
Snap-Stabilizing Detection of Cutsets

Alain Cournier, Stéphane Devismes, and Vincent Villain

LaRIA, CNRS FRE 2733, Université de Picardie Jules Verne, Amiens, France
{cournier, devismes, villain}@laria.u-picardie.fr

Abstract. A snap-stabilizing protocol, starting from any configuration, always
behaves according to its specification. Here, we present the first snap-stabilizing
protocol for arbitrary rooted networks which detects if a set of nodes is a cutset.
This protocol is based on the depth-first search (DFS) traversal and its prop-
erties. One of the most interesting properties of our protocol is that, despite the
initial configuration, as soon as the protocol is initiated by the root, the result
obtained from the computations will be right. So, after the first execution of the
protocol, the root is able to take a decision: “the input set is a cutset or not”, and
this decision is right.

1 Introduction

In this paper, we present the first snap-stabilizing protocol for detecting if a set of pro-
cessors is a cutset of an arbitrary rooted network. Consider a connected undirected
graph G = (V , E), where V is the set of N nodes and E the set of edges. CS ⊆ V is a
cutset (or a separator) of G if and only if the removal of all nodes of CS disconnects G.
The detection of cutsets is an important issue in many applications such as evaluating
the reliability of networks. Thus, from the fault tolerance point of view, detecting if a
set of processors is a cutset of a network is essential. The concept of self-stabilization
[1] is the most general technique to design a system tolerating arbitrary transient faults.
A self-stabilizing system, regardless of the initial states of the processors and messages
initialy in the links, is guaranteed to converge to the intended behavior in a finite time.
Snap-stabilization was introduced in [2]. A snap-stabilizing protocol guaranteed that
it always behaves according to its specification. In other words, a snap-stabilizing pro-
tocol is also a self-stabilizing protocol which stabilizes in 0 time unit. Obviously, a
snap-stabilizing protocol is optimal in stabilization time.

Related Works. In the graph theory area, researchers are interested to scan all mini-
mal cutsets of a graph. But, Provan and Ball proved that scanning all cutsets of a given
graph in an NP-hard problem [3]. Thus, some heuristics have been designed for arbi-
trary graphs [4] and polynomial complete methods has developped for some particu-
lar class of graphs [5,6]. Several works have been also proposed in distributed (non
self-stabilizing) systems [7,8]. To our best knowledge, nothing about cutsets has been
proposed in self-stabilizing systems until now (so, neither in snap-stabilizing systems).

Contribution. In this paper, we present the first snap-stabilizing protocol for detecting if
a set of processors is a cutset of an arbitrary rooted network. One of the most interesting

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 488–497, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Snap-Stabilizing Detection of Cutsets 489

properties of our protocol is that, despite the initial configuration, as soon as the protocol
is initiated by the root, the result obtained from the computations will be right. So, after
the first execution of the protocol, the root is able to take a decision: “the input set is a
cutset or not”, and this decision is right. The presented protocol is the composition of
a distributed cutset test algorithm with a previous snap-stabilizing DFS wave protocol
[9]. The drawback of our solution is high cost memory requirement due to the snap-
stabilizing DFS wave protocol. But, our cutset test algorithm may be composed with
any self-stabilizing DFS wave protocol in order to improve the memory requirement.
However, in this case, the resulting protocol will be self-stabilizing only.

The rest of the paper is organized as follows: in Section 2, we describe the model
in which our protocol is written. In Section 3, we present some useful properties about
cutsets. We describe our protocol in Sections 4. In Section 5, we give a sketch of the
proof of snap-stabilization of our protocol1. Finally, after presenting some complexity
results (Section 6), we make concluding remarks (Section 7).

2 Preliminaries

Network. We consider a network as an undirected connected graph G = (V , E) where
V is a set of processors (|V |= N ) and E is the set of bidirectional communication links.
We consider networks which are asynchronous and rooted, i.e., among the processors,
we distinguish a particular processor called root. We denote the root processor by r. A
communication link (p, q) exists if and only if p and q are neighbors. Every processor p
can distinguish all its links. To simplify the presentation, we refer to a link (p, q) of p as
the label q. We assume that the labels of p, stored in the set Neigp, are locally ordered
by ≺p. We assume that Neigp is a constant and is an input from the system.

Computational Model. In the computation model we use, each processor executes the
same program except r. We consider the local shared memory model of communica-
tion. The program of every processor consists in a set of shared variables (henceforth,
referred to as variables) and a finite set of actions. A processor can only write to its own
variables, and read its own variables and variables owned by the neighboring processors.
Each action is constituted as follows: < label > :: < guard >→< statement > . The
guard of an action in the program of p is a boolean expression involving the variables of
p and its neighbors. The statement of an action of p updates one or more variables of p.
An action can be executed only if its guard is satisfied. We assume that the actions are
atomically executed, meaning, the evaluation of a guard and the execution of the corre-
sponding statement of an action, if executed, are done in one atomic step. The state of a
processor is defined by the value of its variables. The state of a system is the product of
the states of all processors (∈ V ). We will refer to the state of a processor and system as a
(local) state and (global) configuration, respectively. Let C be the set of all possible con-
figurations of the system. An action A is said to be enabled in γ ∈ C at p if the guard of A
is true at p in γ. A processor p is said to be enabled in γ (γ ∈ C) if there exists an enabled
action in the program of p in γ. Let a distributed protocol P be a collection of binary

1 See http://www.laria.u-picardie.fr/$\sim$devismes/tr2005-04.pdf
for a complete proof.

http://www.laria.u-picardie.fr/$sim $devismes/tr2005-04.pdf


490 A. Cournier, S. Devismes, and V. Villain

transition relations denoted by �→, on C. A computation of a protocol P is a maximal
sequence of configurations e = (γ0, γ1, ..., γi, γi+1, ...), such that for i ≥ 0, γi �→ γi+1

(called a single computation step or move) if γi+1 exists, else γi is a terminal configura-
tion. Maximality means that the sequence is either finite (and no action of P is enabled
in the terminal configuration) or infinite. All computations considered in this paper are
assumed to be maximal. In a step of computation, first, all processors check the guards
of their actions. Then, some enabled processors are chosen by a daemon. Finally, the
“elected” processors execute one or more of their enabled actions. There exists several
kinds of daemon. Here, we assume an unfair distributed daemon. The unfairness means
that the daemon can forever prevent a processor to execute an action except if it is the
only enabled processor. The distributed daemon implies that, during a computation step,
if one or more processors are enabled, the daemon chooses at least one (possibly more)
of these enabled processors to execute an action. We consider that any processor p exe-
cuted a disabling action in the computation step γi �→ γi+1 if p was enabled in γi and not
enabled in γi+1, but did not execute any action between these two configurations. (The
disabling action represents the following situation: at least one neighbor of p changes its
state between γi and γi+1, and this change effectively made the guard of all actions of p
false.) In order to compute the time complexity, we use the definition of round [10]. This
definition captures the execution rate of the slowest processor. Given a computation e,
the first round of e (let us call it e′) is the minimal prefix of e containing the execution of
one action (an action of the protocol or the disabling action) of every enabled processor
from the first configuration. Let e′′ be the suffix of e such that e = e′e′′. The second
round of e is the first round of e′′, and so on.

Snap-Stabilizing Systems. The concept of Snap-stabilization was first introduced in [2]
as follows: a snap-stabilizing protocol guarantees that it always behaves according to its
specification. In [11], authors discuss and formalize the definition to clarify the concept.
In particular, they recall that snap-stabilization does not guarantee that all components
of the system never work in a fuzzy manner. Snap-stabilization just ensures that if an
execution of the protocol is initiated by some processor, then the protocol behaves as
expected. The protocol we present is a wave protocol as defined by Tel in [12]. By
definition, any execution of a wave protocol contains at least one initialization action.
So, following [11], we propose a more simple definition of snap-stabilization holding
for wave protocols.

Definition 1 (Snap-stabilization for Wave Protocols). Let T be a task, and SPT a
specification ofT . A wave protocolP is snap-stabilizing forSPT if and only if (i) at least
one processor eventually executes a particular action of P , and (ii) the result obtained
with P from this particular action always satisfies SPT .

3 Basis of the Algorithm

3.1 Definitions

We call path of G = (V ,E) any sequence of processors P = p0,p1,. . .,pk such that
∀i, 1 ≤ i ≤ k, (pi−1, pi) ∈ E. P is said elementary if ∀i,j, 0 ≤ i < j ≤ k, pi 	= pj . If



Snap-Stabilizing Detection of Cutsets 491

p0,...,pk−1 is elementary and p0 = pk, then P is called a cycle. The processors p0 and
pk are termed as the extremities of the path. The length of P , noted |P |, is the number of
edges which compose P . GS = (VS ,ES) is the subgraph of G = (V ,E) induced by VS

if and only if VS ⊆ V and ES = E∩(VS)2. G = (V ,E) is said connected if and only if
∀p, q ∈ V there exists a path between p and q in G. A connected componante of G is any
connected subgraph of G maximal by inclusion. A connected undirected graph without
any cycle is called a tree. The graph T = (VT ,ET ) is a spanning tree of G = (V ,E) if
and only if T is a tree, VT = V , and ET ⊆ E. Let Tree(r) = (V ,ET ) be a spanning
tree of G rooted at r. The height of a node p in Tree(r), noted h(p), is the length of the
elementary path from r to p in Tree(r). H = maxp∈Tree(r){h(p)} represents the height
of Tree(r). For a node p 	= r, a node q ∈ V is said to be the parent of p in Tree(r) if
and only if q is the neighbor of p (in Tree(r)) such that h(p) = h(q) + 1. Conversely,
p is said to be the child of q in Tree(r). A node p0 is said to be an ancestor of another
node pk in Tree(r) (with k > 0) if there exists a sequence of nodes p0,...,pk such that
∀ pi, with 0≤ i < k, pi is the parent of pi+1 in Tree(r). Conversely pk is said to be a
descendant of p0. We note Tree(p) the subtree of Tree(r) rooted at p (∈ V ), i.e., the
subgraph of Tree(r) induced by p and its descendants in Tree(r). We call tree edges
the edges of ET and non-tree edges the edges of E \ET . We call non-tree neighbors of
p, nodes linked to p by a non-tree edge. Tree(r) is a DFS spanning tree of G = (V ,E)
if and only if ∀ (p,q) ∈ E, p ∈ Tree(q) or q ∈ Tree(p).

3.2 Approach

Let CS ⊆ V . Let G′ = (V ′,E′) be the subgraph of G induced by V ′ = V \ CS. Let
Tree(r) = (V ,ET ) be a DFS spanning tree of G rooted at r. By definition, CS is a
cutset of G if and only if there exists at least two connected componantes in G′. So,
in the following, we particularize a node, called CCRoot, for each connected compo-
nantes in G′. Then, we deduce some results, the last one is a technical lemma which
provide a way to locally detect if a node is a CCRoot.

Definition 2 (CCRoot). We call CCRoot of a connected componante C of G′, a node
p ∈ C satisfying h(p) ≤ h(p′), ∀p′ ∈ C (i.e., p is a node of C with the minimal height
in Tree(r)). In particular, by definition, r is a CCRoot if r /∈ CS.

Lemma 1. Let C be a connected componante of G′ and p be a CCRoot of C. Tree(p)
contains (at least) every node of C.

Corollary 1. There only exists one CCRoot in each connected componante of G′.

Theorem 1. CS is a cutset if and only if there exists at least two CCRoot in G′.

Lemma 2. Let C be a connected componante of G′. A node p is the CCRoot of C if
and only if p satisfies the two following conditions: (i) p ∈ C, (ii) ∀x ∈ Tree(p) such
that x ∈ C, ∀y ∈ Neigx: y /∈ CS ⇒ h(y) ≥ h(p).



492 A. Cournier, S. Devismes, and V. Villain

4 Algorithm

In this section, we propose a snap-stabilizing protocol for detecting if a set of proces-
sors is a cutset of the network. Our protocol is the conditional composition of two other
protocols: Algorithm DFS and Algorithm CCRC (the CCRoots Counting Algorithm).
Algorithm DFS refers to the snap-stabilizing depth-first search (DFS) protocol of [9].
Algorithm CCRC uses the DFS properties in order to count the CCRoot of the net-
work as explained in the previous section. So, after recalling the definition of the condi-
tional composition, we present Algorithm DFS . We then introduce the data structures
used by Algorithm CCRC. Finally, we explain the behavior of the conditional compos-
ite algorithm CCRCDFS, i.e., the conditional composition of Algorithm CCRC and
Algorithm DFS.

4.1 Conditional Composition

The conditional composition is a protocol composition technique which has been intro-
duced by Datta et al in [13]. This general technique allows to simplify the design and
proofs of Algorithm CCRCDFS.

Definition 3 (Conditional Composition). Let S1 and S2 be protocols such that vari-
ables written by S2 are not referred by S1. The conditional composition of S1 and S2,
denoted by S2 ◦|G S1, is a protocol that satisfies the following conditions:

1. It contains all the variables and actions of S1 and S2.
2. G is a set of predicates and is a subset of the guards of S1.
3. Every guard of S2 has the form g ∧ h or ¬g ∧ h where g is a logical expression

using the guards ∈ G.
4. Since some actions of S2 may also be enabled when an action of S1 is enabled, the

order of execution is the following: the action of S2 followed by the action of S1 (in
the same step).

4.2 Algorithm DFS
We now roughly present AlgorithmDFS (see [9] for more details). In AlgorithmDFS ,
the root processor (r) eventually initiates a traversal of the network. During the traver-
sal, all the processors are sequentially visited in DFS order. Algorithm DFS is snap-
stabilizing. The snap-stabilizing property guarantees that, since r initiates the protocol,
the traversal is performed as expected. In particular, the traversal cannot be corrupted
by any abnormal behavior. The traversal performed by Algorithm DFS progresses in
the network as a token circulation:

- The traversal begins when r creates a token by Action F .
- Each non-root processor p executes Action F when it receives the token for the first

time.
- A processor p executes Action B each time the token is backtracked to it: If p has

sent the token to q, then, since the traversal ends at q (i.e., q holds the token and the
token has visited all its neighbors), q backtracks the token to p.



Snap-Stabilizing Detection of Cutsets 493

Obviously, the traversal performed by Algorithm DFS follows a DFS spanning tree
of the network. Frow now on, we note Tree(r) = (V ,ET ) this tree. Also, we note h(p)
the height of the node p in Tree(r) and H the height of Tree(r).

4.3 Algorithm CCRC
Algorithm CCRC is just an application of the properties shown in Section 3. We now
describe the inputs, variables, and actions of Algorithm CCRC.

Algorithm 1 Algorithm (CCRC) CCRoots Counting for p = r
Input:
Neigp : set of neighbors (locally ordered);
Sp ∈ Neigp ∪ {idle, done}: variable from Algorithm DFS;
Forward(p), Backward(p), LockedF (p), LockedB(p): predicates from Algorithm DFS;
Nextp: macro from Algorithm DFS;
InCSp: boolean;
Constant: Levelp = 0;

Variables: IsCutsetp : boolean; Cntp: integer;

Macros:
InitCntp = if (InCS) then Cntp := 0; else Cntp := 1;
UpdIsCutsetp = if (Nextp = done) then IsCutsetp := (Cntp ≥ 2);
Actions:
Forward(p) ∧ ¬LockedF (p) → InitCntp; UpdIsCutsetp ;
Backward(p) ∧ ¬LockedB(p) → Cntp := CntSp ; UpdIsCutsetp ;

Inputs. Algorithm CCRC reads two inputs from Algorithm DFS: Sp and Nextp.The
current successor (resp. predecessor) of a processor p in the traversal is maintained in
Sp (resp. Pp). Note that Sp ∈ Neigp ∪ {idle, done} meaning that p is ready to receive
the token (Sp = idle), the traversal from p is done (Sp = done), or the traversal from
p is in progress (and Sp designates its current successor in the traversal). Moreover,
using the S variables, p can dynamically evaluate its parent Pp in Tree(r) as follows:
Pp = q where Sq = p (see Macro Pp). Finally, Macro Nextp allows to compute a new
value for Sp. In Algorithm CCRC, we only use this macro to know when the traversal
from p is done, i.e., when Nextp = done. To simplify the design of the algorithm, we
assume that every processor p knows if it belongs to the set to test (noted CS) thanks
to the boolean inCSp. In fact, we show inCSp as an input of the system but we could
provided CS (using a set of Ids) in the input of r only and, after, propagated it to all
other processors using Algorithm DFS .

Variables. In Algorithm CCRC, each processor p maintains the following datas: (i)
Levelp, Cntp, and IsCutsetp for p = r; (ii) Levelp, Backp, and Cntp for p 	=
r. Levelp refers to as the height of p in Tree(r). In Backp, we compute the value
UNNTC(p) (i.e., the Uppermost Non-Tree Neighbor of Tree(p) in Cp) as follows: If
p ∈ CS, UNNTC(p) = -1. Otherwise, p belongs to a connected componante of G′,
noted Cp, and UNNTC(p) is equal to the minimal value among the height of each node
of Tree(p) ∩ Cp and the height of their non-tree neighbors q such that q ∈ Cp. From
the definition of UNNTC and Lemma 2, the following theorem shows that if Levelp
and Backp are correctly evaluated (i.e., if Levelp = h(p) and Backp = UNNTC(p)),
then we can locally detect if p is a CCRoot or not.



494 A. Cournier, S. Devismes, and V. Villain

Theorem 2. ∀p∈V \{r}, p is a CCRoot if and only if p/∈CS and h(p)=UNNTC(p).

Algorithm 2 Algorithm (CCRC) CCRoots Counting for p 	= r
Input:
Neigp : set of neighbors (locally ordered);
Sp ∈ Neigp ∪ {idle, done}: variable from Algorithm DFS;
Forward(p), Backward(p), LockedF (p), LockedB(p): predicates from Algorithm DFS;
Nextp: macro from Algorithm DFS;
InCSp: boolean;
Variables: Cntp, Levelp , Backp: integers;

Predicate:

IsCCRoot(p) ≡ (Backp = Levelp)

Macros:
Pp = (q ∈ Neigp :: Sq = p);
NonCSAncLevelp = {x ∈ � :: (∃q ∈ Neigp :: Levelq = x ∧ Levelq < Levelp ∧ ¬inCSq)};
NonCSDescBackp = {x ∈ � :: (∃q ∈ Neigp :: Backq = x ∧ Levelq > Levelp ∧ ¬inCSq)};
UpdBackp = if (InCSp) then Backp := −1;

else Backp := min({Levelp} ∪ NonCSAncLevelp ∪ NonCSDescBackp);
UpdCntp = if (IsCCRoot(p)) then Cntp := Cntp + 1;
Updatep = if (Nextp = done) then UpdBackp; UpdCntp;
Actions:
Forward(p) ∧ ¬LockedF (p) → Levelp := LevelPp + 1; Cntp := CntPp ; Updatep;
Backward(p) ∧ ¬LockedB(p) → Cntp := CntSp ; Updatep ;

Thus, thanks to the Level and Back variables, we can locally detect the CCRoots. So,
in addition, we use the Cnt variables to count the CCRoots of the network. Finally,
the boolean IsCutsetr is used as a flag to mark if CS is a cutset or not.

Actions. Using the conditionnal composition, the actions of Algorithm CCRC are ex-
ecuted in the same step of Actions F and B of Algorithm DFS (see Definition 3).
Action F is enabled at p when p satisfies Forward(p) ∧ ¬LockedF (p). Respectively,
Action B is enabled at p when p satisfies Backward(p) ∧ ¬LockedB(p).

During a traversal, when Processor p receives the token for the first time (Action
F ), p can compute a value depending on it and its parents: a prefix action. In Algo-
rithm CCRC, the prefix action allows to compute Levelp for non-root processors and
to initialise Cntp for the root (Definition 2 allows to determine if r is a CCRoot or
not). Then, when the traversal locally ends at p (p executes Actions F or B while
Nextp = done), p can calculate a result depending on it, its neighbors and/or its de-
scendants: a postfix action. Indeed, in this case, Tree(p) is entirely computed and the
token has visited all neighbors of p. In Algorithm CCRC, the postfix action allows to:

- Compute Backp for p 	= r. Indeed, when the traversal ends at p, its neighbors have
computed their height and its descendants have evaluated their Back Variable.

- Update Cntp for p 	= r. As Backp and Levelp are evaluated, by Theorem 2, p
knows if it is a CCRoot and, if necessary, it increments Cntp.

- Update IsCutsetp for p = r. When the traversal ends at r, the traversal is entirely
done. So, r knows the number of CCRoots of the network and, using Theorem 1,
Macro UpdIsCutsetp updates IsCutsetp as well.

Finally, some actions of Algorithm CCRC have to be executed at each step of Algorithm
DFS (when Actions F or B are executed). These actions allow to maintain in the Cnt
variables the number of CCRoots currently discovered.



Snap-Stabilizing Detection of Cutsets 495

4.4 Algorithm CCRCDFS
Algorithm CCRCDFS is shown as Algorithm 3. Informally, Algorithm CCRCDFS
works as follows. The root, r, begins the traversal by creating a token and initialises
Cntr to 0 or 1 according to Definition 2. Then, each time a processor p 	= r receives the
token for the first time, it initialises Cntp (Cntp := CntSp) and computes its height in
Levelp. Each time the token is backtracked to a processor q, q updates Cntq . When the
traversal ends at q, q computes Backq . Indeed, all its neighbors have computed their
Level variables and all its descendants have already computed their Back variables.
Thus, by Theorem 2, q can decide if it is a CCRoot or not and updates Cntq as well.
Finally, when the traversal is completely done (i.e., the token is backtracked to r and
the token has visited all its neighbors), r can decide if CS (the set of nodes to test) is a
cutset (according to Theorem 1) and updates IsCutsetr as well. Thus, from any initial
configuration, after the end of a DFS traversal initiated by r, we obtain a configuration
similar to the one shown in Figure 1. In this exemple, CS = {1, 6, 8} and r, 2 are
CCRoots. The root processor r is a CCRoot because r /∈ CS (Definition 2). Processor
2 is a CCRoot because 2 	= r, 2 /∈ CS, and Level2 = Back2. During the traversal, the
Cnt variables count the number of CCRoots (here, equal to 2) and IsCutsetr is set
to true at the end of the traversal according to Theorem 1.

Algorithm 3 Algorithm (CCRCDFS) CCRoots Counting and Depth-First Search
CCRC ◦ |{Forward,LockedF,Backward,LockedB}DFS

0 r

1, 014

4, 2 4 6, 0 9

7, 0 10

8, 011

9, 712

7, 613

5, −1

6 6, −1

7
4, 3

1, −1 1

5, 2 5

2, 2 2

3, 2 3

node of CS

CCRoot

Tree Edge

Non−Tree Edge

4, 3 Level, Back

(For the root, we have only Level)

r root

8

Fig. 1. State of the network after the end of a DFS traversal initiated by r

5 Sketch of Proof

In this section, we show that Algorithm CCRCDFS (i.e., the conditional composition
of Algorithm DFS and Algorithm CCRC) is snap-stabilizing under an unfair daemon.
First, we can remark that Algorithm CCRC does not change the variables used by Al-
gorithm DFS . Moreover, no action of Algorithm CCRC can prevent any action of Al-
gorithm DFS since, when an action of Algorithm CCRC is executed at p, it is done in



496 A. Cournier, S. Devismes, and V. Villain

the same step of an action of Algorithm DFS at p (because of the conditional compo-
sition). So, Algorithm CCRC has no impact on the behavior of Algorithm DFS . From
[9], we know that Algorithm DFS is snap-stabilizing, i.e., r eventually initiates the
protocol and since r initiates the protocol, Algorithm DFS satisfies its specification.
More precisely, starting from any initial configuration, r eventually initiates a traversal
of the network. During this traversal, all the processor are sequentially visited in DFS
order. In particular, the snap-stabilizing property guarantees that the traversal performed
by Algorithm DFS cannot be corrupted by any abnormal behavior. Since Algorithm
CCRC cannot prevent AlgorithmDFS to work as expected, we will observe the system
from the moment when r initiates the protocol and we focus on the traversal performed
from r only (we do not take care of any abnormal behavior related to Algorithm DFS).
So, if we focus on the traversal performed from r, if easy to verify that, after receiving
the token for the first time, any p ∈ V satisfies Levelp = h(p) until the end of the
traversal. Then, when the traversal ends at p, Backp = UNNTC(p) and, by Theo-
rem 2, p is able to decide if it is a CCRoot or not as explained in Section 4. Hence,
at the end of a traversal initiated by r, r knows the number of CCRoots and takes the
right decision, i.e., IsCutsetr = true if and only if CS is a cutset. Finally, in [9],
Algorithm DFS is proven assuming an unfair daemon. Now, by Definition 3, Algo-
rithm CCRCDFS works with the same number of steps than Algorithm DFS and it is
snap-stabilizing under the unfair daemon.

Theorem 3. Under an unfair daemon, Algorithm CCRCDFS is snap-stabilizing and
detects if CS is a cutset.

6 Complexity Analysis

Time Complexity. Using the conditional composition, the actions of Algorithm CCRC
are executed only when actions of Algorithm DFS are executed. Moreover, actions
of Algorithm CCRC and Algorithm DFS are executed in the same step. Thus, the
complexity results of Algorithm CCRCDFS and AlgorithmDFS are the same. Hence,
from [9], we can deduce that a complete CCRCDFS computation is executed in O(N2)
moves and in at most 6N − 1 rounds.

Space Complexity. In Algorithms 1 and 2, we do not assume any bound on Variables
Cnt, Level, and Back. But, we may assume that the maximal value of each of these
variables is any upper bound of N . Thus, we can claim that each variable Cnt, Level,
or Back can be stored in O(log N ) bits and, by taking account of the other variables, we
can deduce that the space requirement of Algorithm CCRC is O(log(N)) bits per pro-
cessor. From [9], we can conclude that the space requirement of Algorithm CCRCDFS
is O(N×log(N)+log(∆)) bits per processor (where ∆ is an upper bound on the degree
of the processors).

7 Conclusion

In this paper, we have presented the first snap-stabilizing protocol for detecting if a set
of processors is a cutset of an arbitrary rooted network called Algorithm CCRCDFS.



Snap-Stabilizing Detection of Cutsets 497

This protocol, which is a conditionnal composition of Algorithms CCRC and DFS ,
works assuming an unfair daemon, i.e., the weakest scheduling assumption. The snap-
stabilizing property guarantees that despite the initial configuration, as soon as our pro-
tocol is initiated by the root, the result obtained from the computations will be right.
Moreover, as our protocol is snap-stabilizing, our protocol is optimal in stabilization
time. In addition, note that a complete computation of Algorithm CCRCDFS is exe-
cuted in O(N ) rounds and O(N2) moves. Finally, the space requirement of our solution
is O(N × log(N)+log(∆)) bits per processor. Algorithm CCRC can be combined with
any self-stabilizing DFS wave protocol (e.g. [14,15]) in order to improve the memory
requirement. Of course, in this case, the resulting protocol will be self-stabilizing only.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications of the
Association of the Computing Machinery 17 (1974) 643–644

2. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree networks.
In: Proceedings of the Fourth Workshop on Self-Stabilizing Systems, IEEE Computer Soci-
ety Press (1999) 78–85

3. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability
that a graph is connected. SIAM Journal of Computing 12 (1983) 777–788

4. Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47 (2000) 46–76
5. Ahmad, S.H.: Simple enumeration of minimal cutsets of acyclic directed graph. IEEE

Transactions on Reliability 37 (1988) 484–487
6. Whited, D.E., Shier, D.R., Jarvis, J.P.: Reliability computations for planar networks. OSRA

Journal of Computing 2(1) (1990) 46–60
7. Fard, N.S., Lee, T.H.: Cutset enumeration of network systems with link and node failure.

Reliability Engineering and System Safety 65 (1999) 141–146
8. Rai, S.: A cutset approach to reliability evaluation in communication networks. IEEE Trans-

actions on Reliability 31 (1982) 428–431
9. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search on ar-

bitrary networks. In: OPODIS’04, International Conference On Principles Of Distributed
Systems Proceedings. (2005) 267–282

10. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE
Transactions on Parallel and Distributed Systems 8 (1997) 424–440

11. Cournier, A., Datta, A., Petit, F., Villain, V.: Enabling snap-stabilization. In: 23th Interna-
tional Conference on Distributed Computing Systems (ICDCS 2003). (2003) 12–19

12. Tel, G.: Introduction to distributed algorithms. Cambridge University Press (Second edition
2001)

13. Datta, A.K., Gurumurthy, S., Petit, F., Villain, V.: Self-stabilizing network orientation algo-
rithms in arbitrary rooted networks. In: International Conference on Distributed Computing
Systems. (2000) 576–583

14. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks. Distributed
Computing 7 (1993) 61–66

15. Datta, A., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in
arbitrary rooted networks. Distributed Computing 13(4) (2000) 207–218


	Introduction
	Preliminaries
	Basis of the Algorithm
	Definitions
	Approach

	Algorithm
	Conditional Composition
	Algorithm DFS
	Algorithm CCRC
	Algorithm CCRCDFS

	Sketch of Proof
	Complexity Analysis
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




