
A Characterisation of

Weak Bisimulation Congruence

Rob van Glabbeek

National ICT Australia
and School of Computer Science and Engineering

The University of New South Wales
rvg@cs.stanford.edu

Abstract. This paper shows that weak bisimulation congruence can
be characterised as rooted weak bisimulation equivalence, even without
making assumptions on the cardinality of the sets of states or actions of
the processes under consideration.

Introduction

Weak bisimulation equivalence, also known as observation equivalence [Mil90],
is a fundamental semantic equivalence used in system verification, and one of
the first proposed in the literature. It upgrades strong bisimulation equivalence
by featuring abstraction from internal actions.

In order to allow compositional system verification, semantic equivalence
relations need to be congruences for the operators under consideration, meaning
that the equivalence class of an n-ary operator f applied to arguments p1, . . . , pn

is completely determined by the equivalence classes of these arguments. Although
strong bisimulation equivalence is a congruence for the operators of CCS, ACPτ

and many other languages found in the literature, weak bisimulation equivalence
fails to be a congruence for the choice or alternative composition operator + of
CCS, as well as for the left-merge ‖− of ACPτ . To bypass this problem, one
uses the coarsest congruence relation for + that is finer than weak bisimulation
equivalence, called weak bisimulation congruence, and characterised as rooted
weak bisimulation equivalence in [BK85]. This equivalence turns out to be a
minor variant of weak bisimulation equivalence, and a congruence for all of CCS,
ACPτ and many other languages.

Classical proof sketches arguing that rooted weak bisimulation equivalence
is indeed weak bisimulation congruence typically make some cardinally assump-
tions, such as that there is an infinite alphabet of actions of which each process
uses only a finite subset. The current contribution establishes the validity of this
characterisation without making such assumptions. It also argues that the root
condition that turns weak bisimulation into rooted weak bisimulation embodies
two properties, one of which is needed to obtain a congruence for the +, and one
to obtain a congruence for the left-merge.

2 R.J. van Glabbeek

1 Process Graphs

Definition 1 ([BK86]). A process graph over an alphabet of actions Act is a
rooted, directed graph whose edges are labelled by elements of Act. Formally, a
process graph g is a triple (nodes(g),root(g), edges(g)), where

– nodes(g) is a set, of which the elements are called the nodes or states of g,
– root(g) ∈ nodes(g) is a special node: the root or initial state of g,
– and edges(g) ⊆ nodes(g) × Act × nodes(g) is a set of triples (s, a, t) with

s, t ∈ nodes(g) and a ∈ Act: the edges or transitions of g.

Normally, one is not interested in the names of the nodes in a process graph.
For this reason, process graphs are considered up to isomorphism.

Definition 2. Let g and h be process graphs. A graph isomorphism between g

and h is a bijective function f : nodes(g) → nodes(h) satisfying

– f(root(g)) = root(h) and
– (s, a, t) ∈ edges(g) ⇔ (f(s), a, f(t)) ∈ edges(h).

Graphs g and h are isomorphic, notation g ∼= h, if there exists a graph isomor-
phism between them.

If g ∼= h then g and h differ only in the identity of their nodes. Graph isomorphism
is an equivalence relation on the class of process graphs.

Further on, process graphs are pictured by using open dots (◦) to denote
nodes, and labelled arrows to denote edges. The root is represented by an incom-
ing arrow, not originating from another node. These drawings present process
graphs only up to isomorphism.

Let |G(Act) be the class of process graphs over the alphabet of actions Act

up to isomorphism. This means that I am satisfied with a level of precision in
describing elements of |G(Act) that fails to distinguish isomorphic process graphs.
In the digression below I will indicate how to raise the precision of my definitions
to a fully formal level; the digression should also make clear that it is not really
worthwhile to maintain this level throughout the paper.

Next I define the most basic process algebraic operations on |G(Act): a con-
stant 0 for inaction, a binary infix written operator + for alternative composition
or choice, and unary operators a. for action prefixing for each a ∈ Act. For the
sake of convenience, in the definition below I will only consider root-acyclic pro-
cess graphs. In Sect. 3 I will extend the definition to arbitrary process graphs.

Definition 3 ([BK86]). A process graph is root-acyclic if it has no incoming
edges at the root. Let |Gρ(Act) be the class of root-acyclic process graphs over
Act up to isomorphism. The constant 0 and the operators a. and +ρ are defined
on |Gρ(Act) as follows. (The subscript ρ serves to distinguish this alternative
composition from the more general one that will be defined in Sect. 3.)

– 0 is interpreted as the trivial graph, having one node (the root) and no edges;
– a.g is obtained from g by adding a new node, which will be the root of a.g,

and a new a-labelled edge from the root of a.g to the root of g;
– g +ρ h is obtained by identifying the root nodes of disjoint copies of g and h.

A Characterisation of Weak Bisimulation Congruence 3

Digression: Distinguishing Isomorphic Process Graphs

In Def. 3 I have not bothered to tell which node exactly will be the only node
of the process graph 0 and which new node will be added in the construction
of a.g. Moreover, in taking the disjoint union of g and h, no explicit solution is
offered for what to do when g and h have nodes in common. Here I provide two
possible answers. As it doesn’t matter at all which one is chosen, the reader may
pick himself, or make up a third.

Making arbitrary choices to resolve ambiguity.

The definitions of 0 and a.g could for instance be given as follows:

– nodes(0) = {∗},
– root(0) = ∗,
– edges(0) = ∅.

– nodes(a.g) = {∗} ∪ {s′ | s ∈ nodes(g)},
– root(a.g) = ∗,
– edges(a.g) = {(∗, a,root(g)′)} ∪ {(s′, a, t′) | (s, a, t) ∈ edges(g)}.

Here the nodes of g are renamed from s into s′, so as to make sure that none of
them happens to be the symbol ∗ that is used to name the new root node.

Working modulo isomorphism.

In this approach |G(Act) is the class of process graph modulo isomorphism, mean-
ing that the elements of |G(Act) are isomorphism classes of process graphs.

Now 0 ∈ |Gρ(Act) is defined as the isomorphism class of all trivial process
graphs, after observing that all trivial graphs are isomorphic. To obtain the
isomorphism class a.G, for G an isomorphism class of process graphs, I first pick
a representative g∈G and a fresh object r 6∈ nodes(g). Then a.g is defined by

– nodes(a.g) = nodes(g) ∪ {r},
– root(a.g) = r and
– edges(a.g) = edges(g) ∪ {(r, a,root(g))}.

Finally, a.G is defined to be the isomorphism class containing a.g, and the
exercise is concluded by showing that the result is independent of the choice
of g ∈ G. Likewise, G +ρ H , for G, H ∈ |Gρ(Act), is obtained as the isomor-
phism class of g +ρ h, where g ∈ G and h ∈ H are chosen in such a way that
nodes(g) ∩ nodes(h) = root(g) = root(h), and g +ρ h is defined by

– nodes(g +ρ h) = nodes(g) ∪ nodes(h),
– root(g +ρ h) = root(g) = root(h) and
– edges(g +ρ h) = edges(g) ∪ edges(h).

Again, it must be shown that the result is independent of the choice of g and h.

4 R.J. van Glabbeek

2 Bisimulation Semantics

To make process graphs into a useful semantic model of calculi that enable
system verification, a semantic equivalence coarser than isomorphism needs to be
defined. The most popular choices are strong and weak bisimulation equivalence,
and some of their variants. Such an equivalence can be used fruitfully when it is a
congruence for the process algebraic operators that are considered in a particular
application. These almost always include the operators 0, a. and +. A semantic
equivalence ∼ is a congruence for these operators if g ∼ h implies a.g ∼ a.h and
g1 ∼ h1 ∧ g2 ∼ h2 implies g1 + g2 ∼ h1 + h2.

2.1 Strong Bisimulation

Definition 4. Let g, h ∈ |G(Act). The graphs g and h are (strong) bisimulation
equivalent, notation g ↔ h, if there exists a binary relation R ⊆ nodes(g) ×
nodes(h), called a bisimulation between g and h, satisfying, for all a∈Act:

– root(g) R root(h).

– If sRt and (s, a, s′) ∈ edges(g), then ∃(t, a, t′) ∈ edges(h) such that s′Rt′.

– If sRt and (t, a, t′) ∈ edges(h), then ∃(s, a, s′) ∈ edges(g) such that s′Rt′.

It is well-known and easy to check that ↔ is an equivalence relation indeed.
I will now show that it is a congruence relation for a. and +ρ. Because these
operators have so-far not been defined outside |Gρ(Act), for now this result will
pertain to root-acyclic process graphs only.

Definition 5. A relation between the nodes of two root-acyclic process graphs
is called rooted if it relates root nodes with root nodes only.

Lemma 1. Let g, h ∈ |Gρ(Act). If g ↔ h then there exist a rooted bisimulation
between g and h.

Proof. Let R be a bisimulation between g and h. A rooted bisimulation is ob-
tained from R by omitting all liaisons between root nodes and non-root nodes.

Proposition 1. On |Gρ(Act), bisimulation equivalence is a congruence for a.

and +ρ.

Proof. Suppose R is a bisimulation between g and h. Then

R ∪ {(root(a.g),root(a.h))}

is a bisimulation between a.g and a.h. Moreover, invoking Lemma 1, let Ri be
a rooted bisimulation between gi and hi for gi, hi ∈ |Gρ(Act) and i = 1, 2 then
R1 ∪ R2 is a bisimulation between g1 +ρ g2 and h1 +ρ h2. ut

A Characterisation of Weak Bisimulation Congruence 5

2.2 Weak Bisimulation

Let τ ∈ Act be the invisible action or silent step. Henceforth, write s
a

−→g s′ for
(s, a, s′) ∈ edges(g) and s ==⇒g s′ when there are s0, . . . , sn in nodes(g) such
that s = s0

τ
−→g s1

τ
−→g · · ·

τ
−→g sn = s′. Moreover, s a

==⇒g s′ denotes that there
are nodes s1 and s2 in g such that s ==⇒g s1

a
−→g s2 ==⇒g s′ and s

(a)
==⇒g s′ is a

shorthand for s ==⇒g s′ when a = τ , and s
a

==⇒g s′ when a 6= τ . Thus, s
(τ)

==⇒g s′

says that in g one can travel from s to s′ by performing a sequence of zero or
more τ -steps, whereas s

τ
==⇒g s′ requires at least one τ -step. For a 6= τ there is

no difference between
(a)

==⇒g and a
==⇒g .

Definition 6. Let g, h ∈ |G(Act). The graphs g and h are weak bisimulation
equivalent, notation g ↔w h, if there exists a binary relation R ⊆ nodes(g) ×
nodes(h), called a weak bisimulation between g and h, satisfying, for all a∈Act:

– root(g) R root(h).
– If sRt and s

a
−→g s′, then there is a t′ such that t

(a)
==⇒h t′ and s′Rt′.

– If sRt and t
a

−→g t′, then there is an s′ such that s
(a)

==⇒h s′ and s′Rt′.

It is well-known and easy to check that ↔w is an equivalence relation indeed.
However, ↔w fails to be a congruence for the +. Namely, τ.a.0 ↔w a.0 but
τ.a.0 +ρ b.0 6↔w a.0 +ρ b.0. The proof of Prop. 1 does not generalise to ↔w

because Lemma 1 does not hold for ↔w : there is no rooted weak bisimulation
between τ.a.0 and a.0.

2.3 Rooted Weak Bisimulation

Although weak bisimulation equivalence captures the invisible nature of the
silent step rather well, in order to obtain a congruence, a finer equivalence rela-
tion is needed. Such an equivalence was proposed by Bergstra & Klop in [BK85].
In fact it is the obvious “fix” in the definition of weak bisimulation equivalence
needed to inherit the proof of Prop. 1.

Definition 7 ([BK85]). Two graphs g, h ∈ |Gρ(Act) are rooted weak bisimu-
lation equivalent, notation g ↔rw h, if there exists a rooted weak bisimulation
between them (recall Def. 5).

Again, it is easy to check that ↔rw is an equivalence relation. By definition
it is finer than ↔w . It is strictly finer because τ.0 ↔w 0 but τ.0 6↔rw 0 (and
likewise τ.a.0↔w a.0 but τ.a.0 6↔rw a.0). Moreover, Lemma 1 implies that ↔rw

is coarser than ↔ . It is strictly coarser because τ.τ.0↔rw τ.0 but τ.τ.0 6↔ τ.0.

Proposition 2. On |Gρ(Act), rooted weak bisimulation equivalence is a congru-
ence for a. and +ρ.

Proof. Suppose R is a rooted weak bisimulation between g and h. Then

R ∪ {(root(a.g),root(a.h))}

is a rooted weak bisimulation between a.g and a.h. Moreover, let Ri be a rooted
weak bisimulation between gi and hi for gi, hi ∈ |Gρ(Act) and i = 1, 2 then
R1 ∪ R2 is a rooted weak bisimulation between g1 +ρ g2 and h1 +ρ h2. ut

6 R.J. van Glabbeek

3 Root Unwinding

In this section I will generalise the definitions and results of Sections 1 and 2
from root-acyclic to general process graphs.

3.1 The Definition of Alternative Composition

The definition of 0 and a. on |G(Act) is exactly as on |Gρ(Act) (see Def. 3).
However, defining the + on |G(Act) as in Def. 3 would yield counterintuitive
results. Namely we would have g + h = m, as in the top row of Fig. 1. However,
m is able to first do a number of a-actions from g and then a b from h; this
is inconsistent with the idea that g + h should from the initial state onwards
behave either as g or as h. In fact, strong bisimulation equivalence would fail to
be a congruence for this definition of +, for g↔ gρ, yet m 6↔ k.

a

g

+

h
b

6=

a

m
b

a

a

gρ

+

h
b

=

a

a

k
b

Fig. 1. Alternative composition of process graphs

For most applications we are interested in process graphs only up to strong
bisimulation equivalence. Up to strong bisimilarity, the definition of the + on
|G(Act) is completely determined by its definition on |Gρ(Act), because every pro-
cess graph is strongly bisimilar with a root-acyclic process graph. The following
construction is used to establish this.

Definition 8 ([BK86]). Root unwinding is the operator ρ on |G(Act) given by

– nodes(ρ(g)) = nodes(g)
.

∪ {∗},
– root(ρ(g)) = {∗} and
– edges(ρ(g)) = edges(g) ∪ {(∗, a, s) | (root(g), a, s) ∈ edges(g)}.

Note that ρ(g) ∈ |Gρ(Act) for all g ∈ |G(Act).

Proposition 3 ([BK86]). g↔ ρ(g) for every process graph g ∈ |G(Act).

Proof. The relation {(s, s) | s ∈ nodes(g)} ∪ {(root(g), ∗)} is a bisimulation
between g and ρ(g). ut

A Characterisation of Weak Bisimulation Congruence 7

Definition 9 ([BK86]). The definition of the + is extended from |Gρ(Act) to
|G(Act) by g + h := ρ(g) +ρ ρ(h), where +ρ is given by Def. 3.

This construction automatically entails that ↔ is a congruence for the +.

Proposition 4. On |G(Act), ↔ is a congruence for a. and +.

Proof. The case of a. goes exactly as in Prop. 1. Let g↔ g′ and h↔ h′.
Then ρ(g)↔ g↔ g′↔ ρ(g′) and likewise ρ(h)↔ ρ(h′).
Hence g + h = ρ(g) +ρ ρ(h)↔ ρ(g′) +ρ ρ(h′) = g′ + h′ by Prop. 1. ut

On |Gρ(Act) it is in general not the case that g + h ∼= g +ρ h. However, up to
strong bisimilarity, both versions of the + agree.

Proposition 5. Let g, h ∈ |Gρ(Act). Then g + h↔ g +ρ h.

Proof. g + h = ρ(g) +ρ ρ(h)↔ g +ρ h, using Propositions 3 and 1. ut

It is also possible to merge the definitions of +, +ρ and root unwinding:

Definition 10. Let g, h ∈ |Gρ(Act). Then g + h can alternatively be defined by

– nodes(g + h) = nodes(g)
.

∪ nodes(h)
.

∪ {∗},
– root(g + h) = {∗} and
– edges(g + h) = edges(g) ∪ edges(h) ∪

{(∗, a, s) | (root(g), a, s) ∈ nodes(g) ∨ (root(h), a, s) ∈ nodes(h)}.

It is trivial to check that up to isomorphism this definition yields the same
alternative composition operator as Def. 9.

3.2 Rooted Weak Bisimulation

Postulating that rooted weak bisimulation has to be a coarser equivalence than
strong bisimulation, Prop. 3 implies that there is a unique extension of ↔rw

from |Gρ(Act) to |G(Act).

Definition 11. Let g, h ∈ |G(Act). Then g↔rw h iff ρ(g)↔rw ρ(h) as per Def. 7.

Proposition 6. On |G(Act), ↔rw is a congruence for a. and +.

Proof. The case of a. goes exactly as in Prop. 2. Let g↔rw g′ and h↔rw h′.
Then ρ(g)↔ g↔rw g′↔ ρ(g′), so ρ(g)↔rw ρ(g′), and likewise ρ(h)↔rw ρ(h′).
Hence g + h = ρ(g) +ρ ρ(h)↔rw ρ(g′) +ρ ρ(h′) = g′ + h′ by Prop. 2. ut

The following characterisation of rooted weak bisimulation equivalence was taken
as definition in [Mil90]. Let, for g ∈ |G(Act) and s ∈ nodes(g), gs denote the
process graph obtained from g by appointing s as its root.

8 R.J. van Glabbeek

Proposition 7. Let g, h ∈ |G(Act). Then g↔rw h iff

– if root(g)
a

−→g s then there is a t such that root(h) a
==⇒h t and gs ↔w ht;

– if root(h)
a

−→h t then there is an s such that root(g) a
==⇒g s and gs ↔w ht.

Proof. “If”: Let B = {(s, t) ∈ nodes(g) × nodes(h) | gs↔w ht} and

Bρ = B
.

∪ {(root(ρ(g)),root(ρ(h)))} ⊆ nodes(ρ(g)) × nodes(ρ(h)),

recalling that nodes(ρ(g)) = nodes(g)
.

∪ {root(ρ(g))}, and likewise for ρ(h).
Assume that both clause above hold. It suffices to show that Bρ is a rooted weak
bisimulation between ρ(g) and ρ(h), for by Def. 11 this implies g ↔rw h. The
relation Bρ is rooted by construction. So I need to show it is a weak bisimulation.

Let sBρt and s
a

−→ρ(g) s′. It suffices to show that there is a t′ such that
t

(a)
==⇒ρ(h) t′ and s′Bρt′. The other requirement then follows by symmetry.

First assume sBt. In that case, s
a

−→g s′ and gs ↔w ht, so there is a weak
bisimulation R between gs and hs. Thus sRt, and there must be a t′ such that

t
(a)

==⇒h t′ and s′Rt′. Hence gs′ ↔w ht′ , s′Bt′ and s′Bρt′. Def. 8 yields t
(a)

==⇒ρ(h) t′.
Now assume s = root(ρ(g)) and t = root(ρ(h)), so root(ρ(g))

a
−→ρ(g) s′.

Then, by Def. 8, root(g)
a

−→g s′, so by the first clause of Prop. 7 there is a t′

such that root(h)
a

==⇒h t′ and gs′ ↔w ht′ . Hence s′Bt′ and s′Bρt′. Def. 8 yields
root(ρ(h)) a

==⇒ρ(h) t′, hence t = root(ρ(h))
(a)

==⇒ρ(h) t′.
“Only if”: Let R be a rooted weak bisimulation between ρ(g) and ρ(h).

Suppose root(g)
a

−→g s. Def. 8 yields root(ρ(g))
a

−→ρ(g) s, so there must be a

t such that root(ρ(h))
(a)

==⇒ρ(h) t and sRt. As R is rooted, the case that a = τ and

t=root(ρ(h)) cannot apply, so root(ρ(h))
a

==⇒ρ(h) t, hence root(h)
a

==⇒h t by
Def. 8. Furthermore, sRt implies gs↔w ht. The other clause follows by symmetry.

4 Weak Bisimulation Congruence

A different modification of weak bisimulation equivalence into a congruence for
the + was proposed in [HM85].

Proposition 8. For every equivalence relation ∼ on |G(Act) and every set L of
operators on |G there is a coarsest congruence relation ∼c that is finer than ∼.

Proof. Let a semantic context C[·] be an expression build from process graphs
g ∈ |G(Act) and the hole [·] through application of operators from L, and in
which the hole occurs exactly once. If C[·] is a semantic context and g ∈ |G(Act),
then C[g] denotes the process graph obtained by evaluating the expression C[·]
in which g is substituted for the hole [·].

Alternatively, a semantic context can be regarded as a unary operator on
process graphs: a primitive context is obtained from an operator in L by instan-
tiating all but one of its arguments by process graphs; and a general semantic
context is the composition of any number (possibly 0) of primitive contexts.

A Characterisation of Weak Bisimulation Congruence 9

An equivalence relation ≈ on |G(Act) is a congruence for L iff for every n-ary
operator f in L one has g1 ≈ h1∧· · ·∧gn ≈ hn ⇒ f(g1, . . . , gn) ≈ f(h1, . . . , hn).
This is the case iff for every semantic context C[·] one has g ≈ h ⇒ C[g] ≈ C[h].

Given an equivalence relation ∼ on |G(Act), define ∼c by

g ∼c h iff C[g] ∼ C[h] for every semantic context C[·].

By construction, ∼c is a congruence on |G(Act). For if g ∼c h and D[·] is a
semantic context, then for every semantic context C[·] also C[D[·]] is a semantic
context, so ∀C[·](C[D[g]] ∼ C[D[h]]) and hence D[g] ∼c D[h].

The trivial context guarantees that g ∼c h ⇒ g ∼ h, so ∼c is finer than ∼.
Finally, ∼c is the coarsest congruence finer than ∼, because if ≈ is any

congruence finer than ∼, then

g ≈ h ⇒ ∀C[·](C[g] ≈ C[h]) ⇒ ∀C[·](C[g] ∼ C[h]) ⇒ g ∼c h. ut

Definition 12. The coarsest congruence w.r.t. the + that is finer than weak
bisimulation equivalence is called weak bisimulation congruence, notation ↔c

w .

Here I address the question whether both approaches coincide, i.e. whether
↔rw = ↔c

w . Prop. 6 immediately yields ↔rw ⊆ ↔c
w . The following proof

sketch, due to Jan Willem Klop [personal communication], is a first attempt to
establish the reverse.

Proof Sketch. It suffices to restrict attention to the graphs in |Gρ(Act), for when
g ↔c

w h ⇒ g ↔rw h for g, h ∈ |Gρ(Act), then by Prop. 3 the same holds for
g, h ∈ |G(Act). [Namely g ↔c

w h ⇒ ρ(g) ↔ g ↔c
w h ↔ ρ(h) ⇒ ρ(g) ↔c

w ρ(h) ⇒
ρ(g)↔rw ρ(h) ⇒ g↔ ρ(g)↔rw ρ(h)↔ h ⇒ g↔rw h.]

So let g, h ∈ |Gρ(Act) and assume g↔c
w h. Let a 6= τ be an action that does

not occur in either g or h. Then g +a.0↔w h+a.0 by the definition of ↔c
w . Let

R be a weak bisimulation between g + a.0 and h + a.0.

Claim. R must be rooted.

Proof of Claim. root(g + a.0)
a

−→g+a.0 root(0), so if root(g + a.0) R t then
t

a
==⇒h+a.0 t′ for some t′ ∈ nodes(h+a.0) with root(0) R t′. This is only possible

if t = root(h + a.0). By symmetry, s Rroot(h + a.0) is only possible if s =
root(g + a.0).

Application of Claim. The restriction of R to the nodes of g and h is a rooted
weak bisimulation between g and h, showing that g↔rw h. ut

The only weak point in this proof sketch is in the choice of an action a 6= τ that
does not occur in g or h. What if such an action does not exists? Below I present
two solutions to this problem.

4.1 The Fresh Atom Principle

The Fresh Atom Principle (FAP) allows us to use fresh actions in proofs. It was
invented and named by Jan Willem Klop [personal communication]. In order
to justify the use of FAP, one needs to realise that for any choice of a set of

10 R.J. van Glabbeek

actions Act containing τ there exists a class |G(Act) of process graphs over Act.
Likewise a parametrised semantic equivalence ∼ has an incarnation in each of
these classes, and I write ∼Act to denote the equivalence ∼ as it exists in |G(Act).
Obviously, |G(A) ⊆ |G(B) for sets of actions A ⊆ B. Now say that a parametrised
equivalence ∼ satisfies FAP, if, whenever A ⊆ B, ∼A is the restriction of ∼B to
|G(A), i.e. if for g, h ∈ |G(A) ⊆ |G(B) one has g ∼A h ⇔ g ∼B h. It is immediate
from their definitions that ↔ , ↔w , ↔rw and most other semantic equivalences
defined in the literature satisfy FAP. In fact, satisfying FAP looks like a good
sanity check for any meaningful equivalence.

In this spirit, one may want to use, instead of ↔c
w , the coarsest congruence

finer than ↔w that satisfies FAP, notation ↔fc
w . This congruence is obtained

by allowing, in the proof of Prop. 8, contexts C that may involve fresh actions.

Theorem 1. ↔fc
w coincides with ↔rw .

Proof. The proof sketch above applies here. After assuming g ↔fc
w h in |G(Act),

apply FAP to obtain g↔fc
w h in |G(Act

.

∪ {a}). As in the proof sketch, conclude

that g↔rw h in |G(Act
.

∪ {a}). Since ↔rw satisfies FAP this implies that g↔rw h

in |G(Act). ut

4.2 Arbitrary Many Non-bisimilar Processes

Even though we now know that ↔rw coincides with ↔fc
w and thus is the

coarsest sane equivalence contained in ↔w that is a congruence for the +, the
question still remains if also ↔c

w coincides with ↔rw . In case Act = {τ}, this is
not the case. For in that case ↔w , and hence also ↔c

w , is the universal relation,
but τ.0 6↔rw 0. However, as I will show in the following, in all other cases we
have in fact that ↔c

w = ↔rw .

Proposition 9 (Jan Willem Klop). Provided that there is at least one action
a ∈ Act − {τ}, for each infinite cardinal κ there are at least κ bisimulation
equivalence classes of τ -free process graphs in |G(Act) with less than κ nodes.

Proof. For each ordinal λ define gλ ∈ |G(Act) as follows.

– g0 := 0,
– gλ+1 := gλ + a.gλ and
– for λ a limit ordinal, gλ :=

∑
µ<λ gµ, meaning that gλ is constructed from

all graphs gµ for µ < λ by identifying their root.

Claim 1. root(gλ)
a

−→gλ
s ⇔ s = root(gµ) for some µ < λ.

Proof of Claim 1. A straightforward transfinite induction on λ.

Claim 2. If µ < λ then gλ 6↔ gµ.

Proof of Claim 2, by transfinite induction on λ: Let µ < λ. By Claim 1 we
have root(gλ)

a
−→gλ

root(gµ). However, when root(gµ)
a

−→gµ
s we have s =

root(gρ) for some ρ < µ, and by induction gµ 6↔ gρ. Thus gλ 6↔ gµ.

A Characterisation of Weak Bisimulation Congruence 11

Claim 3. For infinite λ, |nodes(gλ)| = |λ|.

Proof of Claim 3. A straightforward transfinite induction on λ, using that the
cardinality of a disjoint union of |λ| sets of cardinality 0 < κ ≤ |λ| is |λ|.

Application of the claims. For each infinite cardinal κ there are κ ordinals λ

smaller than κ. Now the proposition follows from Claims 2 and 3. ut

Theorem 2. Provided that there is an a ∈ Act − {τ}, on |G(Act) weak bisimu-
lation congruence coincides with rooted weak bisimulation equivalence.

Proof. Following the idea from the earlier proof sketch, let g ↔c
w h with g, h ∈

|Gρ(Act). Let κ be the smallest infinite cardinal, such that g and h have less
than κ nodes. So there are less than κ process graphs gs with s ∈ nodes(g)
and ht with t ∈ nodes(h). Hence by Prop. 9 there is a τ -free process graph k

with |nodes(k)| < κ, such that k 6↔ gs and k 6↔ ht for any such gs and ht.
Now g + a.k↔w h + a.k by the definition of ↔c

w . Let R be a weak bisimulation
between g + a.k and h + a.k.

Claim 1. The restriction of R to nodes(g) × nodes(h) must be rooted.

Proof of Claim 1. root(g + a.k)
a

−→g+a.k root(k), so if root(g + a.k) R t for
some t ∈ nodes(h) − {root(h)}, then t

a
==⇒h+a.k t′ for some t′ ∈ nodes(h)

with root(k) R t′ and hence k↔w ht′ . By the definition of k this is impossible.
Likewise, it is impossible that s Rroot(h+a.k) for s ∈ nodes(g)−{root(g)}.

Claim 2. The restriction of R to nodes(g) × nodes(h) is a weak bisimulation.

Proof of Claim 2. Let root(g)
b

−→g s. Then root(g + a.k)
b

−→g+a.k s, so there
must be a t ∈ nodes(h + a.k) such that root(h + a.k)

(b)
==⇒h+a.k t and s R t.

The possibility that b = a and t = root(k) can not occur, for this would
imply gs ↔w k. The possibility that b = τ and t = root(h + a.k) can not
occur by Claim 1. Therefore t ∈ nodes(h) − {root(h)} and root(h) b

==⇒h t.
Likewise, root(h)

b
−→h t implies that there is an s ∈ nodes(g) − {root(g)}

with root(g) b
==⇒g s and s R t. It follows that the restriction of R to nodes(g)×

nodes(h) is a rooted weak bisimulation between g and h. Hence g↔rw h. ut

Rather than working with arbitrary process graphs, some people prefer to set
a bound on the number of nodes. This happens for instance when one insists
that |G(Act) should be set rather than a proper class. That can be achieved by
first fixing a set N of potential nodes, and then allowing only process graphs
g with nodes(g) ⊆ N . For any infinite cardinal κ let |Gκ(Act) be the class of
process graphs over Act with less than κ nodes. In particular |Gℵ0(Act) is the
class of regular, or finite-state, process graphs. Theorem 2 transfers smoothly
from |G(Act) to |Gκ(Act).

Theorem 3. Provided that there is an a ∈ Act − {τ}, on |Gκ(Act) weak bisim-
ulation congruence coincides with rooted weak bisimulation equivalence.

Proof. The proof above goes through because the process k fits in |Gκ(Act). ut

12 R.J. van Glabbeek

Another cardinality restriction that is sometimes imposed, is the requirement
that each node should have less than κ outgoing edges. In case κ > ℵ0, this
class of κ-branching process graphs is not essentially different from |Gκ(Act),
and the same proof applies. More interesting is the case κ = ℵ0. Up to strong
bisimulation equivalence, the finitely branching process graphs form a proper
superclass of |Gℵ0(Act), the finite-state process graphs, and a proper subclass of
|Gℵ1(Act), the countable state process graphs. However, as shown in [BBK87],
any countable state process graph is weakly bisimilar to a finitely branching
process graph. Using this, the proof of Theorem 2 can be adapted to apply to
the class of finitely branching process graphs as well.

5 The Left-merge and Rooted Weak Simulations

In [BK85] is has been shown that ↔rw is a congruence for all operators of ACPτ .
Just as for the +, the root condition comes to the rescue in the congruence proof
for the left-merge ‖−. One has τ.a.0‖−b.0 6↔w a.0‖−b.0, because only the former
process can do a b before an a, so ↔w fails to be a congruence for this operator.
The reason that the root condition (Def. 5) helps here, is that in g‖−h steps
from h can happen in any state of g except the initial one; thus only a weak
bisimulation between g1 and g2 that does not relate roots with non-roots can be
modified into a weak bisimulation between g1‖−h and g2‖−h.

There is a directional difference in the way the root condition solves the
congruence problems for + and ‖−. This can be seen by applying it to weak
simulation.

Definition 13. Let g, h ∈ |Gρ(Act). The graph g is weakly simulated by the
graph h if there exists a binary relation R ⊆ nodes(g) × nodes(h), called a
weak simulation from g to h, satisfying, for all a∈Act:

– root(g) R root(h).
– If sRt and s

a
−→g s′, then there is a t′ such that t

(a)
==⇒h t′ and s′Rt′.

A weak simulation from g to h is source rooted if s Rroot(h) ⇒ s = root(g).
It is target rooted if root(g) R t ⇒ t = root(h).

The relation of “being weakly simulation by” is a preorder (transitive and reflex-
ive), called the weak simulation preorder. Likewise one obtains the source rooted
weak simulation preorder and the target rooted weak simulation preorder.

Proposition 10. The target rooted weak simulation preorder is a precongruence
for the +. This means that if there are target rooted weak simulations from g1 to
h1 and from g2 to h2, then there is a target rooted weak simulation from g1 + g2

to h1 + h2.

Proof. Suppose that Ri is a target rooted weak simulation from gi to hi for
gi, hi ∈ |Gρ(Act) and i = 1, 2 then R1 ∪ R2 is a target rooted weak simulation
from g1 +ρ g2 to h1 +ρ h2. ut

A Characterisation of Weak Bisimulation Congruence 13

Lemma 2. If there is a weak simulation from g to h then there is a target rooted
weak simulation from g to h.

Proof. Omit all liaisons of the form root(g) R t with t 6= root(h). ut

Corollary 1. The weak simulation preorder is a precongruence for the +, as
well as for action prefixing, even without upgrading it with root conditions.

A complete axiomatisation of this preorder is given by the usual axioms for
strong bisimulation, together with the axioms x v x + y and τ.x = x, where the
latter is a shorthand for τ.x v x ∧ x v τ.x.

Proposition 11. The source rooted simulation preorder is a precongruence for
the ‖−.

Proof Idea. Suppose that R is a weak simulation from g to h for g, h ∈ |Gρ(Act).
When adapting R to a weak simulation from g‖−k to h‖−k, one needs to make
sure that when g‖−k can do a step from k, then so can h‖−k. The only way this
can fail is when a non-root state from g is related to the root of h. In that case
g‖−k can do a step from k, but h‖−k cannot. ut

The weak simulation preorder fails to be a precongruence for the ‖−, for τ.a.0 is
weakly simulated by a.0, but τ.a.0‖−b.0 is not weakly simulated by a.0‖−b.0. This
is because the weak simulation from τ.a.0 to a.0 is not source rooted. It follows
that the source rooted weak simulation preorder is strictly finer than the (target
rooted) weak simulation preorder.

It is possible to upgrade the notion of weak simulation by various conditions,
such as the following stability requirement [Gla93].

Definition 14. A weak simulation R from g to h is stability respecting if

– if sRt and s 6
τ
−→g then there is a t′ such that t ==⇒h t′ 6

τ
−→h and sRt′.

Again, target rootedness is needed to make the induced preorder into a precon-
gruence for the +, and source rootedness to make it into a precongruence for
the ‖−. This time the two rooted variants are incomparable, because there is a
target rooted, but not source rooted, stability respecting weak simulation from
τ.a.0 to a.0, and a source rooted, but not target rooted, stability respecting weak
simulation from a.0 to τ.a.0.

6 Concluding Remark

The method to turn simulation or bisimulation based equivalences into congru-
ences by insisting on root conditions generalises smoothly to other notions of
(bi-)simulation. In the case of branching, delay and η-bisimulation, this is elab-
orated in [GW96]. Interestingly, the alternative characterisation of rooted weak
bisimulation presented in Prop. 7 takes a rather different shape when applied
to rooted branching bisimulation. However, the characterisation with the root
condition of Def. 5 remains the same.

14 R.J. van Glabbeek

Acknowledgement. Many crucial ideas incorporated in this paper originate
from Jan Willem Klop, and stem from the mid eighties. Originally, Jan Willem
and I planned to write a joint pamphlet on this matter, but as this plan never
materialised, I finally collected the material in this paper, dedicated to Jan
Willem at the occasion of his sixtieth birthday.

References

[BBK87] J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1987): On the consistency
of Koomen’s fair abstraction rule. Theoretical Computer Science 51(1/2), pp.
129–176.

[BK85] J.A. Bergstra & J.W. Klop (1985): Algebra of communicating processes
with abstraction. Theoretical Computer Science 37(1), pp. 77–121.

[BK86] J.A. Bergstra & J.W. Klop (1986): Algebra of communicating processes.
In J.W. de Bakker, M. Hazewinkel & J.K. Lenstra, editors: Mathematics and

Computer Science, CWI Monograph 1, North-Holland, pp. 89–138.
[Gla93] R.J. van Glabbeek (1993): The linear time – branching time spectrum II;

the semantics of sequential systems with silent moves (extended abstract). In
E. Best, editor: Proceedings CONCUR’93, 4th International Conference on
Concurrency Theory, Hildesheim, Germany, LNCS 715, Springer, pp. 66–81.

[GW96] R.J. van Glabbeek & W.P. Weijland (1996): Branching time and ab-
straction in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.

[HM85] M. Hennessy & R. Milner (1985): Algebraic laws for nondeterminism and
concurrency. Journal of the ACM 32(1), pp. 137–161.

[Mil90] R. Milner (1990): Operational and algebraic semantics of concurrent pro-
cesses. In J. van Leeuwen, editor: Handbook of Theoretical Computer Science,
chapter 19, Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242.

