4):617–31, 1973.
8. R.B. Myerson and M.A. Satterthwaite. Efficient mechanisms for bilateral trading. Journal

of Economic Theory, 29:265–281, 1983.
9. Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms.In ACM Con-

ference on Electronic Commerce, pages 242–252, 2000.
10. David C. Parkes and Jeffrey Shneidman. Distributed implementationsof Vickrey-Clarke-

Groves mechanisms. InProceedings of the International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS-04), pages 261–268, New York, USA, 2004.

11. Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI-05,
Edinburgh, Scotland, Aug 2005.

12. Jeffrey Shneidman and David C. Parkes. Specification faithfulness in networks with ratio-
nal nodes. InProc. of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC’04).

13. William Vickrey. Counterspeculation, auctions, and competitive sealedtenders.The Journal
of Finance, 16(1):8–37, 1961.

