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Abstract. The performance of parallel applications running on large
clusters is known to degrade due to the interference of kernel and dae-
mon activities on individual nodes, often referred to as noise. In this
paper, we focus on an important class of parallel applications, which re-
peatedly perform computation, followed by a collective operation such
as a barrier. We model this theoretically and demonstrate, in a rigor-
ous way, the effect of noise on the scalability of such applications. We
study three natural and important classes of noise distributions: The ex-
ponential distribution, the heavy-tailed distribution, and the Bernoulli
distribution. We show that the systems scale well in the presence of expo-
nential noise, but the performance goes down drastically in the presence
of heavy-tailed of Bernoulli noise.

1 Introduction

Motivation. It is well known that many parallel applications do not scale well
on large high-performance computing systems [1–3]. The per-node performance
degradation is more pronounced in systems with more than 1K nodes, running a
multi-tasking operating system such as Unix. In order to build high-performance
computing systems that are capable of very high and sustained performance, it
is important to understand the reasons for such performance degradation.

It is increasingly becoming evident that one of the main causes of performance
degradation is the noise in the system; in the form of daemons and interrupts,
see [1, 2].

A detailed study of the noise and its impact on performance was done by
Petrini et al. [3] on the 8192 processor ASCI Q machine. It was observed that
the overheads due to noise were mostly in the range 0.5% to 2.5% (see Figure 9
in [3]). However, this noise had a large impact on the system performance. By
reducing the intensity of noise in the system it was possible to get a factor
of 13 improvement in the performance of a micro-benchmark that repeatedly
calls barrier with no intervening computation. Similarly, Kramer and Ryan [4]
concluded that the performance variability in EP (of NAS parallel benchmarks)
was due to the noise in systems.
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Our Contribution. The main contribution of this paper is to initiate the study
of the impact of noise on the scaling of parallel applications in a formal man-

ner. We focus on a particularly important class of parallel applications which
often arise in scientific computations. Here, typically, each node in the cluster is
repetitively involved in a computation stage, followed by a collective operation;
such as a barrier computation. We model this theoretically and demonstrate the
effect of noise on the performance of such parallel applications. We study three
natural and important classes of noise distributions: The exponential distribu-
tion, the heavy-tailed distribution, and the Bernoulli distribution. We show that
the systems scale well in the presence of an exponential noise, but their per-
formance goes down drastically in the presence of a heavy-tailed or a Bernoulli
noise. Though our model is very simple, it is powerful enough to predict the ef-
fect of noise on scaling. We believe that this study will also be extremely useful
in identifying and improving bottlenecks in the scalability of systems in a more
systematic way, for instance, by designing scheduling policies, which take into
account the nature of the noise, to improve the overall system performance. To
the best of our knowledge, this is the first attempt to explain the impact of noise
with a mathematical model.

Related Work. One way to reduce the impact of noise on scalability is to
reduce the intensity of noise itself. This can be done by removing several system
daemons, dedicating a spare processor to absorb the noise, and decreasing the
frequency of daemons [3].

Another approach is to synchronize the noise across the nodes of the system.
This may be done by either periodically adjusting the scheduling priorities of
the processes, or by changing the scheduler in the kernel, see [5–9].

Though these methods have resulted in a reduced impact of noise on the
performance of the respective systems, a general solution is more desirable both
with regards to scalability and applicability. Our work provides a structured
approach to understand the impact of noise on the overall system performance.
Using the insights from our results, it might be possible to further enhance all of
the above approaches, thereby advancing the frontier of scalability and yielding
better resource utilization in the present high-performance computing systems.

Organization. Section 2 presents the theoretical model of a typical scientific
parallel application with noise. Therein, we also justify the assumptions about
the model. In Section 3, we analyze the proposed model and present the results
obtained when the noise is distributed according to the exponential, heavy-tailed
or Bernoulli distribution. Due to space limitations, the proofs of the theorems
in Section 3 only appear in the full version of this paper [10]. Therein, we also
discuss our results in detail.

2 The Model

In this section we describe a general model that captures the case of a compute in-
tensive program with periodic synchronization. We assume that the program has
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perfectly balanced load and it carries out minimal I/O and message exchanges.
However, it carries out periodic synchronization using a collective operation. A
footprint of such a program is typically present in many parallel applications, in
particular in those which involve scientific computations.

2.1 Modeling the Computation

Consider a parallel program with N threads running on a system which has N
processors. We assume, for simplicity of analysis, that N = 2k − 1 for some
positive integer k.

The communication and the three stages. We assume that the barrier is
implemented using message passing along a complete binary tree. A thread is
associated to each node of the binary tree. There is a special node called the
root which initiates the post-barrier stage and the pre-barrier stage ends at it.
In the post-barrier stage, the root thread starts by sending a message to both
its children to start with the compute stage. Whenever this message reaches
a thread, it forwards the message to both its children in the tree (unless the
node is a leaf) and starts the computation assigned to it. After finishing its
computation, a leaf node sends a message to its parent indicating the end of its
computation stage. This starts the pre-barrier stage. The parent, after finishing
its computation and receiving the message from both its children, sends the
message to its parent indicating the end of computation at every node in its
subtree. This stage ends when the root finishes its computation and receives a
message from both its children indicating the same. An iteration of the loop
would, thus, consist of a compute stage, followed by a pre-barrier and a post
barrier stage. For simplicity, we assume that each message transmission between
a parent and a child node takes time τ. Again, for simplicity of analysis, we
consider a phase which consists of a sequence of a post-barrier, a compute and
a pre-barrier stage. The program consists of M such phases. Now, we model
various aspects of one such phase.

A Phase. Let tsij represent the time instant when the i-th thread begins the

computation stage in the j-th phase. Let tfij represent the time instant when the
i-th process ends the computation stage in the j-th phase. Let Wij represent
the amount of work (say the number of operations) carried out by thread i
in the compute stage of the j-th phase. If the system is noiseless, the time
required by processor i to finish work Wij in its j-th phase will be a constant,
say wij , which typically depends on the characteristics of the processor, such
as clock frequency, architectural parameters, and the state of the node (such as

cache contents) just before the j-th phase is entered. Therefore, tfij − tsij = wij .
Due to the presence of system level daemons that get scheduled arbitrarily, the
wall-clock time taken by processor i to finish the work Wij is typically not a
constant. There will be a variable component that represents the time consumed
to service the daemons and other asynchronous events. We capture this by a
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random variable δij . More precisely, tfij − tsij = wij + δij , where δij is a random
variable that captures the overheads incurred by processor i in servicing the
daemons and other asynchronous events during the j-th phase. Note that δij also
includes the context switching overheads, as well as, the time required to handle
additional cache or TLB misses that arise due to cache pollution by background
processes. The mean value of δij depends on the time taken to do work Wij

and the system load on processor i during the j-th phase. Let fij ∈ [0, 1] be the
fraction representing the system overhead for the processor. We may write the
wall-clock time taken by processor i for the compute stage of the j-th phase as

tfij − tsij = wij

(

1 +
fij

1−fij
ηij

)

, where ηij is the normalization of δij such that

E[ηij ] = 1.

2.2 The Assumptions and Justifications

In this section we state and justify the assumptions we make about the model.
The underlying principle in making the assumptions is to present an ideal model
which captures the impact of the noise on typical parallel programs for scientific
applications, and which is at the same time, susceptible to a rigorous theoretical
analysis. We show, in a formal manner, that even in this ideal setting, the nature
of noise may impact the system performance considerably.

Balanced Load: Wij = W for all i, j. Application programs try to divide
the load equally among its threads. Best performance is obtained when the load
across every thread in a compute phase is equal (i.e. Wij = Wj for all i).

Identical Processors: wij = w for all i, j. If the processors are heterogeneous,
the performance of the parallel application will be dictated by the performance of
the slowest processor in the system. Best performance is obtained (with perfectly
balanced load) when the processors are identical1. In addition to this, we make
two more assumptions: (1) The application starts with all its threads in identical
states. (2) The time taken by a computation does not depend on the input data.
Together, these assumptions imply that the time taken by a compute phase is
same across all the processors. The second assumption will not be true in general,
because, due to cache effects, the time taken to carry out a set of operations also
depends on the order in which the operations are carried out. However, it can
be verified that this is the most optimistic assumption that will give the best
program performance.

Stationary and Balanced Overheads: fij = f for all i, j. In typical HPC
systems, the processors are allocated to an application for the lifetime of the
application. Running any other application on the node is avoided. Thus, all
the interference is due to the background processes or daemons. The amount
of daemon activity is not expected to change over time. Thus we may assume

1 We do not consider programs running on heterogeneous clusters that distribute the
load across multiple nodes depending on the relative speed of the nodes.
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fij = fij′ , for all i, j and j′. The daemons and overheads may be classified
into intrinsic and extrinsic processes. The intrinsic processes run on every node
and carry out book-keeping activities for the node. The system overhead due to
intrinsic processes is expected to remain the same across all the nodes. However,
the overheads of extrinsic processes are expected to vary across nodes. A detailed
analysis may be carried out along the same lines while taking into account the
activities of the extrinsic processes as well. Therefore, we assume fij = fi′j , for
all i, i′ and j.

Identical Noise: ηij ∼ η for all i, j. Due to homogeneity of nodes and the
fact that we choose to ignore the effect of extrinsic processes, we may assume
that the nature of noise associated to the intrinsic processes is the same across
the nodes and phases.

Spatial Independence: {ηij : i ∈ [1 . . .N ]} are independent for each j.
This assumption is the key to all of our results. In a typical cluster environ-

ment, there is no co-ordinated scheduling policy to synchronize processes across
different nodes. Some HPC systems may deploy different scheduling policies to
alleviate the daemon problems [7–9], as discussed earlier in Section 1. However,
our analysis is restricted to systems that do not employ a co-ordinated schedul-
ing policy. Note that we do not assume the random variables {ηij : j ∈ [1 . . .M ]}
to be independent. In fact, many of the daemons are periodic, and we do expect
complex correlation pattern between these random variables. In general, the na-
ture of noise ηij may depend on the quantum of work wij carried out in the
phase. To analyze this, the compute phases may be grouped into quanta of work
wj and the same analysis may be independently carried for each quantum (with
its associated noise). Due to linearity of expectation, the expected run time for
each quantum of work can be added up to give the expected running time of the
application.

3 Analysis

The Ideal Noiseless Case. Figure 1 illustrates the sequence of events in the
ideal noiseless case. It is clear that in this case the time taken by each thread
in a phase is w + 2τ(k − 1), where N = 2k − 1. (The figure is for the case when
k = 3.) In terms of N, this is w+2τ(log(N +1)−1). This will be the benchmark
performance we will use for comparison with the noisy case.

The Ideal Noisy Case. Now, we no longer assume that fij are 0. We refer to

this as the ideal noisy case. In this case, tfij − tsij is randomly distributed. An
example of this scenario is presented in Figure 1. The post-barrier phase of the
communication is still the same as in the case of the ideal noiseless case.

Let ai denote the time it takes the message to reach thread i from the root
in the post-barrier stage. Further, let bi denote the time it takes the message
from thread i to reach the root in the pre-barrier stage. The time taken to
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Fig. 1. An ideal noiseless (left) and noisy (right) barrier computation cycle

complete the j-th phase then is at-least maxN
i=1(ai + tfij − tsij + bi). Notice that

since the pre and post-barrier stages are done via communicating through a
binary tree, for the leaves of this binary tree, which are 2k−1 = N+1

2 in number,
ai = bi = τ(k−1) = τ(log(N +1)−2). Let us just restrict our attention to these
leave threads. Since the noise is independent across the threads, the maximum of
ai + bi + wij , for i restricted to these threads is a lower bound to the time taken
to complete the j-th phase. Let Y r

η denote the maximum of r random variables
which are independent and identically distributed according to η. Hence, the

expectation of tfij − tsij is at-least 2τ(log(N + 1) − 2) + w
(

1 + f
1−f E

[

Y
N+1

2
η

])

.

Therefore, we have the following theorem.

Theorem 1. The expected time taken per phase is bounded by

LowerBound : w

(

1 + f
1−f E

[

Y
(N+1)/2
η

])

+ 2τ(log(N + 1) − 2)

UpperBound : w

(

1 + f
1−f E

[

Y N
η

])

+ 2τ(log(N + 1) − 1)

We call the term 2τ(log(N + 1) − 2) in the above expression as the latency

component which is an indication of time spent in barrier due to the commu-

nication latency. The term w f
1−f E

[

Y
(N+1)/2
η

]

is called the noise component as

it represents the slow-down due to the presence of asynchronous daemons. The
expected time taken by a phase can be decomposed into the work component

w, the latency component and the noise component. The daemons start playing
a significant role as soon as the noise component becomes comparable to the
latency component. Now, we examine different types of noise distributions and
prove a lower bound for the expected time taken to complete a phase.

The Exponential Case. This distribution arises as the continuous limit of
the discrete geometric random distribution and occurs very often in practice
as a description of the time elapsing between unpredictable events, such as,
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telephone calls, radioactive emission, arrivals of buses. Being one of the most
natural and important distribution to model such events, in this section we
consider the case when the noise ηij-s are also distributed according to the
exponential distribution. An exponential distribution Xexp with mean 1 has the
following distribution: ∀x ≥ 0, Pr[Xexp ≤ x] = 1 − exp(−x). In this case, the
following lower bound shows the impact of the noise being exponential.

Theorem 2 (Exponential Noise). If {ηij : i ∈ [1 . . .N ]} are independently

and identically distributed according to Xexp, then the expected time taken per

phase is at-least w
(

1 + f
1−f (ln(N + 1) − Θ(1))

)

+ 2τ(log(N + 1) − 2).

The lower bound has the form c log N + d, where c = wf
(1−f) log e + 2τ . This is

a linear function of log N, similar to the ideal noiseless case. When wf
(1−f) log e is

comparable to (or less than) 2τ , the performance is close to the ideal noiseless
case. Hence, only when wf

(1−f) log e is large compared to 2τ , this model of noise

impacts the performance by a constant factor of wf
2τ(1−f) log e compared to the

ideal noiseless case.

The Heavy-Tailed Case: The Pareto Distributions. In this section we
consider the case when the noise has a heavy tail. This is unlike the exponential
case and the noise looks more like the uniform distribution. A natural and very
popular way to model data which has heavy tail is the so-called Pareto distri-
bution. The Pareto random variable Xa

par with parameter a has the following

distribution: ∀x ≥ 1, Pr[Xa
par ≤ x] = 1− 1

xa . The Pareto distribution has mean
a

a−1 . To make this random variable with unit mean, we let η be a−1
a Xa

par.

Theorem 3 (Pareto(a) Noise). If {ηij : i ∈ [1 . . .N ]} are identically and

independently distributed according a−1
a Xa

par, then the expected time taken per

phase is at-least w
(

1 + f
1−f

(

N+1
2

)1/a (

a−1
a

)1−1/a
)

+ 2τ(log(N + 1) − 2).

The theorem shows that, in this case, the scalability of the parallel systems
suffers far more than in the exponential case or the ideal noiseless case. The
scaling becomes worse as the value of a goes lower. Hence, fixing w, τ, f and a,
and letting N increase, the term that will dominate here is N1/a. We refer to this
as polynomial scaling, and such a scenario is extremely undesirable, especially
for small values of a.

The Bernoulli Case. This is parameterized by a probability p and a time T.
In this setting, each thread takes time w+T with probability p, and time w with
probability 1−p. The Bernoulli distribution models the expected scaling behavior
of collectives in the presence of in-frequent and bursty noise. This model can also
be thought of as a first order and discrete approximation of a heavy-tailed noise,
where the size of the tail can be controlled by varying pT.

Theorem 4 (Bernoulli Noise). If {ηij : i ∈ [1 . . .N ]} are identically and in-

dependently distributed according to the Bernoulli distribution, then the expected

time taken by a phase j is at-least w+T (1−(1−p)(N+1)/2)+2τ(log(N +1)−2).
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When pN
2 is small compared to 1, the first term in the above lower bound is

essentially w(1 + pT
2w N) = w

(

1 + f
1−f N

)

. Hence, in this range, the system is

expected to show linear scaling. For very large values of N , the maximum slow-
down in the performance is approximately a factor of 1 + T/w.

4 Discussion

In this section, we discuss the implications of our results by plugging in the
values for w, τ and f, which are typical to the HPC systems (see [3]).

We use the weak scaling model to measure the scalability of the system in
presence of different noise distributions. In the weak scaling model, the work
per processor is kept fixed and the performance is studied as the number of
processors is increased. Define N1/2 as the minimum number of processors with
which the program takes twice as much time as with one processor. For the
ideal noiseless case, this happens when w ≈ 2τ log(N + 1), or N + 1 ≈ 2w/(2τ).
This parameter gives an indication of how well a program scales in the presence
of noise. Subsequently, we also discuss the values of N1/2 for different noise
distributions.

The Exponential Case. Figure 2 shows the expected time needed for one
phase of computation in our model when η is distributed according to the ex-
ponential distribution (see Theorem 2). When w = 10µs, the noise intensity f
has little impact on the performance, whereas when w = 1 ms, f has significant
impact.
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Fig. 2. Expected time taken by a phase in the presence of exponential noise

In this case, N1/2 may be approximated as N1/2 ≈ exp
(

1
f/(1−f)+2τ/(w ln 2)

)

.

With 1% exponentially distributed noise, N1/2 ≈ 2.3 · 1027 and with 10% noise,
N1/2 ≈ 5196. This shows that in the presence of an exponentially distributed
noise, the programs are expected to scale well. However, unlike the the ideal
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noiseless case, the time taken by collectives may be dominated by the noise
component (when wf > τ) as opposed to the latency component.

The Pareto Case. Figure 3 shows the expected time needed for one phase of
computation as a function of N when η is distributed according to the Pareto
distribution (see Theorem 3). In the first plot different lines represent different
values of a, while the value of f is kept fixed at 0.005. In the second plot different
lines represent different values of f, while a is kept fixed at 3.
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In this case, N1/2 may be approximated as N1/2 ≈ min
(

2 ·
[

1−f
fca

]a

, 2w/(2τ)+2
)

,

where ca =
(

a−1
a

)1−1/a
. If f is kept fixed at 0.005, then N1/2 ≈ 35.4 · 106 for

a = 3, N1/2 ≈ 158, 404 for a = 2, and N1/2 ≈ 9724 for a = 1.5. Similarly, for
a = 2, N1/2 ≈ 39, 203 when f = 0.01, and N1/2 ≈ 9604 when f = 0.02. This
shows that scaling behavior is sensitive to the Pareto parameter a, as well as the
noise intensity f .
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The Bernoulli Case. Figure 4 shows the expected time taken by a phase as
a function of number of nodes for different values of p and T (with w = 2ms).
Note that the x-axis is in logarithmic scale. For small values of N , the total
time varies linearly with N (with a slope of pT/(2w)). For large values of N , it
saturates to w + T .

The N1/2 in the presence of Bernoulli noise may be approximated as N1/2 ≈ 2/f .
For f = 0.01, N1/2 ≈ 200. This indicates that systems with Bernoulli noise are
expected to have very poor scaling properties.
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