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Abstract. We consider the problem of estimating the location of a moving target
in a 2-D plane. In this paper, we focus attention on selecting an appropriate 3rd

sensor, given two sensors, with a view to minimize the estimation error. Only
the selected sensors need to measure distance to the target and communicate the
same to the central ”tracker”. This minimizes bandwidth and energy consumed
in measurement and communication while achieving near minimum estimation
error. In this paper, we have proposed that the 3rd sensor be selected based on
three measures viz. (a) collinearity, (b) deviation from the ideal direction in which
the sensor should be selected, and (c) proximity of the sensor from the target.
We assume that the measurements are subject to multiplicative error. Further,
we use least square error estimation technique to estimate the target location.
Simulation results show that using the proposed algorithm it is possible to achieve
near minimum error in target location.

1 Introduction

We consider the problem of estimating the location of a moving target ’T’ in a 2-D
plane. The target is moving at varying speed and direction (see Figure 1). For the
present, we assume that the target is not aware of its own location. Or, if it is aware
of its location, then it does not share this information with any other device. In either
case, we assume that it is possible for sensors, such as s1 located at [x1,y1], to ”measure”
the distance from/to the target, located at (x0,y0), and thereby estimate the location of
target ’T’. Several methods for measuring distance between a sensor and the target are
available. See [1], [2] for methods based on radio signal strength (RSSI) and [3], [4] for
methods based on time difference of arrival (TDOA).

Irrespective of the method used to measure distance, all such measurements are
subject to error. Two models have been studied, viz. (a) additive, and (b) multiplicative.
In this paper, we confine ourselves to using the multiplicative model for errors. Let
di

A and di
M be the actual and measured distance between target and the ith sensor. The

multiplicative error in measurement by ith sensor, ei
m = di

A−di
M = γ εmeas

2 di
A where, εmeas

is a measure of the amount of measurement error, and −1 ≤ γ ≤ 1. That is, the error
is uniformly distributed with endpoints (1− εmeas

2 )di
A and (1+ εmeas

2 )di
A, zero mean and

standard deviation of σi
m = 1√

3
( εmeas

2 )di
A.

Even though the distance between a given sensor and the target is known only with
some error, it is possible to use distance measurements from 3 or more sensors to ’esti-
mate’ the location of the target assuming that (a) the location of the sensors is known to



the central device responsible for estimating the location of the target, (b) the clocks of
the sensors are synchronized so that the sensors ”measure” distance at approximately
the same time, and (c) the sensors are able to communicate their measurements to this
central device, also referred to as the ”tracker”.

Since the target is moving and since a sensor must be within a certain distance from
the target (before it can detect the presence of the target and measure distance), we
assume that there are several sensors, {si} = Σ, spread across the 2-D plane. In fact, we
assume that there are three or more sensors located in and around every point in the 2-D
plane so that we can compute an estimate based on measurements from a subset of three
sensors suitably selected to minimize estimation error. This approach also allows one to
minimize communication overheads and conserve battery power available to sensors.
Further, since the target is moving, the collection of sensors changes every time an
estimate is required to be obtained. Specifically, we assume that as the target moves, if
sensors {s1, s2, s3} have made measurements at time tk, then at time tk+1, we drop one
of the sensors s1, s2, or s3 and select a sensor s4 suitably so as to minimize the error in
estimated location of the target. Accordingly, this paper is about suitably selecting the
3rd sensor from a set of Nk+1 sensors.

2 Mobile Target Tracking

We now outline the overall scheme for tracking the target as it moves in the 2-D plane.
Let Lk = [xk,yk] be the actual location of the target at time tk. Let L̂k−1 = [x̂k−1, ŷk−1]

and L̂k = [x̂k, ŷk] be the estimated location of the target at time tk−1 and tk, respectively
(see Figure 2). The latter estimate L̂k is obtained using (a) an a-priori estimate of the
target’s location L̄k = [x̄k, ȳk], and (b) measurements made at tk by sensors σ1

k ,σ
2
k , and

σ3
k located at λ1

k ,λ
2
k , and λ3

k , respectively. The a-priori estimate L̄k = [x̄k, ȳk] may be
based on its estimated location at time instants tk−1 and tk−2. (see Figure 2).
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Fig. 1. Trajectory of the target ’T’ in 2-D
plane.
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Fig. 2. Estimated location of the target on
the basis of a-priori estimate.

The new estimate of the location of the target at time tk+1 is obtained on the basis
of new distance measurements d1

k+1, d2
k+1 from σ1

k+1, σ2
k+1 respectively, and d3

k+1 from
a newly selected sensor σ3

k+1. Sensor σ3
k+1 is selected assuming knowledge of a-priori

estimate of the target location. The latter is an extrapolation of its location assuming



that the average velocity during [tk, tk+1] is the same as the average velocity during and
[tk −1, tk]. The new estimate of the location of the target at time tk+1 is obtained thus:

– Step 1: Given the estimated location L̂k (based on measurements from σ1
k , σ2

k , and
σ3

k) and L̂k−1 at times tk and tk−1, respectively, compute an a-priori estimate

L̄k+1 = αk+1(L̂k − L̂k−1)

where, αk+1 = tk+1−tk
tk−tk−1

. (See Figure 2.)

– Step 2: Given its approximate location L̄k+1, identify an appropriate subset of three
sensors, viz. σ1

k+1,σ
2
k+1, and σ3

k+1 from a given subset of sensors Σk+1 ⊂ Σ.
– Step 3: Sensors σ1

k+1,σ
2
k+1, and σ3

k+1 obtain distance measurements d1
k+1,d

2
k+1, and

d3
k+1, respectively, and communicate the same to the central ”tracker”.

– Step 4: The ”tracker” computes a least square error estimate, L̂k+1, such that ∑i=3
i=1 e2

i

is minimized. Here, ei = ‖L̂k+1 −λi
k+1‖

1
2 − di

k+1, where ‖L̂k+1 −λi
k+1‖ is the Eu-

clidean distance between L̂k+1 and λi
k+1 = [xi

k+1,y
i
k+1], the location of sensor σi

k+1.
This method is described in Section 4.

In Step 2, we stipulate that sensors σi
k+1 are selected as follows: σ1

k+1 = σi
k, j = 1,2,

or 3; σ2
k+1 = σi

k, j = 1,2, or 3; σ2
k+1 6= σ1

k+1, σ3
k+1 ∈ Σk+1;σ3

k+1 6= σ1
k+1,σ

3
k+1 6= σ2

k+1.
That is, one of the sensors used to estimate the location of the target at time k is replaced
by another more suitable sensor from amongst the remaining set of sensors that are
within the range of the target (see Sections 5 and 6).

Section 3 describes related work in the area of target tracking and sensor selection.
Location estimation has been described in Section 4, while Section 5 and Section 6
describe the method and the algorithm for sensor selection, respectively. We present
simulation results in Section 7. Section 8 concludes the paper.

3 Related Work

Research on estimating the location of a fixed target, given measurements from a subset
of sensors has been reported in [1], [3], [5], [6], [7], [8], [9], [10], and [11]. These differ
from each other on the basis of (a) the number of sensors required, (b) the nature of
measurements, and (c) the technique for estimating the location.

– Priyantha et al [3] estimate target location using trilateration using distance mea-
surements based on TDOA from 3 different sensors.

– Bahl et al [1] estimate target location using trilateration, but using RSSI measure-
ments. Additionally, they build a radio map of the site and then locate the target
based on radio signal strength measurements.

– Triangulation is used in robotics [11] to estimate the location of a robot. This re-
quires 3 or more angle of arrival (AoA) measurements.

Tracking of mobile targets using sensor networks has been studied in [12], [13],
[14].



– In [12] and [13] the target location is approximated by the location of a sensor when
the target comes within its range. The resulting resolution is the same as that of the
sensors. This may be, however, improved using multiple sensors.

– In [14] acoustic measurements from all sensors in the cluster around the target are
used by a cluster head to minimize the error in estimating the location.

In this paper, and as described earlier in Section 2, a group of sensors in and around
an a-priori estimated location of the target is selected. This group changes as and how
the target moves within the 2-D plane.

Several papers (see [6], [7], [9], and [10]) have used different approaches to study
selection of sensors.

– Zhao et al have proposed in [6] and [7] that sensors should be selected such that
(a) communication overhead is minimized, and (b) the error in locating the target is
minimized using a Bayesian maximum likelihood estimator. However, this assumes
that an a-priori estimate of the location is available.

– Wang et al [9] also assume a-priori knowledge of the target location, expressed
in the form of a Gaussian probability distribution function. The error in TDOA or
AoA measurements is assumed to be Gaussian. While the estimate is based upon
Bayesian filtering, the sensors selected are those that maximize the entropy differ-
ence between the a-priori and posteriori estimates of the target location.

– In Isler et al [10] the target location is estimated based on the region of intersec-
tion of 2-D cones resulting from uncertainty in AoA measurements from multiple
sensors. Sensors which minimize the area of such intersection are the one selected.
This scheme also requires an a-priori knowledge of the location of the target.

In this paper, we have proposed that a 3rd sensor be selected given two sensors
based on three measures viz. (a) collinearity, (b) deviation from the ideal direction,
and (c) proximity of the sensor from the target. We use least square error estimation
technique to estimate the target location.

4 Target Location Estimation

Before discussing selection of the 3rd sensor, we discuss the method to obtain a least
square error estimate of the location at time tk. For convenience, we drop the subscript
k in tk and instead work with time t. The estimation problem can be stated thus: given
measurements d1, d2, . . . , dn from sensors s1, s2, . . . , sn, respectively located at λ1 =
[x1,y1], λ2 = [x2,y2], . . . , λn = [xn,yn], compute an estimate L̂ = [x̂, ŷ] such that

i=n

∑
i=1

{
√

(x̂− xi)2 +(ŷ− yi)2 −di}2

is minimum. The measurements are possibly subject to errors.
In order to compute the optimal [x̂, ŷ], we have experimented with two algorithms:

(a) Steepest Descent algorithm [15], and with (b) Levenberg Marquardt algorithm [15]



to compute the optimal [x̂, ŷ]. In either case, the method requires an initial ”guess”. We
have proposed that the initial estimate be obtained by solving

(n
2

)

linear equations1.
Our experience (see also [16]) shows that (a) the above method for computing the

initial guess is reasonably adequate in helping one to descend to the optimum (see Fig-
ure 3), (b) the error in location estimation increases (almost) linearly with error in mea-
surement (see Figure 4), and (c) the number of iterations required in Steepest Descent
method is generally less than 20, while the same is less than 6 in case of Levenberg
Marquardt. In this paper, however, we use the Steepest Descent algorithm in all our
simulations. (See Figure 3.)
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Fig. 3. Location estimation error in initial
guess and in optimized result.
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Fig. 4. Measurement error vs. Location es-
timation error.

5 Sensor Selection

The position of the 3rd sensor relative to that of the other two sensors and the target
plays an important role in location estimation accuracy. In a simulation, the 3rd sensor,
s3, was placed at various locations and the resulting error in location estimation was
computed. The sensing range, r0, was assumed to be 100m. The measurement error
was assumed to be 30%, that is εmeas = 0.3. The target was assumed to be at [0,0]. The
two sensor, s1 and s2, are placed at different positions such that (a) the visual angle
made by them with the target, α >

π
2 or α <

π
2 , and (b) d1 = d2 or d1 6= d2.

Part of the results2 are given in Figures 5 and 6. It can be seen that (a) when sensors
s1, s2, and s3 are almost collinear, the error in estimated location is large, (b) there is a

1 These are obtained by subtracting equations of the type
√

( x̂− xi)2 +( ŷ− yi)2 −di = 0 from
one another, thereby resulting in

(n
2

)

linear equations.
2 A different symbol is printed for each range of estimation error. In particular, if µ is the average

estimated error and εloc is the estimation error when the third sensor is placed in the specific
position, then

– if εloc ≥ 3
2 µ, then print ”*”, else

– if µ ≤ εloc <
3
2 µ, then print ”4”, else

– if 1
2 µ ≤ εloc < µ, then print ”+”, else

– if εloc ≤ 1
2 µ, then print ”.”



preferred region in which to locate the 3rd sensor. This is the region where a dot, ”.” is
printed.
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Fig. 5. d1 = d2, α >
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The sensor selection technique proposed in this paper is based on three factors, viz.
(a) collinearity of sensors, (b) ideal direction in which 3rd sensor should be selected
(for the given position of two sensors), and (c) proximity of selected sensor from the
target. This selection is done before any new measurement is made, and assuming that
the target is indeed located near the a-priori estimate of its location.

5.1 Collinearity

Consider the distribution of sensors s1, s2, and s3 in a 2-D plane shown in Figure 7. If,
for the moment, we assume that the error in distance measurements in near zero, then it
can be concluded that the target is either located at position A, or at position B. Further,
measurement from a third sensor does not add value since s1, s2 and s3 are collinear.
Distance measurement from a 3rd sensor which is not collinear is necessary to resolve
whether the target is at A or B.
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Fig. 7. Ambiguity in target location in case
of collinear sensors.
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Fig. 8. Effect of collinearity on estimation
error.

We define the collinearity coefficient Φ for an sensor si as the residual error resulting
from a linear least square fit through the given two sensors and the sensor si:



Φ(s1
,s2

,si) = min(m,c){(y1 −mx1− c)2 +(y2−mx2 − c)2 +(yi −mxi − c)2} (1)

Figure 8 shows a plot of estimation error vs. Φ, the residual. When Φ is small,
the sensors are almost collinear and the estimation error is high. But if the collinearity
coefficient is large, the location estimation error is likely to be small.

5.2 Ideal Direction

Below we argue that, given the positions of two sensors, there is a preferred direction
in which to locate the 3rd sensor. Consider the region of intersection of the error annuli
corresponding to the computed distance between the a-priori estimated location of the
target and the two sensors (see Figure 9). Clearly, the region formed around the a-priori
estimate of its location is the one in which the probability that the target is located is
the maximum. For simplicity, this latter region is approximated by the parallelogram

Fig. 9. Region of intersection of the error annuli.
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Fig. 11. Ideal direction in case α <
π
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obtained by intersecting bands formed by tangents to the error annuli. This is shown in
Figures 10 and 11 for the two cases viz. (a) α >

π
2 and (b) α <

π
2 , respectively. Here

α is the visual angle made by the two sensors with the target. Irrespective of whether



α >
π
2 or α <

π
2 , we propose that the 3rd sensor be placed along the larger diagonal of

the parallelogram, since the resulting maximum uncertainty in the location of the target
is minimized. This is discussed in detail below.

The ideal direction (see Figures 10 and 11), specified with respect to the axis passing
from sensor s1 to the target, is given by

θ = 3π
2 + tan−1 d2sin(α)

d1+d2cos(α)
, if α >

π
2 , and

θ = 3π
2 +α− tan−1 d1sin(α)

d2−d1cos(α)
, if α <

π
2 .

Selecting a sensor located approximately in the direction θ ensures that the resulting
polygon of intersection after inclusion of measurement will have a smaller longest axis.
A measure which captures the deviation from the ideal direction, and which may be
used to select the 3rd sensor, is defined thus:

Ψ =| θsi −θ | (2)

where θsi is the direction of sensor si with respect to the axis from s1 to the target.

5.3 Proximity of sensors to target

We now argue that the 3rd sensor is preferably placed as close as possible to the target.
This is so only if measurement error is multiplicative.
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Fig. 12. Three sensors with equal visual an-
gles α.
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From simulations (see Figure 13), it has been observed that the location estimation
error increases almost linearly with the distance of the three sensors from the target.
Since we have assumed a multiplicative error model, a measure of proximity ∆ of sensor
si from the target is defined as:

∆(si) = ‖si −L‖, (3)

where ‖si − L‖ is the Euclidean distance between si and L. Since the location of the
target L is unknown, we use L̄, the a-priori estimate of the location.

∆(si) = ‖si − L̄‖. (4)



6 Multi-objective Sensor Selection Algorithm

In this paper, we propose that for given sensors s1 and s2, a 3rd sensor s3 is selected,
from those sensors that are within the range of the target, have adequate battery power,
and such that (a) the coefficient of collinearity is maximized, (b) the deviation of the
direction of the sensor from the ideal direction is minimized, and (c) the distance of
the sensor from the target is minimized. Since this is a multi-objective optimization
problem, we propose the following algorithm:

– Step 1: Eliminate all sensors for which the collinearity coefficient Φ ≤ φ0.
– Step 2: Of the remaining sensors, consider only those for which deviation from the

ideal direction Ψ ≤ ψ0.
– Step 3: Finally, of the remaining sensors, select the one for which the measure of

proximity ∆ is the minimum.

7 Simulation Results

Simulations were carried out with N sensors (N = 10, 20, or 30), each of which is
randomly placed within 100m of the ”actual” location of the target. The sensing range,
r0, is 100m. The target was assumed to be at [0, 0], and the a-priori location of the target
was also assumed to be [0, 0]. The measurement error is assumed to be 30%. Values of
ψ0 and φ0 required in the above algorithm are specified thus: ψ0 = 30o, φ0 = 625m2.

We have compared the results obtained using the proposed algorithm with results
obtained using other criteria for selecting the 3rd sensor, viz. (a) proximity only, (b)
collinearity only, and (c) deviation from ideal direction only (see Table 1). The error in
estimated location based on our algorithm is also compared with the error resulting from
selecting the ”best” possible sensor. The latter is obtained by exhaustively computing
the least square error estimate for each possible sensor.

It may be noted that using the proposed algorithm, we achieve near minimum error
in estimated location. Further, as N increases, there is improvement in the error in esti-
mated location. However, the error in estimated location does not improve when (a) the
3rd sensor is selected based only on the ideal direction since the resulting three sensors
may be collinear, in which case the estimation error may be large.

Table 1. Comparison of location estimation error with proposed algorithm and with other algo-
rithms.

N Collinearity only Proximity only Ideal direction only Best sensor Proposed algorithm

10 11.7581 24.6160 15.2932 9.1745 9.4021
20 11.5150 19.4959 16.9380 8.2882 8.7331
30 10.2022 13.1000 17.4704 8.1151 8.5329

8 Conclusion

In this paper, we have proposed that the sensors be selected based on three measures
viz. (a) collinearity, (b) ideal direction in which the sensor should be selected so that



the error is minimized, and (c) proximity of the sensor from the target. We use mea-
surements that are subject to multiplicative error. Further, we use least square error
estimation technique to estimate the target location.

The sensor selection is done by the central ”tracker” and only the selected sensors
measure distance to the target and communicate to the central ”tracker” for estimating
the target location.

We propose that a 3rd sensor be selected in the ideal direction calculated on the basis
of given two sensor positions. The knowledge of a-priori target position is assumed to
be available. The results obtained with proposed algorithm are very very encouraging.
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