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Abstract. We study a process algebra which combines both nondeter-
ministic and probabilistic behavior in the style of Segala and Lynch’s
simple probabilistic automata. We consider strong bisimulation and ob-
servational equivalence, and provide complete axiomatizations for a lan-
guage that includes parallel composition and (guarded) recursion. The
presence of the parallel composition introduces various technical diffi-
culties and some restrictions are necessary in order to achieve complete
axiomatizations.

1 Introduction

Process algebras, also known as process calculi, are a powerful mathematical
model for the specification and verification of concurrent systems. They provide
a formal apparatus for representing and reasoning about the behaviors of dis-
tributed systems, algorithms and protocols in a compositional way. Some of the
most prominent representants of these formalisms are CCS [27], ACP [8, 6], and
CSP [21].

The axiomatic theories of process algebra provide an elegant way for proving
properties of systems. Both a system and its desired external behavior can be
expressed as process terms. The correctness of the system can then be verified
by proving that these two terms are equivalent.

In a process algebra typically there are only a few operators, such as action
prefix, summation (nondeterministic choice), recursion and parallel composition.
The latter is particularly important for concurrency, as it allows to specify the
structural properties of systems composed of several interacting parts. For exam-
ple, a typical communication protocol for data transferring involves two agents
S and R, representing the sender and the receiver, and two lossy channels K
and L between them (see Figure 1). The behavior of each of these four compo-
nents can be described as a process term in a chosen process algebra, and then
they are all put together in parallel to form the complete view of the protocol.
The parallel composition operator captures both the interleaving behaviors and
the possible synchronization of the components. The external behavior of the
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Fig. 1. A communication protocol

protocol can be specified as a FIFO queue. The equivalence proof between the
protocol and its external behavior is established by equational reasoning based
on axiomatization, hiding internal behavior, using fairness assumption, and the
other feasible methods (see e.g. [9, 17]).

Developing a both complete and sound axiomatization for a chosen bisimu-
lation relation over a process algebra expressing finite-state processes has been a
research focus for the process algebra community. This led to a wealth of classical
results in the literature. Milner [26, 28] gave complete axiomatizations of both
strong bisimilarity and observational equivalence for a core CCS (not containing
the parallel composition operator) with both unguarded and guarded recursion.
Bergstra and Klop [10] axiomatized observational equivalence in an alternative
way by using an interesting graph rewriting technique. Hennessy and Milner [20]
offered a complete equational axiomatization of strong bisimulation over the re-
cursion free fragment of CCS. To deal with parallel composition, they used the
so-called expansion law, which is an equation schema with a countably infinite
number of instances. Bergstra and Klop [8] gave a finite equational axiomati-
zation of the merge operator (as the parallel composition in CCS) using the
auxiliary left merge and communication merge operators. An interesting essay
on equational axiomatizations of parallel composition can be found in [2].

Having both recursion and parallel composition in a process algebra compli-
cates the matters to establish a complete axiomatization, mostly because this
can give rise to infinite-state systems even with the guardedness condition. For
example, let E be the expression µX (a.(X | b)), then we have the infinite transi-
tion graph starting from E in Figure 2. Milner pointed out in [28] that in order to
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Fig. 2. The transition graph of E.
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have a complete axiomatization for CCS with both recursion and parallel com-
position, a sufficient condition is that the parallel composition does not occur in
the body of any recursive expression.

In this paper we relax this restriction by requiring, instead, that free vari-
ables do not appear in the scope of parallel composition. A similar restriction was
adopted, independently, in [5]. In that paper, Baeten and Bravetti considered a
generic process algebra of which CCS, CSP and ACP are subalgebras. Finite-
stateness is achieved by requiring that recursion variables do not occur in the
scope of static operators, which include the parallel composition. Our work and
[5] are, in a sense, incomparable, because we consider a probabilistic and nonde-
terministic framework (as explained in the rest of this introduction) with CCS-
like communication, while [5] considers a purely nondeterministic paradigm, but
more general than our nondeterministic fragment. The same restriction already
appeared in [11], for a nondeterministic process algebra with CSP multiway
synchronization.

Recently there has been an increasing interest in the area of formal meth-
ods for the specification and analysis of probabilistic behaviors, as exhibited
for instance in randomized, distributed and fault-tolerant systems. The notion
of probabilistic bisimulation is introduced first by Larsen and Skou [22]. Later
many variant behavioural equivalences have been defined for various probabilistic
models. A representative model for analyzing probabilistic systems is provided
by Segala and Lynch’s simple probabilistic automata [30], which take into ac-
count both probabilistic and nondeterministic behavior and which have been
successfully adopted in the studies of distributed algorithms [24, 29] and prac-
tical communication protocols [33]. An axiomatization for the finite sequential
fragment of simple probabilistic automata has been provided by Bandini and
Segala in [7]. Following this line of research, Deng and Palamidessi [16, 15] have
given a sound and complete axiomatization for a larger language, which includes
the recursion operator.

In this paper, we improve on [16, 15] by considering also the parallel com-
position. To our knowledge, it is the first time that an axiomatization for a
probabilistic and nondeterministic process algebra with both recursion and par-
allel operator has been attempted. Similar to the case of classical process algebra,
once we have both parallel composition and recursion, the equational axiomati-
zation of strong bisimulation and observational equivalence turns out to be quite
complicated to achieve.

To obtain the completeness of the axiomatizations, we develop a probabilistic
version of the expansion law to eliminate all occurrences of parallel composition.
In order to do that, we heavily rely on the condition that only closed terms are
put in parallel (cf. Theorem 3).

Concerning soundness, it turns out to be particularly difficult to prove that
strong and weak bisimilarities are closed under the parallel composition opera-
tor. Our approach is to manipulate equivalences of distributions on terms. An
important property that we exploit in our proofs is Lemma 2, which says that
if two distributions are equivalent with respect to an equivalence relation R,
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then there is a uniform way to extend them so that the resulting distributions
in parallel contexts are equivalent with respect to another equivalence relation
R|. It turns out that if R is instantiated as strong or weak bisimilarity then R|

is a subset of R, thus R| also relates bisimilar expressions.

Structure of the paper. In the next section we briefly recall some basic con-
cepts and definitions about probabilistic distributions. In Section 3, we present
the syntax and operational semantics of a probabilistic process calculus. Next,
we give the notions of strong and weak behavioral equivalences in Section 4.
We provide complete axiomatizations for strong bisimilarity and observational
equivalence in Sections 5 and 6 respectively, restricted to guarded expressions
in the second case. In Section 7, we conclude and discuss some related work not
yet mentioned in the introduction. Detailed proofs of the main propositions in
Section 4 are in the Appendix.

2 Preliminaries

Let S be a set. A function η : S 7→ [0, 1] is called a discrete probability distribu-
tion, or distribution for short, on S if the support of η, defined as spt(η) = {x ∈
S | η(x) > 0}, is finite or countably infinite and

∑
x∈S η(x) = 1. We denote by

P(S) the set of distributions over S. If η is a distribution with finite support
and V ⊆ spt(η) we use the set {si : η(si)}si∈V to enumerate the probability
associated with each element of V . The constructor ] on this kind of sets is
defined as follows.

{si : pi}i∈I ] {s : p} ={
{si : pi}i∈I\j ∪ {sj : (pj + p)} if s = sj for some j ∈ I
{si : pi}i∈I ∪ {s : p} otherwise.

{si : pi}i∈I ] {tj : pj}j∈1..n =
({si : pi}i∈I ] {t1 : p1}) ] {tj : pj}j∈2..n

Given some distributions η1, ..., ηn on S and some real numbers r1, ..., rn ∈
[0, 1] with

∑
i∈1..n ri = 1, we define the convex combination r1η1 + ... + rnηn

of η1, ..., ηn to be the distribution η such that η(s) =
∑

i∈1..n riηi(s), for each
s ∈ S.

A simple probabilistic automaton is a tuple (S, s, Σ, T ), where S is a set of
states, s ∈ S is a start state, Σ is a set of actions, and T ⊆ S × Σ × P(S)
is a transition relation. Informally, a simple probabilistic automaton is like an
ordinary automaton except that a labeled transition leads to a probabilistic
distribution over a set of states instead of a single state. Simple probabilistic
automata are used in this paper to give operational semantics of our probabilistic
process calculus.

3 Probabilistic process calculus

We assume a countable set of variables, Var = {X, Y, ...}, and a countable set of
atomic actions, A = {a, b, ...}. Given a special action τ not in A, we let u, v, ...
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range over the set of actions, Act = A∪A ∪ {τ}, and let α, β, ... range over the
set Var ∪ Act . The class of expressions E is defined by the following syntax:

E, F ::= u.
⊕

i∈1..n

piEi |
∑

i∈1..m

Ei | E | F | X | µXE

Here
⊕

i∈1..n piEi stands for a probabilistic choice operator, where the pi’s
represent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑
i∈1..n pi = 1.

When n = 0 we abbreviate the probabilistic choice as 0; when n = 1 we
abbreviate it as E1. Sometimes we are interested in certain branches of the
probabilistic choice; in this case we write

⊕
i∈1..n piEi as p1E1 ⊕ ... ⊕ pnEn

or (
⊕

i∈1..(n−1) piEi) ⊕ pnEn where
⊕

i∈1..(n−1) piEi abbreviates (with a slight

abuse of notation) p1E1 ⊕ ... ⊕ pn−1En−1. The second construction
∑

i∈1..m Ei

stands for nondeterministic choice, and occasionally we may write it as E1 + ...+
Em. As in CCS we let variables range over process expressions. The notation µX

stands for a recursion which binds the variable X . We shall use fv(E) for the set
of free variables (i.e., not bound by any µX) in E. As explained in the introduc-
tion, we require that only closed expressions are put in parallel composition, i.e.,
in E | F we have fv(E | F ) = ∅. As usual we identify expressions which differ
only by a change of bound variables. We shall write E{F1, ..., Fn/X1, ..., Xn} or

E{F̃ /X̃} for the result of simultaneously substituting Fi for each occurrence of
Xi in E (1 ≤ i ≤ n), renaming bound variables if necessary.

Definition 1. The variable X is weakly guarded (resp. guarded) in E if every
free occurrence of X in E occurs within some subexpression u.F (resp. a.F or
ā.F ), otherwise X is weakly unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a simple proba-
bilistic automaton whose states are the expressions reachable from E and the
transition relation is defined by the axioms and inference rules in Table 1, where
E

α
−→ η describes a transition that, by performing an action or exposing a free

variable, leaves from E and leads to a distribution η over E . The symmetric rules
of par and com are omitted.

var X
X
−→ {0 : 1} psum u.

L

i∈1..n
piEi

u
−→

U

i∈1..n
{Ei : pi}

rec
E{µXE/X}

α
−→ η

µXE
α

−→ η
nsum

Ej
α

−→ η
P

i∈1..m
Ei

α
−→ η

for some j ∈ 1..m

par
E

α
−→ {Ei : pi}i

E | F
α

−→ {Ei | F : pi}i

com
E

a
−→ {Ei : pi}i∈I F

ā
−→ {Fj : qj}j∈J

E | F
τ

−→ {Ei | Fj : piqj}i∈I,j∈J

Table 1. Strong transitions
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Finitary weak transitions are defined as in [7]. We abstract away finitely
many invisible actions that occur before or after the appearance of a single

visible action or a variable. It is easy to see that if E
X

=⇒ η then η = {0 : 1}. We

use the notation
α̂

=⇒ to stand for
α

=⇒ if α 6= τ , for =⇒ otherwise. We also define

a weak combined transition: E
α̂

=⇒c η if there exists a collection {ηi, ri}i∈1..n of
distributions and probabilities such that

∑
i∈1..n ri = 1, η = r1η1 + ... + rnηn

and E
α̂

=⇒ ηi for each i ∈ 1..n. Similarly we write E
α

=⇒c η if every component
is a “normal” (i.e., non-virtual) weak transition, namely, E

α
=⇒ ηi for all i ≤ n.

wea1 E =⇒ {E : 1} wea2
E

τ
−→ η

E =⇒ η
wea3

E
α

−→ η

E
α

=⇒ η

wea4
E

α
=⇒ {Ei : pi}i∈I ∀i ∈ I : Ei =⇒ {Eij : pij}j∈Ji

E
α

=⇒ {Eij : pipij}i∈I,j∈Ji

wea5
E =⇒ {Ei : pi}i∈I ∀i ∈ I : Ei

α
=⇒ {Eij : pij}j∈Ji

E
α

=⇒ {Eij : pipij}i∈I,j∈Ji

Table 2. Weak transitions

4 Behavioral equivalences

To define behavioral equivalences in probabilistic process algebra, it is customary
to consider equivalence of distributions with respect to equivalence relations on
expressions.

4.1 Equivalence of distributions

If η is a distribution on S and V ⊆ S, we write η(V ) for
∑

s∈V η(s). We lift an
equivalence relation on E to an equivalence relation between distributions over
E in the following way.

Definition 2. Given two distributions η1 and η2 over E, we say that they are
equivalent w.r.t. an equivalence relation R on E, written η1 ≡R η2, if

∀V ∈ E/R : η1(V ) = η2(V ).

The following property is simple but important as it underpins many other
results in the rest of the paper.

Lemma 1. If η1 ≡R1 η2 and R1 ⊆ R2 then η1 ≡R2 η2.
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Given an equivalence relation R, we construct two relations:

RG
def
= {(E | G, F | G) | E R F}

R| def
=

⋃
{RG | G ∈ E}.

Clearly RG and R| are also equivalence relations. If V ∈ E/RG
then we write

V \G for the set {E | E | G ∈ V }. It is easy to see that if V ∈ E/R| then there
exists some expression G such that V ∈ E/RG

. Furthermore, we observe that
V ∈ E/RG

iff V \G ∈ E/R. Suppose θ1 = {Ei : pi}i∈I and θ2 = {Fj : qj}j∈J , we
introduce the following notation:

θ1 | θ2
def
= {Ei | Fj : piqj}i∈I,j∈J .

The following lemma is crucial for showing the congruence property of strong
bisimilarity and observational equivalence (cf. Section 4.4). It says that if two
distributions θ1 and θ2 are equivalent w.r.t. an equivalence relation R, then
there is a uniform way to extend the two distributions so that the resulting dis-
tributions on composed terms are equivalent w.r.t. another equivalence relation
R|.

Lemma 2. If θ1 ≡R θ2 then (θ1 | θ) ≡R| (θ2 | θ).

Proof. Let θ = {Gk : pk}k∈K . Without loss of generality, we assume that if
i, j ∈ K and i 6= j then Gi 6= Gj . For any V ∈ E/R| there exists some expression
G such that V ∈ E/RG

. There are two cases:

1. if G 6= Gk for all k ∈ K, then (θ1 | θ)(V ) = 0 = (θ2 | θ)(V );
2. if G = Gk for some k ∈ K, then (θ1 | θ)(V ) = rkθ1(V

\Gk) = rkθ2(V
\Gk) =

(θ2 | θ)(V ).

In summary, (θ1 | θ)(V ) = (θ2 | θ)(V ) for any V ∈ E/R| , i.e., (θ1 | θ) ≡R| (θ2 |
θ), which is the required result. ut

Corollary 1. If θ1 ≡R θ2, θ′1 ≡R θ′2 and R is closed under parallel composition,
then (θ1 | θ′1) ≡R (θ2 | θ′2).

Proof. If R is closed under parallel composition, then R| ⊆ R. By Lemma 1, we
can state Lemma 2 as: if θ1 ≡R θ2 then (θ1 | θ) ≡R (θ2 | θ). Similarly we can
establish a symmetric property: if θ1 ≡R θ2 then (θ | θ1) ≡R (θ | θ2). As a
consequence we have (θ1 | θ′1) ≡R (θ2 | θ′1) ≡R (θ2 | θ′2). ut

4.2 Behavioral equivalences

Strong bisimulation is defined by requiring equivalence of distributions at every
step. Because of the way equivalence of distributions is defined, we need to
restrict to bisimulations which are equivalence relations.

Definition 3. An equivalence relation R ⊆ E × E is a strong bisimulation if
E R F implies:
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– whenever E
α

−→ η1, there exists η2 such that F
α

−→ η2 and η1 ≡R η2.

Two expressions E, F are strong bisimilar, written E ∼ F , if there exists a
strong bisimulation R s.t. E R F .

We have shown in [16, 15] that to define weak equivalences it is necessary to
use weak combined transitions3, so weak probabilistic bisimulation is given in
the following way.

Definition 4. An equivalence relation R ⊆ E ×E is a weak probabilistic bisim-
ulation if E R F implies:

– whenever E
α

−→ η1, there exists η2 such that F
α̂

=⇒c η2 and η1 ≡R η2.

We write E ≈ F whenever there exists a weak probabilistic bisimulation R s.t.
E R F .

As usual, observational equivalence is defined in terms of weak probabilistic
bisimulation.

Definition 5. Two expressions E, F are observationally equivalent, written E '
F , if

1. whenever E
α

−→ η1, there exists η2 such that F
α

=⇒c η2 and η1 ≡≈ η2.

2. whenever F
α

−→ η2, there exists η1 such that E
α

=⇒c η1 and η1 ≡≈ η2.

One can check that all the relations defined above are indeed equivalence
relations and we have the inclusion ordering: ∼ ( ' ( ≈.

Example 1. Consider the following expressions:

E1
def
= µX(a.X + X)

E2
def
= µX( 1

2X ⊕ 1
2 (X + X))

F1
def
= a.b + τ.c

F2
def
= F1 + τ.( 1

3F1 ⊕
2
3c)

It can be checked that E1 ∼ E2, F1 ≈ F2, and τ.F1 ' τ.F2. Note that
F1 6' F2 because the transition F2

τ
−→ {F1 : 1

3 , c : 2
3} cannot be matched up by

the transition F1
τ

−→ {c : 1}, which is the only normal transition from F1 with
action τ . ut

3 The example given in [16, 15] for supporting this argument is built in probabilis-
tic automata [30], but it is easy to write a similar example in simple probabilistic
automata.
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4.3 Probabilistic “bisimulation up to” techniques

A natural way for showing E ∼ F in a probabilistic process calculus is to con-
struct an equivalence relation R which includes the pair (E, F ), and then to
check that R is a bisimulation. However, it is often difficult to ensure that the
relation R one constructs is indeed an equivalence relation. In this case we use
“bisimulation up to” techniques. The idea is that we extend R to be R′ such
that R ⊆ R′ and R′ is easily shown to be a bisimulation.

Given a binary relation R we denote by R∼ the relation (R ∪ ∼)∗, the
equivalence closure of R ∪ ∼. Similarly for the notation R≈.

Definition 6. A binary relation R is a strong bisimulation up to ∼ if E R F
implies:

1. whenever E
α

−→ η1, there exists η2 such that F
α

−→ η2 and η1 ≡R∼ η2.

2. whenever F
α

−→ η2, there exists η1 such that E
α

−→ η1 and η1 ≡R∼ η2.

A strong bisimulation up to ∼ is not necessarily an equivalence relation. It is
just an ordinary binary relation included in ∼, as shown by the next proposition.

Proposition 1. If R is a strong bisimulation up to ∼, then R ⊆∼.

For weak probabilistic bisimulation, the “up to” relation can be defined as
well, but we need to be careful.

Definition 7. A binary relation R is a weak probabilistic bisimulation up to ≈
if E R F implies:

1. whenever E
α

=⇒ η1, there exists η2 such that F
α̂

=⇒c η2 and η1 ≡R≈ η2.

2. whenever F
α

=⇒ η2, there exists η1 such that E
α̂

=⇒c η1 and η1 ≡R≈ η2.

In the above definition, we are not able to replace the first double arrow in each
clause by a simple arrow. Otherwise, the resulting relation would not be included
in ≈.

Proposition 2. If R is a weak probabilistic bisimulation up to ≈, then R ⊆≈.

In a way similar to Definition 7, we introduce an “up to '” relation.

Definition 8. A binary relation R is an observational equivalence up to ' if
E R F implies:

1. whenever E
α

=⇒ η1, there exists η2 such that F
α

=⇒c η2 and η1 ≡R≈ η2.

2. whenever F
α

=⇒ η2, there exists η1 such that E
α

=⇒c η1 and η1 ≡R≈ η2.

As expected, observational equivalence up to ' is useful because of the fol-
lowing property.

Proposition 3. If R is an observational equivalence up to ', then R ⊆'.
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4.4 Some properties of behavioral equivalences

By using the “bisimulation up to” techniques introduced in the previous section,
together with Lemma 2, we can prove the following results. Their detailed proofs
are in Appendices A and B, respectively.

Proposition 4 (Properties of ∼).

1. ∼ is a congruence relation;
2. µXE ∼ E{µXE/X};
3. µX(E + X) ∼ µXE;
4. If E ∼ F{E/X} and X is weakly guarded in F , then E ∼ µXF .

Proposition 5 (Properties of ').

1. ' is a congruence relation;
2. If τ.E ' τ.E + F and τ.F ' τ.F + E then τ.E ' τ.F ;
3. If E ' F{E/X} and X is guarded in F then E ' µXF .

5 Axiomatizing strong bisimilarity

We present in this section the axiom system As for ∼, which includes all ax-
ioms and rules displayed in Table 3. We assume the usual rules for equality
(reflexivity, symmetry, transitivity and substitutivity), and the alpha-conversion
of bound variables. If we omit all the axioms involving probabilities, we obtain
the system composed by S1-3 and R1-3, which characterizes exactly the class
of nonprobabilistic finite-state behaviors studied in [26]. The two axioms S4-5
allow us to permute and merge probabilistic branches in a probabilistic choice.
E is a probabilistic version of the expansion law in CCS.

The notation As ` E = F (and As ` Ẽ = F̃ for a finite sequence of
equations) means that the equation E = F is derivable by applying the axioms
and rules from As. The following theorem shows that As is sound with respect
to ∼.

Theorem 1 (Soundness of As). If As ` E = E′ then E ∼ E′.

Proof. The soundness of the recursion axioms R1-3 is shown in Section 4.4; the
soundness of S1-4 and E is obvious, and S5 is a consequence of Definition 2. ut

For the completeness proof, the basic points are: (1) if two expressions are
bisimilar then we can construct an equation set in a certain format (standard
format) that they both satisfy; (2) if two expressions satisfy the same standard
equation set, then they can be proved equal by As. This schema is inspired by
[26, 32], but in our case the definition of standard format and the proof itself are
more complicated due to the presence of both probabilistic and nondeterministic
dimensions.
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S1 E + 0 = E
S2 E + E = E
S3

P

i∈I Ei =
P

i∈I Eρ(i) ρ is any permutation on I
S4 u.

L

i∈I
piEi = u.

L

i∈I
pρ(i)Eρ(i) ρ is any permutation on I

S5 u.((
L

i
piEi) ⊕ pE ⊕ qE) = u.((

L

i
piEi) ⊕ (p + q)E)

R1 µXE = E{µXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = µXF
R3 µX(E + X) = µXE

E Assume E ≡
P

i
ui.

L

j
pijEij and F ≡

P

k
vk.

L

l
qklFkl. Then infer:

E | F =
P

i
ui.

L

j
pij(Eij | F ) +

P

k
vk.

L

l
qkl(E | Fkl)

+
P

ui opp vk
τ.

L

j,l
(pijqkl)(Eij | Fkl)

where ui opp vk means that ui and vk are complementary actions, i.e., ūi = vk.

Table 3. The axiom system As

Definition 9. Let X̃ = {X1, ..., Xm} and W̃ = {W1, W2, ...} be disjoint sets of

variables. Let H̃ = {H1, ..., Hm} be expressions with free variables in X̃ ∪ W̃ . In

the equation set S : X̃ = H̃, we call X̃ formal variables and W̃ free variables.
We say S is standard if each Hi takes the form

∑
j Ef(i,j) +

∑
l Wh(i,l) where

Ef(i,j) = uf(i,j).
⊕

k pf(i,j,k)Xg(i,j,k). We call S weakly guarded if there is no Hi

s.t. Hi
Xi−→ {0 : 1}. We say that E provably satisfies S if there are expressions

Ẽ = {E1, ..., Em}, with E1 ≡ E and fv (Ẽ) ⊆ W̃ , such that As ` Ẽ = H̃{Ẽ/X̃}.

We first recall the theorem of unique solution of equations originally appeared
in [26]. Adding probabilistic choice does not affect the validity of this theorem.

Theorem 2 (Unique solution of equations I). If S is a weakly guarded

equation set with free variables in W̃ , then there is an expression E which prov-
ably satisfies S. Moreover, if F provably satisfies S and has free variables in W̃ ,
then As ` E = F .

Proof. Exactly as in [26]. ut

Below we give an extension of Milner’s equational characterization theorem
by accommodating probabilistic choice.

Theorem 3 (Equational characterization I). For any expression E, with

free variables in W̃ , there exist some expressions Ẽ = {E1, ..., Em}, with E1 ≡ E

and fv (Ẽ) ⊆ W̃ , satisfying m equations

As ` Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)
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where Ef(i,j) ≡ uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Eg(i,j,k).

Proof. By induction on the structure of E. We only consider the case that E ≡
F | F ′; all other cases are similar to the proof in [26]. By definition F and F ′ are
closed terms. By induction we have closed terms F1, .., Fm satisfying m equations

As ` Fi =
∑

j∈1..n(i)

Ff(i,j) (i ≤ m)

where Ff(i,j) ≡ uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Fg(i,j,k). Similarly we have closed ex-

pressions F ′
1, ..., F

′
m′ satisfying m′ equations

As ` F ′
i′ =

∑

j′∈1..n′(i′)

F ′
f ′(i′,j′) (i ≤ m′)

where F ′
f ′(i′,j′) ≡ u′

f ′(i′,j′).
⊕

k′∈1..o′(i′,j′) p′
f ′(i′,j′,k′)F

′
g′(i′,j′,k′). Now set Ei,i′ ≡

Fi | F ′
i′ . By the expansion law E we obtain the equations

As ` Ei,i′ =
∑

j∈1..n(i) uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Eg(i,j,k),i′

+
∑

j′∈1..n′(i′) u′
f ′(i′,j′).

⊕
k′∈1..o′(i′,j′) p′f ′(i′,j′,k′)Ei,g′(i′,j′,k′)

+
∑

uf(i,j) opp u′
f′(i′ ,j′)

τ.
⊕

k∈1..o(i,j),k′∈1..o′(i′,j′)(pf(i,j,k)p
′
f ′(i′,j′,k′))

Ef(i,j,k),f ′(i′,j′,k′)

where i ≤ m, i′ ≤ m′ and uf(i,j) opp u′
f ′(i′,j′) means that uf(i,j) and u′

f ′(i′,j′)

are complementary actions, i.e., they are a and ā respectively, for some a, or the
inverse.

Moreover, we have E ≡ F1 | F ′
1 ≡ E1,1. ut

The following completeness proof is closely analogous to that of [32]. It is
complicated somewhat by the presence of nondeterministic choice. For example,
to construct the formal equations, we need to consider a more refined relation
Liji′j′ underneath the relation Kii′ while in [26, 32] it is sufficient to just use
Kii′ .

Theorem 4 (Completeness of As). If E ∼ E′ then As ` E = E′.

Proof. Let E and E′ have free variables in W̃ . By Theorem 3 there are provable
equations such that E ≡ E1, E′ ≡ E′

1 and

As ` Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)

As ` E′
i′ =

∑

j′∈1..n′(i′)

E′
f ′(i′,j′) +

∑

j′∈1..l′(i′)

Wh′(i′,j′) (i′ ≤ m′)

with
Ef(i,j) ≡ uf(i,j).

⊕

k∈1..o(i,j)

pf(i,j,k)Eg(i,j,k)
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E′
f ′(i′,j′) ≡ u′

f ′(i′,j′).
⊕

k′∈1..o′(i′,j′)

p′f ′(i′,j′,k′)E
′
g′(i′,j′,k′).

Let I = {〈i, i′〉 | Ei ∼ E′
i′}. By hypothesis we have E1 ∼ E′

1, so 〈1, 1〉 ∈ I .
Moreover, for each 〈i, i′〉 ∈ I , the following holds, by the definition of strong
bisimilarity:

1. There exists a total surjective relation Kii′ between {1, ..., n(i)} and {1, ..., n′(i′)},
given by

Kii′ = {〈j, j′〉 | 〈f(i, j), f ′(i′, j′)〉 ∈ I}.

Furthermore, for each 〈j, j ′〉 ∈ Kii′ , we have uf(i,j) = u′
f ′(i′,j′) and there ex-

ists a total surjective relation Liji′j′ between {1, ..., o(i, j)} and {1, ..., o′(i′, j′)},
given by

Liji′j′ = {〈k, k′〉 | 〈g(i, j, k), g′(i′, j′, k′)〉 ∈ I}.

2. As `
∑

j∈1..l(i) Wh(i,j) =
∑

j′∈1..l′(i′) Wh′(i′,j′).

Now, let Liji′j′ (k) denote the image of k ∈ {1, ..., o(i, j)} under Liji′j′ and
L−1

iji′j′(k
′) the preimage of k′ ∈ {1, ..., o′(i′, j′)} under Liji′j′ . We write [k]iji′j′

for the set L−1
iji′j′(Liji′j′(k)) and [k′]iji′j′ for Liji′j′ (L

−1
iji′j′(k

′)). It follows from
the definitions that

1. If 〈i, i′1〉 ∈ I , 〈i, i′2〉 ∈ I , 〈j, j′1〉 ∈ Kii′1
and 〈j, j′2〉 ∈ Kii′2

, then [k]iji′1j′1
=

[k]iji′2j′2
.

2. If q1 ∈ [k]iji′j′ and q2 ∈ [k]iji′j′ , then Eg(i,j,q1) ∼ Eg(i,j,q2).

Define νijk =
∑

q∈[k]iji′j′
pf(i,j,q) for any i′, j′ such that 〈i, i′〉 ∈ I and 〈j, j′〉 ∈

Kii′ ; define ν′
i′j′k′ =

∑
q′∈[k′]iji′j′

p′
f ′(i′,j′,q′) for any i, j such that 〈i, i′〉 ∈ I and

〈j, j′〉 ∈ Kii′ . It is easy to see that whenever 〈i, i′〉 ∈ I , 〈j, j′〉 ∈ Kii′ and
〈k, k′〉 ∈ Liji′j′ then νijk = ν′

i′j′k′ .
We now consider the formal equations, one for each 〈i, i′〉 ∈ I :

Xi,i′ =
∑

〈j,j′〉∈Kii′

Hf(i,j),f ′(i′,j′) +
∑

j∈1..l(i)

Wh(i,j)

where

Hf(i,j),f ′(i′,j′) ≡ uf(i,j).
⊕

〈k,k′〉∈Liji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,k′)

νijk

)Xg(i,j,k),g′(i′,j′,k′).

These equations are provably satisfied when each Xi,i′ is instantiated to Ei, since
Kii′ and Liji′j′ are total and the right-hand side differs at most by repeated
summands from that of the already proved equation for Ei. Note that each
probabilistic branch pf(i,j,k)Eg(i,j,k) in the subterm Ef(i,j) of Ei becomes the
probabilistic summation of several branches like

⊕

q′∈[k′]iji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,q′)

νijk

)Eg(i,j,k)

13



in Hf(i,j),f ′(i′,j′){Ei/Xi,i′}i, where 〈i, i′〉 ∈ I , 〈j, j′〉 ∈ Kii′ and 〈k, k′〉 ∈ Liji′j′ .
But they are provably equal because

∑
q′∈[k′]iji′j′

(
pf(i,j,k)p

′
f′(i′,j′,q′)

νijk
) =

pf(i,j,k)

νijk
·
∑

q′∈[k′]iji′j′
p′f ′(i′,j′,q′)

=
pf(i,j,k)

νijk
· ν′

i′j′k′ = pf(i,j,k)

and then the axiom S5 can be used. Symmetrically, the equations are provably
satisfied when each Xi,i′ is instantiated to E′

i′ ; this depends on the surjectivity
of Kii′ and Jiji′j′ .

Finally, we note that each Xi,i′ is weakly guarded in the right-hand sides
of the formal equations. It follows from Theorem 2 that ` Ei = E′

i′ for each
〈i, i′〉 ∈ I , and hence ` E = E′. ut

6 Axiomatizing observational equivalence

In this section we axiomatize the observational equivalence '. We are not able to
give a complete axiomatization for the whole set of expressions (and we conjec-
ture that it is not possible), so we restrict to the subset of E consisting of guarded
expressions only. An expression is guarded if for each of its subexpression of the
form µXF , the variable X is guarded in F (cf. Definition 1).

First let us analyze the system As. All axioms except for R2-3 are still valid
for '. R3 is not needed because it deals with unguarded expressions. We can
reuse R2 by requiring X to be (strongly) guarded, so we get R2′ in Table 4. To
establish the system Ao for ', we use five τ -laws, T1-5 in Table 4, to abstract
away invisible actions. Note that T1 and T2 together constitute the probabilistic
version of Milner’s second τ -law ([28] page 231). T3 and T4 are the probabilistic
extensions of Milner’s third and first τ -laws, respectively. The extra rule T5 has
no nonprobabilistic counterpart in CCS, but it plays an important role in the
proof of Theorem 8. As in [7] the axiom C is needed because we use combined
transitions when defining observational equivalence.

Theorem 5 (Soundness of Ao). If Ao ` E = F then E ' F .

Proof. The rules R2′ and T5 are proved to be sound in Proposition 5 (its proof
is detailed in Appendix B). The soundness of C and T1-4 is straightforward. ut

For the completeness proof, it is convenient to use the following saturation
property, which relates operational semantics to term transformation, and which
can be shown by using the probabilistic τ -laws T1-4 and the axiom C.

Lemma 3 (Saturation). Suppose there is no parallel composition in E.

1. If E
u

=⇒ η with η = {Ei : pi}i, then Ao ` E = E + u.
⊕

i piEi;

2. If E
u

=⇒c η with η = {Ei : pi}i, then Ao ` E = E + u.
⊕

i piEi;

3. If E
X

=⇒ {0 : 1} then Ao ` E = E + X.

14



T1 τ.
L

i
pi(Ei + X) = X + τ.

L

i
pi(Ei + X)

T2 τ.
L

i
pi(Ei + u.

L

j
pij .Eij) + u.

L

i,j
pipij .Eij

= τ.
L

i pi(Ei + u.
L

j pij .Eij)

T3 u.
L

i
pi(Ei + τ.

L

j
pij .Eij) + u.

L

i,j
pipij .Eij

= u.
L

i pi(Ei + τ.
L

j pij .Eij)

T4 u.(pτ.E ⊕
L

i
piEi) = u.(pE ⊕

L

i
piEi)

T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

R2′ If E = F{E/X}, X guarded in F, then E = µXF

C
P

i∈1..n
u.

L

j
pijEij =

P

i∈1..n
u.

L

j
pijEij + u.

L

i∈1..n

L

j
ripijEij

with
P

i∈1..n
ri = 1.

Table 4. Some laws for the axiom system Ao

Proof. The first and third clauses are proved by transition induction on the
inference E

u
=⇒ η; the second clause is a corollary of the first one. ut

Below we state two simple properties of weak combined transitions. They
will be used in proving Theorem 8.

Lemma 4. 1. If E
û

=⇒c η then τ.E
u

=⇒c η;

2. If E
X

=⇒c {0 : 1} then E
X

=⇒ {0 : 1}.

Proof. Trivial. ut

Lemma 5. If E
û

=⇒c {Ei : pi}i then Ao ` τ.E = τ.E + u.
⊕

i piEi.

Proof. It follows from Lemma 4 and Lemma 3. ut

To show the completeness of Ao, we need some notations. Given a standard
equation set S : X̃ = H̃ , which has free variables W̃ , we define the relations

α
−→S⊆ X̃ ×P(X̃) (recall that the notation P(V ) represents all distributions on

V ) as Xi
α

−→S η iff Hi
α

−→ η. From
α

−→S we can define the weak transition
α

=⇒S in the same way as in Section 3. We shall call S guarded if there is no Xi

s.t. Xi
Xi=⇒S {0 : 1}. The variable W is guarded in S if it is not the case that

X1
W

=⇒S {0 : 1}.
For guarded expressions, the equational characterization theorem and the

unique solution theorem given in last section can now be refined, as done in [28].

Theorem 6 (Equational characterization II). Each guarded expression E

with free variables in W̃ provably satisfies a standard guarded equation set S with
free variables in W̃ . Moreover, if W is guarded in E then W is guarded in S.
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Proof. By induction on the structure of E. Consider the case that E ≡ u.
⊕

i∈I piEi.
For each i ∈ I , let Xi be the distinguished variable of the equation set Si for Ei.
We can define S as {X = u.

⊕
i∈I piXi}∪

⋃
i∈I Si, with the new variable X dis-

tinguished. All other cases are the same as in [28]. For the case that E ≡ F | F ′,
the arguments are similar to those in Theorem 3. ut

Theorem 7 (Unique solution of equations II). If S is a guarded equation

set with free variables in W̃ , then there is an expression E which provably satisfies
S. Moreover, if F provably satisfies S and has free variables in W̃ , then Ao `
E = F .

Proof. Nearly the same as the proof of Theorem 2, just replacing the recursion
rule R2 with R2′. ut

The following theorem plays a crucial role in proving the completeness of Ao.

Theorem 8. Let E provably satisfy S and F provably satisfy T , where both S
and T are standard, guarded equation sets, and let E ' F . Then there is a
standard, guarded equation set U satisfied by both E and F .

Proof. Suppose that X̃ = {X1, ..., Xm}, Ỹ = {Y1, ..., Yn} and W̃ = {W1, W2, ...}
are disjoint sets of variables. Let

S : X̃ = H̃

T : Ỹ = J̃

with fv(H̃) ⊆ X̃ ∪ W̃ , fv (J̃) ⊆ Ỹ ∪ W̃ , and that there are expressions Ẽ =

{E1, ..., Em} and F̃ = {F1, ..., Fn} with E1 ≡ E, F1 ≡ F , and fv (Ẽ)∪fv (F̃ ) ⊆ W̃ ,
so that

Ao ` Ẽ = H̃{Ẽ/X̃}

Ao ` F̃ = J̃{F̃ /Ỹ }.

Consider the least equivalence relation R ⊆ (X̃ ∪ Ỹ ) × (X̃ ∪ Ỹ ) such that

1. whenever (Z, Z ′) ∈ R and Z
α

−→ η, then there exists η′ s.t. Z ′ α̂
=⇒c η′ and

η ≡R η′;
2. (X1, Y1) ∈ R and if X1

α
−→ η then there exists η′ s.t. Y1

α
=⇒c η′ and η ≡R η′.

Clearly R is a weak probabilistic bisimulation on the transition system over

X̃∪ Ỹ , determined by →
def
=→S ∪ →T . Now for two given distributions η = {Xi :

pi}i∈I , η′ = {Yj : qj}j∈J , with η ≡R η′, we introduce the following notations:

Kη,η′ = {(i, j) | i ∈ I, j ∈ J, and (Xi, Yj) ∈ R}
νi =

∑
{pi′ | i′ ∈ I, and (Xi, Xi′) ∈ R} for i ∈ I

νj =
∑

{pj′ | j′ ∈ J, and (Yj , Yj′ ) ∈ R} for j ∈ J
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Since η ≡R η′ it follows by definition that if (i, j) ∈ Kη,η′ , for some η, η′, then
νi = νj . Thus we can define the expression

Gη,η′
def
=

⊕

(i,j)∈Kη,η′

piqj

νi

Zij

which will play the same role as the expression Hf(i,j),f ′(i′,j′) in the proof of
Theorem 4.

Based on the above R we choose a new set of variables Z̃ such that

Z̃ = {Zij | Xi ∈ X̃, Yj ∈ Ỹ and (Xi, Yj) ∈ R}.

Furthermore, for each Zij ∈ Z̃ we construct three auxiliary finite sets of expres-
sions, denoted by Aij , Bij and Cij , by the following procedure.

1. Initially the three sets are empty.
2. For each η with Xi

α
−→ η, arbitrarily choose one (and only one — the same

principle applies in other cases too) η′ (if it exists) satisfying η ≡R η′ and

Yj
α

=⇒c η′. If α ∈ Act then we construct the expression Gη,η′ and update
Aij to be Aij ∪ {α.Gη,η′}; if α = X for some X then we update Aij to be

Aij ∪ {X}. Similarly for each η′ with Yj
α

−→ η′, arbitrarily choose one η (if

it exists) satisfying η ≡R η′ and Xi
α

=⇒c η. If α ∈ Act then we construct the
expression Gη,η′ and update Aij to be Aij ∪{α.Gη,η′}; if α = X for some X
then we update Aij to be Aij ∪ {X}.

3. For each η with Xi
τ

−→ η, arbitrarily choose one η′ (if it exists) satisfying

η ≡R η′, Yj =⇒c η′ but not Yj
τ

=⇒c η′, construct the expression Gη,η′ and
update Bij to be Bij ∪ {τ.Gη,η′}.

4. For each η′ with Yj
τ

−→ η′, arbitrarily choose one η (if it exists) satisfying

η ≡R η′, Xi =⇒c η but not Xi
τ

=⇒c η, construct Gη,η′ and update Cij to be
Cij ∪ {τ.Gη,η′}.

Clearly the three sets constructed in this way are finite. Now we build a new
equation set

U : Z̃ = L̃

where U11 is the distinguished variable and

Lij =

{∑
G∈Aij

G if Bij ∪ Cij = ∅

τ.(
∑

G∈Aij∪Bij∪Cij
G) otherwise.

We assert that E provably satisfies the equation set U . To see this, we choose
expressions

Gij =

{
Ei if Bij ∪ Cij = ∅
τ.Ei otherwise

and verify that Ao ` Gij = Lij{G̃/Z̃}.
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In the case that Bij ∪ Cij = ∅, all those summands of Lij{G̃/Z̃} which are
not variables are of the form:

u.
⊕

(i,j)∈Kη,η′

piqj

νi

E′
i

where E′
i = Ei or E′

i = τ.Ei for each i. By T4 we can prove that

u.
⊕

(i,j)∈Kη,η′

piqj

νi

E′
i = u.

⊕

(i,j)∈Kη,η′

piqj

νi

Ei.

Then by some arguments similar to those in Theorem 4, together with Lemma 3,
we can show that

Ao ` Lij{G̃/Z̃} = Hi{Ẽ/X̃} = Ei.

On the other hand, if Bij ∪ Cij 6= ∅, we let Cij = {D1, ..., Do} (Cij = ∅ is a

special case of the following argument) and D =
∑

l∈1..o Dl{G̃/Z̃}. As in last
case we can show that

Ao ` Lij{G̃/Z̃} = τ.(Hi{Ẽ/X̃} + D).

For any l with 1 ≤ l ≤ o, let Dl{G̃/Z̃} = τ.
⊕

k pkEk . It is easy to see that
Ei =⇒c η with η = {Ek : pk}k. So by Lemma 5 it holds that

Ao ` τ.Ei = τ.Ei + Dl{G̃/Z̃}.

As a result we can infer

Ao ` τ.Ei = τ.Ei + D = τ.Ei + (Ei + D).

by Lemma 3. Similarly,

Ao ` τ.(Ei + D) = τ.(Ei + D) + Ei.

Consequently it follows from T5 that

Ao ` τ.Ei = τ.(Ei + D) = τ.(Hi{Ẽ/X̃} + D) = Lij{G̃/Z̃}.

In the same way we can show that F provably satisfies U . At last U is guarded
because S and T are guarded. ut

Theorem 9 (Completeness of Ao). If E and F are guarded expressions and
E ' F , then Ao ` E = F .

Proof. A direct consequence by combining Theorems 6, 8 and 7. ut

In the axiom system Ao the rule T5 deserves more explanations. This rule
holds also in the non-probabilistic setting, but usually it is not part of the axiom-
atization because it is subsumed by other axioms. Here we need it, for instance
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to derive τ.F1 = τ.F2 for the two expressions F1, F2 of Example 1 in Section 4.2.
Alternatively, we could use the following equality

τ.E = τ.(E + τ.((1 − p)E ⊕
⊕

i ppiEi)) where E = τ.(τ.
⊕

i piEi + F )

which is sound and indeed derivable from T5. In fact, we could have introduced
the above equality as an axiom in place of T5 in the axiomatization for ' — we
would still be able to prove Theorem 8 and the completeness of the alternative
axiomatization. In this paper we have chosen T5 instead merely because it looks
more elegant than the above axiom.

7 Conclusion and related work

We have proposed a probabilistic process calculus which combines both nonde-
terministic and probabilistic behavior in the style of Segala and Lynch’s simple
probabilistic automata. The calculus also admits a restricted form of parallel
composition to allow for compositional reasoning of finite-state behaviors. We
have presented sound and complete axiomatizations for two behavioral equiva-
lences: strong bisimilarity and observational equivalence.

In CCS there are other static operators such as restriction and relabeling
that are not studied in this paper. As with parallel composition, these operators
should be treated carefully. For example, the expression µX((a.X | ā)\a) appears
to be guarded (cf. Definition 1), but actually it is strongly bisimilar to µX(τ.X)
thus should be deemed unguarded. When considering axiomatizations one tends
to disallow this kind of expressions by imposing the constraint that free variables
do not occur in the scope of static operators [11, 5].

As we said before, in this paper many concepts and proof techniques are in-
herited from [16, 15]. The main differences are as follows: (i) in this paper we have
added a parallel composition operator to our probabilistic process calculus; (ii)
to define the operational semantics of this operator we restrict ourself to simple
probabilistic automata, while the results of [16, 15] are valid for all probabilistic
automata; (iii) besides strong bisimilarity and observational equivalence, in [16,
15] we also axiomatized two other equivalences: a strong probabilistic bisimilar-
ity and a divergency-sensitive equivalence. We think that it should be possible
to adapt those results to the framework of this paper.

In [26] and [28] Milner gave complete axiomatizations for strong bisimilarity
and observational equivalence, respectively, for a core CCS [27]. Our results in
Section 5 and Section 6 extend [26] and [28] (for guarded expressions) respec-
tively, to a strictly larger language with a probabilistic choice and a parallel
composition operator.

The first work to consider (strong) bisimulation for probabilistic processes
was [22]. They considered the so-called reactive model, in which at each step
the probabilistic choice ranges over the next state, while the action is fixed. In a
sequel paper, Larsen and Skou also gave a complete axiomatization for the finite
case [23].

19



Bandini and Segala [7] axiomatized two strong and two weak equivalences for
a language similar to the fragment of our calculus without recursion and paral-
lelism. They considered two types of semantics. In both cases, their completeness
proofs are done by structural induction on processes, which is, of course, impos-
sible in our setting because of recursion.

Giacalone, Jou and Smolka [18] axiomatized strong bisimulation for a fully
probabilistic (i.e. without nondeterminism) extension of Milner’s SCCS [25],
where parallel composition is synchronous. In contrast, we consider an asyn-
chronous parallel composition and we admit nondeterminism.

Baeten, Bergstra and Smolka [4] proposed a probabilistic ACP by introduc-
ing a parameterized composition. They considered generative models, which are
fully probabilistic, and axiomatized strong probabilistic bisimilarity for finite
processes (without recursion).

Andova [3] studied a different version of probabilistic ACP by allowing nonde-
terminism and a parallel composition which is not parameterized. She provided
a sound and complete axiomatization for strong probabilistic bisimilarity in the
case of finite processes. She also gave some sound verification rules for proba-
bilistic branching bisimilarity in a fully probabilistic model without parallelism.

Strong probabilistic bisimilarity was also axiomatized by Stark and Smolka
in [32]. They gave a probabilistic version of the results of [26]. However, nei-
ther nondeterminism nor parallelism is considered. Later the same calculus was
studied in [1], which uses some axioms from iteration algebra to characterize
recursion.

In the nonprobabilistic setting, Bergstra and Klop [10] established a sound
and complete axiomatization for regular processes with τ -steps and free merge
(which allows arbitrary interleaving but no communication). They required that
free merge should not appear in the body of any recursive expression. To give a
linearization algorithm for pCRL, Groote, Ponse and Usenko adopted a similar
restriction for parallel composition [19]. Usenko extended this result to µCRL in
his thesis [34]. In this paper our parallel composition operator allows communi-
cation and it can appear in the body of a recursive expression, though only in a
restricted way. For example, the expression

µX(a.X + a.µY (b.Y ) | ā.µZ(c.Z))

is a legal expression in our calculus and we are able to manipulate it in our axiom
systems.

Baeten and Bravetti [5] axiomatized observational equivalence in a generic
process algebra. Their restriction enforced to parallel composition is the same as
ours in spirit. Interestingly, they reduced two of Milner’s axioms for unguarded
recursion [28] to just a single axiom. It remains open whether their results can
be adapted to a probabilistic setting. Similarly, it might be interesting to extend
van Glabbeek’s axiomatization for branching congruence [35] to a probabilistic
setting. We believe that the general proof schema laid out in this paper could be
reused for branching congruence, but the soundness proof of some axioms such
as R2′ would be very complicated because, besides the probabilistic and non-
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deterministic features, we need to consider the branching structure of processes,
which is ignored in observational congruence.

Christensen, Hirshfeld and Moller studied a class of standard form CCS [13]
where open expressions are allowed to be put in parallel composition. In that lan-
guage, strong bisimulation is decidable and they obtained a sound and complete
sequent based equational theory, but observational equivalence is semi-decidable
[12]. In this paper we follow [26, 28] and characterize recursion by laws concern-
ing the explicit fixed point operator µ, while we capture by τ -laws the difference
between observational equivalence and strong bisimulation.

Several works in the literature address the problem of how to define appro-
priate parallel composition operators on various probabilistic models, see [14]
for more discussions and [31] for a good survey. In this paper, we work at simple
probabilistic automata where parallel composition is easy to define (cf. Table 1).
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Appendix

A Proof of Proposition 4

Lemma 6. If fv(E) ⊆ {X̃, Z} and Z 6∈ fv (F̃ ), then

E{E′/Z}{F̃/X̃} ≡ E{F̃ /X̃}{E′{F̃ /X̃}/Z}.

Proof. By induction on the structure of E. ut

Lemma 7. Let η = r1η1+...+rnηn and η′ = r1η
′
1+...+rnη′

n with
∑

i∈1..n ri = 1.
If ηi ≡R η′

i for each i ≤ n, then η ≡R η′.

Proof. For any V ∈ E/R, we have

η(V ) =
∑

i∈1..n

riηi(V ) =
∑

i∈1..n

riη
′
i(V ) = η′(V ).

Therefore η ≡R η′ by definition. ut

Proposition 6. If E ∼ F then E | G ∼ F | G.

Proof. We show that the relation ∼| is a strong bisimulation. There are four
cases, among which we consider two of them, the others are similar.

Case 1: Suppose η1 = {Ei | G : pi}i and E | G
α

−→ η1 is derived from

the transition E
α

−→ θ1 = {Ei : pi}i. Since E ∼ F , there exists θ2 such that

F
α

−→ θ2 and θ1 ≡∼ θ2. Let θ2 = {Fj : qj}j , by rule par we have the transition

F | G
α

−→ {Fj | G : qj}j = η2. Let θ = {G : 1}, then we have η1 = θ1 | θ and
η2 = θ2 | θ. By Lemma 2 it follows that η1 ≡∼| η2.

Case 2: Suppose E
a

−→ θ1, G
ā

−→ θ, and E | G
τ

−→ η1 with η1 = θ1 | θ.

Since E ∼ F , there exists θ2 such that F
a

−→ θ2 and θ1 ≡∼ θ2. By rule com we
have the transition F | G

τ
−→ η2 with η2 = θ2 | θ. By Lemma 2 it follows that

η1 ≡∼| η2. ut

Proposition 7. If E ∼ F then E{G/X} ∼ F{G/X} for any G ∈ E.

Proof. Similar to the proof of Proposition 13, which is detailed in next section.
ut

Proposition 8. If E ∼ F then µXE ∼ µXF .

Proof. Let ρ
def
= {µXE/X} and σ

def
= {µXF/X}. We show that the relation

R = {(Gρ, Gσ) | fv (G) ⊆ {X}}

is a strong bisimulation up to ∼. Because of symmetry we only show the asser-
tion:

“if Gρ
α

−→ η1 then there exists η2 s.t. Gσ
α

−→ η2 and η1 ≡R∼ η2”
by induction on the depth of the inference Gσ → η1. There are several cases,
depending on the structure of G.
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1. G ≡ X : Then Gρ ≡ µXE
α

−→ η1 and there is a shorter inference Eρ
α

−→ η1.
By induction hypothesis there is some θ s.t. Eσ

α
−→ θ and η1 ≡R∼ θ. Since

E ∼ F we know that Eσ ∼ Fσ by Proposition 7. Hence there exists some
η2 s.t. Fσ

α
−→ η2 and θ ≡∼ η2. By Lemma 1 and the transitivity of ≡R∼ it

follows that η1 ≡R∼ η2.

2. G ≡ u.
⊕

i piGi: Then we have Gρ
u

−→ η1 ≡ {Giρ : pi}i and Gσ
u

−→ η2 ≡
{Giσ : pi}i. Since Giρ R Giσ, it is easy to see that η1 ≡R∼ η2.

3. G ≡
∑

i∈1..m Gi: If Gρ
α

−→ η1, then Gjρ
α

−→ η1 for some j ∈ 1..m, by a

shorter inference. By induction hypothesis we have that Gjσ
α

−→ η2 such
that η1 ≡R∼ η2.

4. G ≡ µY G′: If Gρ
α

−→ η1 then G′ρ{Gρ/Y } by a shorter inference. Since

G′ρ{Gρ/Y } ≡ (G′{G/Y })ρ we have that (G′{G/Y })ρ
α

−→ η1. By induc-

tion hypothesis it follows that (G′{G/Y })σ
α

−→ η2 with η1 ≡R∼ η2. Thus

G′σ{Gσ/Y }
α

−→ η2, which implies Gσ
α

−→ η2 by the rule rec.

5. G ≡ G1 | G2: Suppose Gρ
α

−→ η1. Depending on the last rule used for
deriving the transition, there are four cases. We consider one typical case
where the last rule used is com. So we have the transitions G1ρ

a
−→ θ1,

G2ρ
ā

−→ θ′1 and Gρ
τ

−→ η1 with η1 = θ1 | θ′1. By induction hypothesis

we have the simulating transitions G1σ
a

−→ θ2 and G2σ
ā

−→ θ′2 such that

θ1 ≡R∼ θ2 and θ′1 ≡R∼ θ′2. By rule com we infer that Gσ
τ

−→ η2 with
η2 = θ2 | θ′2. It is easy to see that R is closed under parallel composition (here
we need the condition of composing closed expressions). By Proposition 6
we know that ∼ is also closed under parallel composition. It follows that R∼

is closed under parallel composition as well. Therefore by Corollary 1 we can
derive that η1 ≡R∼ η2.

ut

Proposition 9 (Congruence). If Ẽ ∼ F̃ then

1. u.
⊕

i piEi ∼ u.
⊕

i piFi;
2.

∑
i Ei ∼

∑
i Fi;

3. E1 | E2 ∼ F1 | F2;
4. µXE1 ∼ µXF1.

Proof. The first two clauses are easy to prove; the last two follow from Proposi-
tion 6 and Proposition 8 respectively. ut

Proposition 10. µXE ∼ E{µXE/X}.

Proof. Observe that µXE
α

−→ η iff E{µXE/X}
α

−→ η. ut

Proposition 11. µX(E + X) ∼ µXE

Proof. Let ρ
def
= {µX(E+X)/X} and σ

def
= {µXE/X}. We show that the relation

R = {(Gρ, Gσ | fv(G ⊆ {X}))}

is a strong bisimulation up to ∼. We prove the following two assertions:
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1. If Gρ
α

−→ η1 then Gσ
α

−→ η2 and η1 ≡R∼ η2;

2. If Gσ
α

−→ η2 then Gρ
α

−→ η1 and η1 ≡R∼ η2.

The proof is carried out by induction on transitions, similar to the proof of
Proposition 8. Here we only consider the case that G ≡ X .

1. If Gρ ≡ Xρ
α

−→ η1 then (E+X)ρ
α

−→ η1 by a shorter inference. By induction

hypothesis it follows that (E + X)σ
α

−→ η2 and η1 ≡R∼ η2. Then either

Eσ
α

−→ η2 or Xσ
α

−→ η2. From the first case we can also obtain Xσ
α

−→ η2

by rule rec. Therefore in both cases we have Gσ
α

−→ η2.
2. If Gσ ≡ Xσ

α
−→ η2 then Eσ

α
−→ η2 by a shorter inference. By induction

hypothesis it follows that Eρ
α

−→ η1 with η1 ≡R∼ η2. By the rule nsum we

derive (E +X)ρ
α

−→ η1. By rec we get the required result that Gρ ≡ Xρ
α

−→
η1.

ut

Lemma 8. Suppose fv(G) ⊆ {X} and all free occurrences of X in G are weakly

guarded. If G{E/X}
α

−→ η1 with η1 ≡ {Gi : pi}i then Gi takes the form

G′
i{E/X}; Moreover, for any F , G{F/X}

α
−→ η2 with η2 ≡ {G′

i{F/X} : pi}i

and η1 ≡R∼ η2 where

R = {(G{E/X}, G{F/X}) | G ∈ E and fv (G) ⊆ {X}}.

Proof. By transition induction. ut

Proposition 12. If E ∼ F{E/X}, where all occurrences of X in F are weakly
guarded, then E ∼ µXF .

Proof. Similar to the proof of Proposition 8. Now we take R as:

R = {(G{E/X}, G{µXF/X}) | G ∈ E and fv(G) ⊆ {X}}

Let us consider the case that G ≡ X . Suppose E
α

−→ η1. Since E ∼ F{E/X},

there exists θ s.t. F{E/X}
α

−→ θ and η1 ≡∼ θ. By Lemma 8 there exists η2 s.t.

F{µXF/X}
α

−→ η2 and θ ≡R∼ η2. By rule rec we have µXF
α

−→ η2. By Lemma
1 and the transitivity of ≡R∼ , we have η1 ≡R∼ η2. With similar reasoning, one

can show that if µXF
α

−→ η2 there exists η1 s.t. E
α

−→ η1 and η1 ≡R∼ η2. ut

At last Proposition 4 is proved by collecting all the results in Propositions 9-
12.

B Proof of Proposition 5

Lemma 9. 1. If E
u

−→ {Ei : pi}i then E{G/X}
u

−→ {Ei{G/X} : pi}i;

2. If E
u

=⇒ {Ei : pi}i then E{G/X}
u

=⇒ {Ei{G/X} : pi}i;

3. If E
u

=⇒c {Ei : pi}i then E{G/X}
u

=⇒c {Ei{G/X} : pi}i;
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4. If E
û

=⇒c {Ei : pi}i then E{G/X}
û

=⇒c {Ei{G/X} : pi}i.

Proof. Straightforward by induction on inference. ut

Lemma 10. 1. If E
X
−→ {0 : 1} and G

α
−→ η then E{G/X}

α
−→ η.

2. If E
X

=⇒ {0 : 1} and G
α

−→ η then E{G/X}
α

=⇒ η.

Proof. Straightforward by examining the structure of E. ut

Lemma 11. If E{G/X}
α

−→ η then one of the following two cases holds.

1. E
X
−→ {0 : 1} and G

α
−→ η;

2. η = {Ei{G/X} : pi}i and E
α

−→ {Ei : pi}i.

Proof. By induction on the depth of the inference of E{G/X}
α

−→ η. ut

Proposition 13. If E ≈ F then E{G/X} ≈ F{G/X} for any G ∈ E.

Proof. Consider the relation R = {(E{G/X}, F{G/X}) | E, F ∈ E and E ≈
F}. Since ≈ is an equivalence relation, it follows that R is also an equivalence
relation. So if we can show the assertion:
“If E{G/X}

α
−→ η1 then there exists η2 s.t. F{G/X}

α̂
=⇒c η2 and η1 ≡R η2”

then it follows from Definition 4 that R is a weak probabilistic bisimulation.
We now prove the above assertion. From Lemma 11 we know that there are

two possibilities:

1. E
X
−→ {0 : 1} and G

α
−→ η1. Thus F

X
=⇒c {0 : 1} because E ≈ F .

From Lemma 4 we know that F
X

=⇒ {0 : 1}. By Lemma 10 it follows

that F{G/X}
α

=⇒ η1. We can simply take η1 as η2 and finish this case.

2. η1 = {Ei{G/X} : pi} and E
α

−→ θ1 = {Ei : pi}i. Since E ≈ F there

exists θ2 = {Fj : qj}j s.t. F
α̂

=⇒c θ2 and θ1 ≡≈ θ2. By Lemma 9 we

can derive F{G/X}
α̂

=⇒c η2 = {Fj{G/X} : qj}j . Observe that for any
E′, F ′ ∈ {Ei}i ∪ {Fj}j it holds that E′ ≈ F ′ iff E′{G/X} R F ′{G/X}.
Hence it follows from θ1 ≡≈ θ2 that η1 ≡R η2 and we complete the proof of
this case.

ut

Proposition 14. If E ' F then E{G/X} ' F{G/X} for any G ∈ E.

Proof. Due to symmetry, it suffices to verify that if E{G/X}
α

−→ η1 then there

exists η2 s.t. F{G/X}
α

=⇒c η2 and η1 ≡≈ η2. From Lemma 11 we know that
there are two possibilities:

1. E
X
−→ {0 : 1} and G

α
−→ η1. Thus F

X
=⇒c {0 : 1} because E ' F .

From Lemma 4 we know that F
X

=⇒ {0 : 1}. By Lemma 10 it follows

that F{G/X}
α

=⇒ η1. We we can simply take η1 as η2 and finish this case.
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2. η1 = {Ei{G/X} : pi} and E
α

−→ θ1 = {Ei : pi}i. Since E ' F there exists

θ2 = {Fj : qj}j s.t. F
α

=⇒c θ2 and θ1 ≡≈ θ2. By Lemma 9 we can derive

F{G/X}
α

=⇒c η2 = {Fj{G/X} : qj}j . By Proposition 13 it holds that for
any E′, F ′ ∈ {Ei}i ∪ {Fj}j if E′ ≈ F ′ then E′{G/X} ≈ F ′{G/X}. Hence
it follows from θ1 ≡≈ θ2 that η1 ≡≈ η2 and we complete the proof of this
case.

ut

Lemma 12. 1. The following rules are derivable:

D1
Ej

α
=⇒c η∑

i∈1..n Ei
α

=⇒c η
for some j ∈ 1..n D2

E{µXE/X}
α

=⇒c η

µXE
α

=⇒c η

D3
E

α̂
=⇒c {Ei : pi}i

E | F
α̂

=⇒c {Ei | F : pi}i

D4
E

a
=⇒c {Ei : pi}i∈I F

ā
−→ {Fj : qj)}j∈J

E | F
τ

=⇒c {Ei | Fj : piqj)}i∈I,j∈J

2. If
∑

i∈1..n Ei
α

=⇒ η then Ej
α

=⇒ η for some j ∈ 1..n, with a shorter inference.

3. If µXE
α

=⇒ η then E{µXE/X}
α

=⇒ η, with a shorter inference.

Proof. Straightforward by induction on inference. ut

Lemma 13. 1. Let R be a weak probabilistic bisimulation. If E R F then

whenever E
α̂

=⇒c η, there exists η′ such that F
α̂

=⇒c η′ and η ≡R η′.
2. Suppose E ' F . If E

α
=⇒c η then there exists η′ s.t. F

α
=⇒c η′ and η ≡≈ η′.

Proof. By transition induction. ut

Lemma 14. If E ≈ F then E | G ≈ F | G.

Proof. We show that the relation ≈| is a weak probabilistic bisimulation. There
are four cases, among which we consider two of them, the others are similar.

Case 1: Suppose η1 = {Ei | G : pi}i and E | G
α

−→ η1 is derived from

the transition E
α

−→ θ1 = {Ei : pi}i. Since E ≈ F , there exists θ2 such that

F
α̂

=⇒c θ2 and θ1 ≡≈ θ2. Let θ2 = {Fj : qj}j , by rule D3 we have the transition

F | G
α̂

=⇒c {Fj | G : qj}j = η2. Let θ = {G : 1}, then we have η1 = θ1 | θ and
η2 = θ2 | θ. By Lemma 2 it follows that η1 ≡≈| η2.

Case 2: Suppose E
a

−→ θ1, G
ā

−→ θ, and E | G
τ

−→ η1 with η1 = θ1 | θ.

Since E ≈ F , there exists θ2 such that F
a

=⇒c θ2 and θ1 ≡≈ θ2. By rule D4 we
have the transition F | G

τ
=⇒c η2 with η2 = θ2 | θ. By Lemma 2 it follows that

η1 ≡≈| η2. ut

Proposition 15. If E ' F then E | G ' F | G.
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Proof. Similar to the proof of Lemma 14. We need to use the above proved result
that ≈| ⊆ ≈. ut

Proposition 16. If E ' F then µXE ' µXF .

Proof. Let ρ = {µXE/X} and σ = {µXF/X}. We show that the relation

R = {(Gρ, Gσ) | E, F, G ∈ E and E ' F}

is an observational equivalence up to '. Because of symmetry we only need to
show that if Gρ

α
=⇒ η there exists η′ s.t. Gσ

α
=⇒c η′ and η ≡R≈ η′. The proof

is carried out by induction on the depth of the inference of Gρ
α

=⇒ η. There are
several cases depending on the structure of G. We consider three typical ones.

– G ≡ X : Then Gρ ≡ µXE
α

=⇒ η. By Lemma 12 we have a shorter inference
with the conclusion Eρ

α
=⇒ η. By induction hypothesis there exists θ s.t.

Eσ
α

=⇒c θ and η ≡R≈ θ. Since E ' F we have Eσ ' Fσ by Proposition 14.

By Lemma 13 (2) there exists η′ s.t. Fσ
α

=⇒c η′ and θ ≡≈ η′. By rule D2 it

holds that µXF
α

=⇒c η′. At last it follows from Lemma 1 and the transitivity
of ≡R≈ that η ≡R≈ η′.

– G ≡
∑

i∈1..n Gi: If Gρ
α

=⇒ η then by Lemma 12, Gjρ
α

=⇒ η for some
j ∈ 1..n with a shorter inference. By induction hypothesis there exists η′ s.t.
Gjσ

α
=⇒c η′ and η ≡R≈ η′. By rule D1 it holds that Gσ

α
=⇒c η′.

– G ≡ G1 | G2: Then fv(G) = ∅ and G = Gρ = Gσ. Clearly if Gρ
α

=⇒ η then

Gσ
α

=⇒ η.
ut

Proposition 17. ' is a congruence relation.

Proof. Given Ẽ ' F̃ , we need to show the following three clauses:

1. u.
⊕

i piEi ' u.
⊕

i piFi;
2.

∑
i∈1..n Ei '

∑
i∈1..n Fi;

3. E1 | E2 ' F1 | F2;
4. µXE1 ' µXF1.

Among them, the first two clauses are easy to prove; the last two are shown in
Proposition 15 and Proposition 16 respectively. ut

Proposition 18. 1. E ≈ F iff τ.E ' τ.F ;
2. If τ.E ' τ.E + F and τ.F ' τ.F + E then τ.E ' τ.F .

Proof. The first clause is straightforward. For the second one, it suffices to prove
that E ≈ F . Consider the relation

R = {(E, F ) | E, F ∈ E , τ.E ' τ.E + F and τ.F ' τ.F + E}.

We show that R is a weak probabilistic bisimulation up to ≈. Suppose that
E

α
=⇒ η. By the condition E + τ.F ' τ.F and Lemma 13 (2), there exists η′ s.t.

τ.F
α

=⇒c η′ and η ≡≈ η′. Since τ.F ≈ F , by Lemma 13 (1) there exists η′′ s.t.

F
α̂

=⇒c η′′ and η′ ≡≈ η′′. Then it is easy to see that η ≡R≈ η′′. Similar result
holds when E and F exchange their roles. ut
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We use a measure dX(E) to count the depth of guardedness of the free
variable X in expression E.

dX(X) = 0
dX (Y ) = 0

dX(E | F ) = 0
dX(a.E) = dX(E) + 1
dX(τ.E) = dX(E)

dX(
⊕

i piEi) = min{dX(Ei)}i

dX(
∑

i Ei) = min{dX(Ei)}i

dX(µY E) = dX(E)

Note that dX(E | F ) = 0 because fv (E | F ) = ∅. If dX(E) > 0 then X is guarded
in E.

Lemma 15. Let dX(G) = n and η = {Gi : pi}i∈I . Suppose G{E/X}
α

=⇒ η.
For all i ∈ I, it holds that

1. If n > 0 and α = τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n;
2. If n > 1 and α 6= τ then Gi = G′

i{E/X} and dX(G′
i) ≥ n − 1.

Proof. By induction on the depth of the inference of G{E/X}
α

=⇒ η. ut

Lemma 16. Suppose dX(G) > 1, η = {Gi : pi}i∈I and G{E/X}
α

=⇒ η. Then

Gi = G′
i{E/X} for each i ∈ I. Moreover, G{F/X}

α
=⇒ η′ and η ≡R∗ η′, where

η′ = {G′
i{F/X} : pi}i∈I and R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

Proof. A direct consequence of Lemma 15. ut

The following Lemma is a counterpart of Lemma 8.

Lemma 17. Let dX(G) > 1. If G{E/X}
α

=⇒c η then G{F/X}
α

=⇒c η′ such
that η ≡R∗ η′ where R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

Proof. Let η = r1η1 + ... + rnηn and G{E/X}
α

=⇒ ηi for each i ≤ n. By

Lemma 16, for each i ≤ n, there exists η′
i s.t. G{F/X}

α
=⇒ η′

i and ηi ≡R∗ η′
i.

Now let η′ = r1η
′
1 + ...+rnη′

n, thus G{F/X}
α

=⇒c η′. By lemma 7 it follows that
η ≡R∗ η′. ut

Proposition 19. If E ' F{E/X} and X is guarded in F then E ' µXF .

Proof. We show that the relation R = {(G{E/X}, G{µXF/X}) | for any G ∈
E} is an observational equivalence up to '. That is, we need to show the following
assertions:

1. if G{E/X}
α

=⇒ η then there exists η′ s.t. G{µXF/X}
α

=⇒c η′ and η ≡R≈ η′;

2. if G{µXF/X}
α

=⇒ η′ then there exists η s.t. G{E/X}
α

=⇒c η and η ≡R≈ η′;
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We concentrate on the first clause since the second one is similar. The proof
follows closely the arguments in proving Proposition 16, thus we only consider
the case that G ≡ X .

We write G(E) for G{E/X} and G2(E) for G(G(E)). Since E ' F (E),
we have E ' F 2(E) since ' is an congruence relation by Proposition 17. If

E
α

=⇒ η then by Lemma 13 (2) there exists θ1 s.t. F 2(E)
α

=⇒c θ1 and η ≡≈ θ1.
Since X is guarded in F , i.e., dX(F ) > 0, then it follows that dX(F 2(X)) > 1.

By Lemma 17, there exists θ2 s.t. F 2(µXF )
α

=⇒c θ2 and θ1 ≡R∗ θ2. From
Proposition 10 we have µXF ∼ F 2(µXF ), thus µXF ' F 2(µXF ). By Lemma 13

(2) there exists η′ s.t. µXF
α

=⇒c η′ and θ2 ≡≈ η′. From Lemma 1 and the
transitivity of ≡R≈ it follows that η ≡R≈ η′. ut

Finally Proposition 5 is proved by collecting all the results in Propositions 17-
19.
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