
Comparison of Expressiveness for Timed

Automata and Time Petri Nets

B. Bérard1, F. Cassez2, S. Haddad1, D. Lime3, O.H. Roux2

1 LAMSADE, Paris, France
E-mail: {beatrice.berard | serge.haddad}@lamsade.dauphine.fr

2 IRCCyN, Nantes, France
{Franck.Cassez | Olivier-h.Roux}@irccyn.ec-nantes.fr

3 CISS, Aalbork, Denmark
Didier@cs.aau.dk

Abstract. In this paper we consider the model of Time Petri Nets
(TPN) “à la Merlin” where a time interval is associated with the firing of
a transition, but we extend it with open intervals. We also consider Timed
Automata (TA) as defined by Alur & Dill. We investigate some questions
related to expressiveness for these models : we study the impact of slight
variations of semantics for TPN and we compare the expressive power
of TA and TPN, with respect to both time language acceptance and
weak time bisimilarity. We prove that TA and bounded TPNs (enlarged
with strict constraints) are equivalent w.r.t. timed language equivalence,
providing an efficient construction of a TPN equivalent to a TA. We then
exhibit a TA A such that no TPN (even unbounded) is weakly bisim-
ilar to A. Because of this last result, it is natural to try and identify the
(strict) subclass of TA that is equivalent to TPN w.r.t. weak timed bisim-
ilarity. Thus we give some further results: 1) we characterize the subclass
TA− of TA that is equivalent to the original model of TPN as defined by
Merlin, i.e. restricted to closed intervals, 2) we show that the associated
membership problem for TA− is PSPACE-complete and 3) we prove
that the reachability problem for TA− is also PSPACE-complete.

Keywords: Time Petri Nets, Timed Automata, Timed Languages, Timed
Bisimilarity, Expressiveness.

1 Introduction

Petri Nets with Time. The two main extensions of Petri Nets with time are
Time Petri Nets (TPNs) [15] and Timed Petri Nets [17]. For TPNs a transition
can fire within a time interval whereas for Timed Petri Nets it fires as soon as
possible. Among Timed Petri Nets, time can be considered relative to places or
transitions [18,16]. The two corresponding subclasses namely P-Timed Petri Nets
and T-Timed Petri Nets are expressively equivalent [18,16]. The same classes are
defined for TPNs i.e. T-TPNs and P-TPNs, but both classes of Timed Petri Nets
are included in both P-TPNs and T-TPNs [16]. P-TPNs and T-TPNs are proved

to be incomparable in [13]. Finally TPNs form a subclass of Time Stream Petri
Nets [10] which were introduced to model multimedia applications. Timed Arc
Petri Nets are also studied in more recent work [1,9].

Timed Automata. Timed Automata (TA) were introduced by Alur & Dill [3]
and have since been extensively studied. This model is an extension of finite
automata with (dense time) clocks and enables one to specify real-time systems.
Theoretical properties of various classes of TA have been considered in the last
decade. For instance, a class of determinizable TA such as Event Clock Automata
are investigated in [4] and form a strict subclass of TA. More general models
of TA like Rectangular Automata or Linear Hybrid Automata have also been
considered and their expressive power compared.

However, not much is known about the expressive power of TPN compared
to TA.
Related Work. In a previous work [8] we have proved that TPN forms a sub-
class of TA in the sense that every TPN can be simulated by a TA (weak timed
bisimilarity). A similar result can be found in [14] with a completely different
approach.

In another line of work [12], Haar, Kaiser, Simonot & Toussaint compare
Timed State Machines and Time Petri Nets. They give a translation from one
model to another that preserves timed languages. Nevertheless, in the translation
from TSM to TPN they use a weak semantics for TPN and consider only the
constraints with bounded and closed intervals.

Our Contribution. In this article, we compare precisely the expressive power
of TA vs. TPN using the notions of Timed Language Acceptance and Timed
Bisimilarity. This extends previous results in this area in the following directions:
i) we consider general types of constraints (strict, large, bounded, unbounded);
ii) we then show that there is a TA A s.t. no TPN is (even weakly) timed
bisimilar to A; iii) this leads us to consider weaker notions of equivalence and we
focus on Timed Language Acceptance. We prove that TA (with general types of
constraints) and TPN are equally expressive w.r.t. Timed Language Acceptance;
iv) to conclude we characterize the subclass of TA that is equally expressive
to TPN without strict constraints w.r.t. Timed Bisimilarity, and show that the
membership problem for this class is PSPACE-complete as well the reachability
problem. The results of the paper are summarized in Table 1: all the results
are new except the one on the first line obtained in [8]. We use the following
notations: B-T PN ε for the set of bounded TPNs with ε-transitions; 1-B-T PN ε

for the subset of B-T PN ε with at most one token in each place (one safe TPN);
B-T PN (≤,≥) for the subset of B-T PN ε where only closed intervals are used;
T Aε for TA with ε-transitions; T A− for the class of TA (to be defined precisely
in section 6) that is equivalent to B-T PN (≤,≥).

Outline of the paper. Section 2 introduces the semantics of TPNs and TA,
Timed Languages and Timed Bisimilarity and section 3 is devoted to the com-
parison between various semantics for TPNs. In section 4, we prove negative
results: we exhibit some timed automata for which there exist no (weakly) timed

2

bisimilar TPN. In section 5 we focus on Timed Language Acceptance and prove
that TA and TPNs are equally expressive w.r.t. this equivalence. Section 6 is de-
voted to a characterization of the subclass of TA that is equivalent to TPN w.r.t.
Timed Bisimilarity. Finally we give some hints on further work in section 7.

Timed Language Acceptance Timed Bisimilarity

≤L T Aε ([8]) ≤W T Aε ([8])
B-T PN ε =L 1-B-T PN ε =L T Aε <W T Aε

B-T PN (≤,≥) — ≈W T A−

Emptyness Problem Universal Problem

B-T PN ε Decidable Undecidable

Membership Problem Reachability Problem

T A− PSPACE-complete

Table 1. Summary of the Results

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a set (or alphabet). Σ∗ (resp. Σω) denotes the set of
finite (resp. infinite) sequences of elements (or words) of Σ and Σ∞ = Σ∗ ∪Σω.
By convention if w ∈ Σω then the length of w denoted |w| is ω; otherwise if
w = a1 · · · an, |w| = n. We also use Σε = Σ ∪ {ε} with ε 6∈ Σ, where ε is
the empty word. BA stands for the set of mappings from A to B. If A is finite
and |A| = n, an element of BA is also a vector in Bn. The usual operators
+,−, < and = are used on vectors of An with A = N,Q,R and are the point-
wise extensions of their counterparts in A. The set B denotes the boolean values
{tt,ff} and R≥0 denotes the set of positive reals. A valuation ν over a set of
variables X is an element of RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν + d denotes the

valuation defined by (ν + d)(x) = ν(x) + d, and for X ′ ⊆ X , ν[X ′ 7→ 0] denotes
the valuation ν′ with ν′(x) = 0 for x ∈ X ′ and ν′(x) = ν(x) otherwise. 0 denotes
the valuation s.t. ∀x ∈ X, ν(x) = 0. An atomic constraint is a formula of the
form x ./ c for x ∈ X , c ∈ Q≥0 and ./∈ {<,≤,≥, >}. We denote C(X) the
set of constraints over a set of variables X which consists of the conjunctions of
atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we
denote ϕ(ν) ∈ B the truth value obtained by substituting each occurrence of x
in ϕ by ν(x). Accordingly each constraint ϕ ∈ C(X) defines a set of valuations
[[ϕ]] defined by [[ϕ]]= {ν ∈ RX

≥0 | ϕ(ν) = tt}.
A set I is a Q≥0-interval of R≥0 if there is a constraint ϕ of the form a ≺1

x ≺2 b with a ∈ Q≥0, b ∈ Q≥0 ∪ {∞} and ≺1,≺2∈ {<,≤ }, such that I =[[ϕ]].
We let I↓ =[[0 ≤ x ≺2 b]] be the downward closure of I and I↑ =[[a ≺1 x]] be the

3

upward closure of I. We denote by I(Q≥0) the set of Q≥0-intervals of R≥0. Let
g ∈ N>0, we write Ng = { i

g | i ∈ N}. A vector v ∈ Qn belongs to the g-grid if

v(k) ∈ Ng for all 1 ≤ k ≤ n.

2.1 Timed Transition Systems and Equivalence Relations

Let Σ be a fixed finite alphabet s.t. ε 6∈ Σ.

Definition 1 (Timed Words). A timed word w over Σε is a finite or infinite
sequence w = (a0, d0)(a1, d1) · · · (an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σε, di ∈ R≥0

and di+1 ≥ di.

A timed word w over Σε can be viewed as a pair (v, τ) ∈ Σ∞
ε ×R∞

≥0 s.t. |v| = |τ |.
The value dk gives the absolute time (from the initial instant 0) of action ak. We
write Untimed(w) = v for the untimed part of w, and Duration(w) = supdk∈τ dk

for the duration of the timed word w. For a timed word (ai, di)i≥0 we define
the relative time stamp Rstamp(ai) of ai as Rstamp(ai) = di − di−1 with the
convention that d−1 = 0 and extend this notion to timed words by defining
Rstamp(w) = (ai,Rstamp(ai))i≥0. Note that, conversely, from such a sequence,
we can retrieve a timed word with absolute time stamps by cumulating the
successive delays.

Since ε-transitions correspond to the empty word and are not visible, we can
remove from each timed word w ∈ Σ∞

ε × R∞
≥0 all the ε-actions and obtain a

timed word in Σ∞ × R∞
≥0.

Definition 2 (Timed Languages). We denote by T W∗(Σ) (resp. T Wω(Σ))
the set of finite (resp. infinite) timed words over Σ and T W∞(Σ) = T W∗(Σ)∪
T Wω(Σ). A timed language L over Σ is any subset of T W∞(Σ).

Timed transition systems describe systems which combine discrete and con-
tinuous evolutions.

Definition 3 (Timed Transition Systems). A timed transition system (TTS)
over the set of actions Σε is a tuple S = (Q,Q0, Σε,−→, F,R) where Q is a set
of states, Q0 ⊆ Q is the set of initial states, Σε is a finite set of actions disjoint
from R≥0 and −→⊆ Q × (Σε ∪ R≥0) × Q is a set of edges. If (q, e, q′) ∈−→,

we also write q
e

−−→ q′. For a transition q
d

−−→ q′ with d ∈ R≥0, the value d
represents a relative time stamp. The sets F ⊆ Q and R ⊆ Q are respectively
the sets of final and repeated states.

We make the following common assumptions about TTS:

– 0-delay: q
0

−−→ q′ if and only if q = q′,

– Additivity: if q
d

−−→ q′ and q′
d′

−−→ q′′ with d, d′ ∈ R≥0, then q
d+d′

−−−−→ q′′,

– Continuity: if q
d

−−→ q′, then for every d′ and d′′ in R≥0 such that d =

d′ + d′′, there exists q′′ such that q
d′

−−→ q′′
d′′

−−−→ q′,

4

– Time-Determinism: if q
d

−−→ q′ and q
d

−−→ q′′ with d ∈ R≥0, then q′ = q′′.

A run ρ of length n ≥ 0 is is a finite or infinite (n = ω) sequence of transitions
of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n . . .

where discrete actions alternate with durations. We write first(ρ) = q0 and if ρ is
finite, we assume that it ends with an action transition and we set last(ρ) = qn.

We write q
∗
−→ q′ if there is a run ρ s.t. first(ρ) = q, last(ρ) = q′.

A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite
initial run and last(ρ) ∈ F or ii) ρ is infinite and there is a state q ∈ R that
appears infinitely often on ρ. From the sequence (a0, d0)(a1, d1) . . . associated
with ρ, we obtain a timed word w by considering the absolute time stamps of
actions : w = (a0, d0)(a1, d0 + d1) This word is accepted by S if ρ is an
accepting run.

The timed language L(S) accepted by S is the set of timed words accepted
by S.

Definition 4 (Strong Timed Similarity). Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1)

and S2 = (Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and � be a binary relation over

Q1 × Q2. We write s � s′ for (s, s′) ∈�. The relation � is a strong (timed)
simulation relation of S1 by S2 if:

1. if s1 ∈ F1 (resp. s1 ∈ R1) and s1 � s2 then s2 ∈ F2 (resp. s2 ∈ R2),
2. if s1 ∈ Q1

0 there is some s2 ∈ Q2
0 s.t. s1 � s2;

3. if s1
d
−→1 s

′
1 with d ∈ R≥0 and s1 � s2 then s2

d
−→2 s

′
2 for some s′2, and

s′1 � s′2;

4. if s1
a
−→1 s

′
1 with a ∈ Σε and s1 � s2 then s2

a
−→2 s

′
2 and s′1 � s′2;

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation
of S1 by S2. We write S1 �S S2 in this case.

When there is a strong simulation relation � of S1 by S2 and �−1 is also
a strong simulation relation4 of S2 by S1, we say that � is a strong (timed)
bisimultion relation between S1 and S2 and use ≈ instead of �. Two TTS S1

and S2 are strongly (timed) bisimilar if there exists a strong (timed) bisimulation
relation between S1 and S2. We write S1 ≈S S2 in this case.

Let S = (Q,Q0, Σε,−→, F,R) be a TTS. We define the ε-abstract TTS
Sε = (Q,Qε

0, Σ, −→ε, F,R) (with no ε-transitions) by:

– s
d
−→ε s

′ iff there is a run ρ = s
∗
−→ s′ with Untimed(ρ) = ε and Duration(ρ) =

d,
– s

a
−→ε s

′ with a ∈ Σ iff there is a run ρs
∗
−→ s′ with Untimed(ρ) = a and

Duration(ρ) = 0,

– Qε
0 = {s | ∃s′ ∈ Q0 | s′

w
−→ s and Duration(w) = 0 ∧Untimed(w) = ε}.

4 s2 �−1 s1 ⇐⇒ s1 � s2.

5

Definition 5 (Weak Time Similarity). Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1)

and S2 = (Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and � be a binary relation over

Q1 × Q2. � is a weak (timed) simulation relation of S1 by S2 if it is a strong
timed simulation relation of Sε

1 by Sε
2. A TTS S2 weakly simulates S1 if there

is a weak (timed) simulation relation of S1 by S2. We write S1 �W S2 in this
case.

When there is a weak simulation relation � of S1 by S2 and �−1 is also a weak
simulation relation of S2 by S1, we say that � is a weak (timed) bisimulation
relation between S1 and S2 and use ≈ instead of �. Two TTS S1 and S2 are
weakly (timed) bisimilar if there exists a weak (timed) bisimulation relation
between S1 and S2. We write S1 ≈W S2 in this case.

Note that if S1 �S S2 then S1 �W S2 and if S1 �W S2 then L(S1) ⊆ L(S2).
Moreover, proving that S1 �W S2 usually amounts to proving that if q1 � q2,
then each move q1

e
−→1 q

′
1 can be simulated by a set of moves q2

e
−→2,ε q

′
2 s.t.

q2 � q′2.
Let S = (Q,Q0, Σε,−→, F,R) be a TTS. We define the time-abstract TTS S∆ =
(Q,Q0, Σε ∪ {δ} −→∆, F,R) with δ 6∈ Σε by:

– s
δ
−→∆ s′ iff s

d
−→ s′ for some d ∈ R≥0,

– s
a
−→∆ s′ with a ∈ Σ iff s

a
−→ s′ for some a ∈ Σε.

Notice that S∆ has no transition s
d
−→ s′ with d ∈ R≥0.

2.2 Time Petri Nets

Time Petri Nets (TPN) were introduced in [15] and extend Petri Nets with
timing constraints on the firings of transitions. In TPN, a time interval is as-
sociated with each transition. An implicit clock can then be associated with
each enabled transition, and gives the elapsed time since it was last enabled. An
enabled transition can be fired if its clock value belongs to the interval of the
transition. Furthermore, time cannot progress beyond any upper bound of an
interval associated with a transition. The following definitions formalize these
principles. We consider here a generalized version5 of TPN with accepting and
repeated markings and prove our results for this general model.

Definition 6 (Labeled Time Petri Net). A Labeled Time Petri Net N is
a tuple (P, T,Σε,

•(.), (.)
•
,M0, Λ, I, F,R) where: P is a finite set of places and

T is a finite set of transitions with P ∩ T = ∅; Σε = Σ ∪ {ε} is a finite set of
actions and ε the empty word i.e. the silent action; •(.) ∈ (NP)T is the backward
incidence mapping; (.)

• ∈ (NP)T is the forward incidence mapping; M0 ∈ NP

is the initial marking; Λ : T → Σε is the labeling function; I : T → I(Q≥0)
associates with each transition a firing interval; R ⊆ NP is the set of final
markings and F ⊆ NP is the set of repeated markings. An unlabeled TPN is a
TPN s.t. Σ = T and Λ(t) = t for all t ∈ T .

5 This is required to be able to define Büchi timed languages, which is not possible in
the original version of TPN of [15].

6

A TPN N is a g-TPN if for all t ∈ T , I(t) is an interval with bounds in Ng. We
also use •t (resp. t•) to denote the set of places •t = {p ∈ P | •t(p) > 0} (resp.
t• = {p ∈ P | t•(p) > 0}) as it is common is the literature6.

Semantics of Time Petri Nets. The semantics of TPNs is given in terms of
Timed Transition Systems. A marking M of a TPN is a mapping in NP and
M(p) is the number of tokens in place p. A transition t is enabled in a marking
M iff M ≥ •t. We denote by En(M) the set of enabled transitions in M . To
decide whether a transition t can be fired, we need to know for how long it has
been enabled: if this amount of time lies within the interval I(t), t can actually
be fired, otherwise it cannot. On the other hand time can progress only if the
enabling duration still belongs to the downward closure of the interval associated
with an enabled transition. Let ν ∈ (R≥0)

En(M) be a valuation such that each
value ν(t) is the time elapsed since transition t was last enabled. A configuration
of the TPN N is a pair (M, ν). An admissible configuration of a TPN is a
configuration (M, ν) s.t. ∀t ∈ En(M), ν(t) ∈ I(t)↓. We let ADM(N) be the set
of admissible markings.

When defining the semantics of a TPN, three kinds of policies must be fixed.

The choice policy concerns the choice of the next event to be fired (sched-
uled). For TPNs (and also timed automata), this choice is non deterministic
(possible alternatives use priorities, probabilities, etc.).

The service policy concerns the possibility of simultaneous instances of a
same event to occur. In the context of Petri nets, this is formalized by the en-
abling degree of a transition. Here we adopt the single-server policy (at most
one instance of a firing per transition in every state). The results presented
are also valid for the other standard policies (multiple or infinite server) at
least for the important case of bounded Petri nets. However taking them
explicitely into account would lead to intricate notations.

The memory policy concerns the updating of timing informations when a
discrete step occurs. The key issue7 in the semantics is to define when we
reset the clock measuring the time since a transition was last enabled. This
can only happen when we fire a transition. We let ↑enabled(t′,M, t) ∈ B be
true if t′ is newly enabled by the firing of transition t from marking M , and
false otherwise.
Let M be a marking and t ∈ En(M). The firing of t leads to a new marking
M ′ = M − •t+ t•. Three semantics are possible:
I: The intermediate semantics (I) considers that the firing of a transition is

performed in two steps: consuming the input tokens in •t, and then pro-
ducing output tokens in t•. The fact that a transition t′ is newly enabled
on the firing of a transition t 6= t′ is determined w.r.t. the intermediate
marking M−•t. When a transition t is fired it is newly enabled whatever

6 Whether •t (resp. t•) stands for a vector of (NP)T or a subset of P will be unam-
biguously defined by the context.

7 The new marking obtained after firing a transition t from a marking M is given by
the untimed semantics of Petri Nets i.e. M ′ = M − •t+ t•.

7

the intermediate marking. We denote by ↑enabledI(t
′,M, t) the newly

enabled predicate in this case. This mapping is defined by:

↑enabledI(t
′,M, t) = (t′ ∈ En(M − •t+ t•)

∧
(

t′ 6∈ En(M − •t) ∨ (t = t′)
) (1)

A: The atomic semantics considers that the firing of a transition is obtained
by an atomic step. The corresponding mapping ↑ enabledA(t′,M, t) is
defined by:

↑enabledA(t′,M, t) = (t′ ∈ En(M−•t+t•))∧
(

t′ 6∈ En(M)∨(t = t′)
)

(2)

PA: The persistent atomic semantics considers that the firing of a transition
is also obtained by an atomic step. The difference with the A semantics
in only on the value of ↑enabledA(t′,M, t) when t = t′. The transition
begin fired is not always newly enabled:

↑enabledPA(t′,M, t) = t′ ∈ En(M − •t+ t•) ∧ (t′ 6∈ En(M)) (3)

Note that we have the relation:

↑enabledPA(t,M, t′) ⇒ ↑enabledA(t,M, t′) ⇒ ↑enabledI(t,M, t′)

The intermediate semantics I, based on [6,5] is the most common one. How-
ever, depending on the systems to be modeled, another semantics may be more
appropriate. The relative expressive power of the three semantics has not been
investigated so far: we address this problem in section 3.

We now define the semantics of a TPN: this is a parameterized semantics
that depends on the choice of the semantics for the ↑enabled predicate.

Definition 7 (Semantics of TPN). Let s ∈ {I,A,PA}. The s-semantics of a
TPN N = (P, T,Σε,

•(.), (.)
•
,M0, Λ, I, F,R) is a timed transition system SN =

(Q, {q0}, T,→, F ′, R′) where: Q = ADM(N), q0 = (M0,0), F ′ = {(M, ν) | M ∈
F} and R′ = {(M, ν) | M ∈ R}, and −→∈ Q × (T ∪ R≥0) × Q consists of the
discrete and continuous transition relations:

– the discrete transition relation is defined ∀t ∈ T by:

(M, ν)
Λ(t)
−−−→ (M ′, ν′) iff



















t ∈ En(M) ∧M ′ = M − •t+ t•

ν(t) ∈ I(t),

∀t ∈ R
En(M ′)
≥0 , ν′(t) =

{

0 if ↑enableds(t
′,M, t),

ν(t) otherwise.

– the continuous transition relation is defined ∀d ∈ R≥0:

(M, ν)
d

−−→ (M, ν′) iff

{

ν′ = ν + d

∀t ∈ En(M), ν′(t) ∈ I(t)↓

8

A run ρ of N is an initial run of SN . The timed language accepted by N is
L(T) = L(SN). An unlabelled TPN accepts a timed language in (T × R≥0)

∞.

We simply write (M, ν)
w
−→ to emphasize that a sequence of transitions w can

be fired in SN from (M, ν). If Duration(w) = 0 we say that w is an instantan-
eous firing sequence. The set of reachable markings of N is Reach(N) = {M ∈

NP | ∃(M, ν) | (M0,0)
w
−→ (M, ν)}.

2.3 Timed Automata

Definition 8 (Timed Automaton). A Timed Automaton A is a tuple (L, `0,
X,Σε, E, Inv, F,R) where: L is a finite set of locations; `0 ∈ L is the initial
location; X is a finite set of non negative real-valued clocks; Σε = Σ ∪ {ε} is a
finite set of actions and ε is the silent action; E ⊆ L × C(X) × Σε × 2X × L
is a finite set of edges, e = 〈`, γ, a, R, `′〉 ∈ E represents an edge from the
location ` to the location `′ with the guard γ, the label a and the reset set R ⊆ X;
Inv ∈ C(X)L assigns an invariant to any location. We restrict the invariants
to conjuncts of terms of the form x � r for x ∈ X and r ∈ N and �∈ {<,≤}.
F ⊆ L is the set of final locations and R ⊆ L is the set of repeated locations.

Definition 9 (Semantics of a Timed Automaton). The semantics of a
timed automaton A = (L, `0, X,Σε, E, Inv, F,R) is a timed transition system
SA = (Q, q0, Σε,→, F ′, R′) with Q = L × (R≤0)

X , q0 = (`0,0) is the initial
state, F ′ = {(`, v) | ` ∈ F} and R′ = {(`, v) | ` ∈ R}, and → is defined by:

(`, v)
a
−→ (`′, v′) iff ∃ (`, γ, a, R, `′) ∈ E s.t.











γ(v) = tt,

v′ = v[R 7→ 0]

Inv(`′)(v′) = tt

(`, v)
d

−−→ (`′, v′) iff

{

` = `′ v′ = v + d and

∀ 0 ≤ d′ ≤ d, Inv(`)(v + d′) = tt

A run ρ of A is an initial run of SA. The timed language accepted by A is
L(A) = L(SA).

Recall [3] that, if m is the maximal constant appearing in atomic formulas
x ./ c of A, an equivalence relation with finite index can be defined on clock
valuations, leading to a partition of (R≥0)

X , with the following property: two
equivalent valuations have the same behaviour under progress of time and reset
operations, with respect to the constraints. Note that a partition using any
K ≥ m would have the same property. Also, the construction can be extended
to a g-grid, by taking all constants of the form i

g , 0 ≤ i ≤ K·g instead of

{0, 1, . . . ,K}. Finally, taking K = +∞ (as depicted in Figure 1 on the left)
leads to a similar structure except for the fact that the partition is infinite.
When it is possible, we will sometimes use such a partition in order to simplify
some proofs. Indeed, with this partition, the extremal case where x is greater
than K has not to be distinguished from the standard case.

9

In this paper, the elements of the partition are called elementary zones and
we consider a slight variation for the definition of elementary zones: we take
the constant K = m + 1 and with each clock x ∈ X , we associate an interval
in the set {{0},]0, 1[, {1}, . . . , {K − 1},]K − 1,K[, [K,+∞[}, instead of keeping
{K} separately. As usual, we also specify the ordering on the fractional parts
for all clocks x such that x < K. Such a partition is represented in Figure 1 (on
the right) for the set of two clocks X = {x, y} and K = 3. For this example,
elementary zones Z1 and Z2 are described by the constraints: Z1 : (2 < x <
3) ∧ (1 < y < 2) ∧ (0 < frac(y) < frac(x)) and Z2 : (x ≥ 3) ∧ (1 < y < 2).
When considering diagonal constraints (also with constants up to K), another
partition (Figure 1 in the middle, with K = 2) must be considered.

x

y

x

y

x

y

Z1 Z2

Fig. 1. Partitions of (R+)2 with K = +∞, K = 2 (with diagonal constraints) and
K = 3 (no diagonal constraints)

The future of a zone Z is defined by fut(Z) = {v + d | v ∈ Z, d ∈ R≥0}. If
Z and Z ′ are elementary zones, Z ′ is a time successor of Z, written Z ≤ Z ′, if
for each valuation v ∈ Z, there is some d ∈ R≥0 such that v + d ∈ Z ′. For each
elementary zone Z, there is at most one elementary zone such that (i) Z ′ is a
time successor of Z, (ii) Z 6= Z ′ and (iii) there is no time successor Z ′′ such
that Z ≤ Z ′′ ≤ Z ′. When it exists, this elementary zone is called the immediate
successor of Z and is denoted by succ(Z). Note that fut(Z) ⊆ ∪Z≤Z′Z ′, with a
strict inclusion when no diagonal constraints are permitted.

Finally recall that a finite automaton R(A), called the region automaton,
can be built from A. This automaton is time abstract bisimilar to the original
automaton A. Its states, called here regions, are of the form (`, Z), where ` is a
location of A and Z an elementary zone of (R≥0)

X . They are built from the initial

region (`0,0) by transitions of the form (`, Z)
δ
−→ (`, Z ′) for a time successor Z ′ of

Z, if Inv(`)(Z) = tt or (`, Z)
a
−→ (`′, Z ′) if there is a transition (`, γ, a, R, `′) ∈ E

such that γ(Z) = tt and Z ′ = Z[R 7→ 0], with Inv(`′)(Z ′) = tt. A region (`, Z)
is said to be maximal in R(A) with respect to ` if no δ-transition is possible
from (l, Z). The automaton R(A) is restricted to the regions reachable from the

10

initial region (`0,0), and accepts the language

Untime(L(A)) = {a1a2 . . . | (a1, d1)(a2, d2) . . . ∈ L(A) for some d1, d2, . . . ∈ R≥0}.

We also consider another automaton, called class automaton, in which the
states, called classes, are of the form (l, fut(Z)∩ Inv(`)), where Z is a zone. In
this case, the second component is not an elementary zone anymore (but a gen-
eral zone) and the automaton is build from the initial class (`0, fut(0)∩Inv(`0))

by the following transitions: (`, Z1)
a
−→ (`′, Z2) if there exists (l, γ, a, R, l′) ∈ E

such that Z1∩ [[γ]]6= ∅, and Z2 = fut((Z1∩ [[γ]])[R 7→ 0]) ∩ Inv(`′).
Note that the class automaton also accepts Untime(L(A)). Moreover, since a
class can be represented by a Difference Bounded Matrix [11], its size is at most

(4K + 2)(|X|+1)2 , which is exponential in the size of A, as for the region auto-
maton.

2.4 Expressiveness and Equivalence Problems

If B,B′ are either TPN or TA, we write B ≈S B
′ (resp.B ≈W B′) for SB ≈S SB′

(resp. SB ≈W SB′). Let C and C′ be two classes of TPNs or TA.

Definition 10 (Expressiveness w.r.t. Timed Language Acceptance). The
class C is more expressive than C′ w.r.t. timed language acceptance if for all
B′ ∈ C′ there is a B ∈ C s.t. L(B) = L(B′). We write C′ ≤L C in this case. If
moreover there is some B ∈ C s.t. there is no B′ ∈ C′ with L(B) = L(B′), then
C′ <L C (read “strictly more expressive”). If both C′ ≤L C and C ≤L C′ then
C and C′ are equally expressive w.r.t. timed language acceptance, and we write
C =L C′.

Definition 11 (Expressiveness w.r.t. Timed Bisimilarity). The class C is
more expressive than C′ w.r.t. strong (resp. weak) timed bisimilarity if for all
B′ ∈ C′ there is a B ∈ C s.t. B ≈S B′ (resp. B ≈W B′). We write C′ ≤S C
(resp. C′ ≤W C) in this case. If moreover there is a B ∈ C s.t. there is no B′ ∈ C′

with B ≈S B
′ (resp. B ≈W B′), then C′ <S C (resp. C′ <W C). If both C′ <S C

and C <S C′ (resp. <W) then C and C′ are equally expressive w.r.t. strong (resp.
weak) timed bisimilarity, and we write C ≈S C′ (resp. C ≈W C′).

In the sequel we will compare various subclasses of TPNs and TA. We denote
T PN the class of TPNs and T A the class of TA, according to definitions 6 and 8.
We recall the following theorem adapted from [8]:

Theorem 1 ([8]). For any N ∈ B-T PN ε there is a TA A s.t. N ≈W A, hence
B-T PN ε ≤W T Aε.

3 Comparison of semantics I, A and PA

In the first paragraph, we establish two relations between these semantics for
TPN, which hold in the general case. In the second paragraph, we complete

11

these results with a third one, restricted to bounded time Petri nets, with only
closed intervals for transitions. Since we prove results concerning weak timed
bisimulation, we consider unlabeled TPN, where all states are final and repeated
states. For all figures in this section, a transition is filled in black when its firing
interval is [0, 0].

3.1 A first comparison between the different semantics of TPNs

Proposition 1. Let N be a time Petri net with intermediate semantics. There
exists a TPN N with atomic semantics which is (weakly timed) bisimilar to N .

Proof. The construction is quite easy. The set of places of N is obtained by
adding to the set of places of N a new place for each transition t from N :
P = P ∪ {pt, t ∈ T }. The transitions T of N are duplicated in N : T = T+ ∪ T−

and the construction follows Figure 2, from left to right.

t, I(t)

t−, I(t)

pt

t+

Fig. 2. From I to A

We consider the equivalence relation R which contains all pairs ((M, ν), (M, ν))
such that:

– for all p ∈ P , M(p) = M(p) +Σt∈T t
•(p).M(pt)

– for all t ∈ En(M), ν(t) = ν(t−) if t− is enabled in M and 0 otherwise. The
latter case corresponds in N to a newly enabled transition.

To prove that R is a bisimulation, we first note that, with the definition above
for markings, from any configuration (M, ν), we can reach instantaneously a con-
figuration (M1, ν1) such that M1(pt) = 0 for all t, with the firing of a (possibly
empty) sequence of transitions in T+. Moreover, the relation between valuations
implies that (M1, ν1) is still equivalent to (M, ν).

Consider now a pair ((M, ν), (M, ν)) ∈ R.

– if (M, ν)
t
−→ (M ′, ν′), then from the remark above, we first fire a sequence

from M to empty all places pt, leading instantaneously to (M1, ν1), which

12

is equivalent to (M, ν). Then transition t− can be fired from (M1, ν1), im-

mediately followed by t+, leading to (M
′
, ν ′), where all places pt are empty

again. Moreover, the transitions newly enabled by t+ in N are exactly those

which were newly enabled by t in N , so that (M ′, ν′)R(M
′
, ν′).

– Conversely, suppose that a transition is fired from (M, ν) in N . If the trans-
ition is some t+, then the new configuration (M1, ν1) is still equivalent to
(M, ν) (as above), thus no move at all is necessary in N .

If (M, ν)
t−
−→ (M

′
, ν′), then t can be fired from (M, ν) and the resulting

marking is, (M ′, ν′), equivalent to (M
′
, ν′).

– if (M, ν)
d
−→ (M, ν + d), for some delay d, then again we have to apply

the emptying sequence from (M, ν), to reach a configuration (M1, ν1) still
equivalent to (M, ν), where time can elapse. The relation between ν and ν1

implies that this is possible, leading to (M1, ν1 + d).

– Conversely, if (M, ν)
d
−→ (M, ν + d), then all places pt are empty in M , so

that the move (M, ν)
d
−→ (M, ν + d) is also possible in N .

Thus R is a bisimulation. ut

Proposition 2. Let N be a time Petri net with atomic semantics. There exists
a TPN N with persistent atomic semantics which is (weakly timed) bisimilar to
N .

Proof. Here again, the construction is simple. Note that the only difference
between the two semantics concerns the question wether a transition t can newly
enable itself. With atomic semantics, this is the case as soon as t is enabled in
the new marking while with persistent atomic semantics, this is never possible.
In order to ensure that a transition t will be newly enabled if it is enabled in
the new marking, we add an input place En+

t and an output place En−
t to the

transition, with an instantaneous loop bt leading back to En+
t , once the trans-

ition has been fired. The construction is represented in Figure 3, again from left
to right.

•

t, I(t) t, I(t)

En+
t

En−
t

bt

Fig. 3. From A to PA

We consider the equivalence relation R which contains all pairs ((M, ν), (M, ν))
such that:

13

– M(p) = M(p) for all places p in P , and
– for a transition t ∈ En(M), ν(t) = ν(t) if t is enabled in M and 0 otherwise.

Again the latter case corresponds in N to a newly enabled transition.

Like in the previous proposition, the proof is mostly based on the fact that
from any configuration (M, ν), we can reach instantaneously a configuration
(M1, ν1) such that M1(En

+
t) = 1 for all t, with the firing of a (possibly empty)

sequence of transitions bt, with again (M1, ν1) still equivalent to (M, ν). ut

3.2 A second comparison for standard bounded TPN

We now restrict to bounded TPNs, with the standard definition, i.e. with closed
intervals ([a, b] or [a,∞[) for the transitions. Thus, this third result holds only
for the subclass B-T PN (≤,≥).

Proposition 3. Let N be a TPN in B-T PN (≤,≥) with persistent atomic se-
mantics. There exists a TPN N with intermediate semantics which is (weakly
timed) bisimilar to N .

In this case, the construction of N is more involved. Like above, we show how
to simulate a transition t equipped with interval [a, b], for a ≤ b, or [a,+∞[. We
first build a time subnet for t (Figure 4 below), to simulate time elapsing since
a reset operation until reaching (and staying inside) interval [a, b]. The token
is in place startt if the transition is enabled in the initial marking. The double
arrow at the end indicates that the place termt is both an input and an output
place for the corresponding transition: time cannot progress. Of course, the time
subnet for a transition with interval [a,+∞[is reduced by removing ut, endt

and ft.

•

startt
[a, a]

lt

int
[b− a, b− a]

ut

endt

ft

true[a,b]

Fig. 4. Time subnet for transition t with interval [a, b]

Now, using the fact that the TPN is bounded, we consider its upper bound
B and we associate with each place p a complementary place p such that for
any reachable marking M , M(p) = B −M(p). Figure 5 represents a part of the
subnet (on the right) for transition t (on the left), where test1 is the beginning of
the test step for what timing updates are required by the firing of t, and Mutex
ensures that the updates are done (instantaneously) before anything else, as
explained further.

14

•
· · ·· · ·

p1 p2

t [a, b] t, [0,+∞[

p1

p2 p2

p1

true[a,b]

Mutex

test1

Fig. 5. From PA to I

The remaining part of N is devoted to the test of the other transitions
from the original TPN, including t itself. Consider a given transition (say ti),
with again two input places pi

1 and pi
2. The corresponding subnet consists of 4

modules, one for each case, depending on wether ti can be fired or not before and
after t. For this, two additional places are associated with ti: Eti

, which contains
a token if ti was enabled before the firing of t and NEti

its complementary place.
If ti is initially enabled then Eti

is initially marked otherwise NEti
is marked.

This group of 4 modules has a common input place testi and a common output
place testi+1, which means that the tests are to be executed sequentially (and
instantaneously), except for the last one where all outgoing transitions are linked
to Mutex. These places are not shown in the following figures.

Case 1: transition ti is enabled both before and after t. To test this case, we
use the simple module on the left of Figure 6, where Eti

(test before t) and pi
1

and pi
2 (test after t) are input and output places.

Case 2: ti is not enabled before but enabled after t. The module is very similar
to the previous one and is on the right of Figure 6. Note that, in this case
only, because of the PA semantics, there must be a reset on the valuation of the
transition, which explains why the initial place startti

of the time module for ti
is an output place.

pi
1

pi
2Eti

pi
1

pi
2NEti

Eti
startti

Fig. 6. Testing transition ti: cases 1 and 2

15

Case 3: ti is enabled neither before nor after t. To test this, we must find an
input place of ti, where the current number of tokens disable ti. Here is the point
where the boundedness hypothesis is required. In order to perform this test, we
check whether B−•ti(p)+1 tokens can be removed from a complementary place
p.

pi
1

NEti

pi
2

B − •ti(p
i
1) + 1B − •ti(p

i
2) + 1

Fig. 7. Testing transition ti: case 3

Case 4: ti is enabled before but not after t. In this case, we have a module
(see Figure 8) similar to the one above, except that we must also test for all the
different configurations of the time subnet corresponding to ti, to disable the
transitions by removing the tokens.

· · ·

· · ·

NEti

Eti

startti

pi
1

inti

true[ai,bi]

endti

pi
2

Fig. 8. Testing transition ti: case 4

16

It can be seen in Figure 8 that there is a transition for each pair (p, state),
where p is an input place of ti and state may be either the place startti

, the pair
of places (inti

, true[ai,bi]) or the pair (endti
, true[ai,bi]). Like above, an edge

from p to a transition must be labeled with B − •ti(p) + 1 (which is omitted in
the figure).

We consider the equivalence relation R containing all pairs ((M, ν), (M, ν))
such that

– M in N is obtained by projection: M(p) = M(p) for each place p ∈ P ,
– for a transition t in T enabled by M : ν(t) = 0 if the time subnet of t is

empty, ν(t) = ν(lt) if the place startt contains a token, ν(t) = a + ν(ut)
if the place int contains a token and ν(t) = b if the place endt contains a
token. Note that in both latter cases, true[a,b] also contains a token and the

transition t can be fired in N .

Also note that if M(startt) = 1 and ν(ut) = a, then with instantaneously firing
ut, transition t can also be fired. By a development similar to the previous
ones, we can show that R is a bisimulation relation. More precisely, the proof
is mainly based on emptying sequences from a configuration (M, ν) of N : it is
always possible to reach instantaneously a configuration (M1, ν1) such that the
testing subnet is empty, with (M1, ν1) still equivalent to (M, ν). The details are
omitted.

We can conclude this section with:

Corollary 1. For the class B-T PN (≤,≥), the three semantics I, A and PA
are equally expressive w.r.t. weak time bisimulation.

4 Strict Ordering Results

In this section, we establish results proving that T PN are strictly less expressive
w.r.t. weak timed bisimilarity than various classes of TA. For this, we consider
the two automata A0 ∈ T A(<) and A1 ∈ T A(≤) in Figure 9.

`0 `1
a, x < 1

A0

`0 `1
a, x ≤ 1

A1

Fig. 9. Timed automata A0 and A1

We will prove that no TPN can be weakly timed bisimilar to either A0

or A1. The proof relies on the following lemma, which states that in a TPN,
waiting in some marking cannot disable transitions. The proof is easy and is thus
omitted. Note that the results holds without modification for any semantics of
↑enableds(t

′,M, t).

17

Lemma 1 (Waiting Cannot Disable Transitions). Let (M, ν) be an ad-
missible configuration of a TPN, d ∈ R≥0 and let w = t1t2 · · · tk be an instant-

aneous firing sequence. If (M, ν)
w
−→ then (M, ν + d)

w
−→.

Theorem 2. There is no TPN weakly timed bisimilar to A0.

Proof. Assume there is a TPN N that is weakly timed bisimilar to A0 and
let ≈ be a weak timed bisimulation between SN and SA0 . Let (M0,0) be the
initial state of SN and (`0, v(x) = 0) the initial state of SA0 . In SA0 there
is a run of duration 1 leading to configuration (`0, 1) and thus there is a run

(M0,0)
εi0d1εi1d2εi2 ···dnεin

−−−−−−−−−−−−−−→ (M1, ν1) in SN , with ik ≥ 1 for 1 ≤ k ≤ n − 1,
i0 ≥ 0, in ≥ 0 and

∑

1≤k≤n dk = 1. We can further assume dk > 0 for all k, and
also in = 0 because the configuration reached after dn is also bisimilar to (`0, 1).

Then (M0,0)
εi0d1εi1d2εi2 ···dn−1εin−1

−−−−−−−−−−−−−−−−−→ (M ′, ν′), where (M ′, ν′) is bisimilar to a

configuration (`0, d
′) with d′ = 1− dn < 1. This entails that (M ′, ν′)

ε∗a
−−→. Since

(M ′, ν′)
dn−−→ (M1, ν1), it follows from lemma 1 that (M1, ν1)

ε∗a
−−−→ contradicting

the fact that (M1, ν1) ≈ (`0, 1) from which no a can be fired. ut

The result is also true with large constraints:

Theorem 3. There is no TPN weakly timed bisimilar to A1.

Proof. Again assume there is a TPN N that is weakly timed bisimilar to A1.

Since (`0, 0)
1
−→ (`0, 1), we have (M0,0)

1
−→ε (M1, ν1), where (`0, 1) and (M1, ν1)

are weakly timed bisimilar. Since a can be fired from (`0, 1), a transition labeled
a can also be fired from all the configurations (M ′

1, ν
′
1) reachable from (M1, ν1) in

null duration (ε transitions). Also there must be one such configuration (M ′, ν′)
s.t. some duration d > 0 can elapse from (M ′, ν′) reaching (M ′′, ν′′). By lemma 1,
some a can be fired from (M ′′, ν′′). But (M ′′, ν′′) is weakly timed bisimilar to
the configuration (`0, 1+ d) which prevents a to be fired. Hence a contradiction.

From Theorems 1, 2 and 3, we immediately obtain:

Corollary 2. T PN <W T A(<) and T PN <W T A(≤).

The next proposition shows that the expressive power of TPNs depends on
the chosen semantic even in the bounded case.

Theorem 4. There exists a bounded TPN N with persistent atomic semantics
such that no TPN (even unbounded) with atomic semantics is bisimilar to N .

Proof. Consider the following (Zeno) timed automaton A3: `0, x < 1

It is bisimilar to the TPN with PA semantics composed by a single transition
t labeled by ε with firing interval [0, 1[(or any interval]a, 1[or [a, 1[).

Suppose that there is a TPN N with atomic semantics bisimilar to A3 and
let dmin be the minimum of the non null upper bounds occuring in the intervals

18

associated with the transitions of N and 0.5 (in fact any value less than 1 would
be convenient).

There must be a sequence (M0, ν0)
d0t1...tkdk−−−−−−−−→ (M, ν) with Σk

i=0di = 1 −
dmin/2 and (M, ν) bisimilar to (`0, 1 − dmin/2).
From (M, ν), we fire or disable the transitions enabled at this configuration,
which leads to a new configuration (M ′, ν′) bisimilar to some (`0, 1 − δ′) with
0 < δ′ ≤ dmin/2. Now since (M ′, ν′) is bimilar to (`0, 1 − δ′) there must be a

sequence (M ′, ν′)
d′

0t′1...t′
k′d

′

k′

−−−−−−−−−→ with 0 < Σk′

i=0d
′
i < δ′.

Choose the first d′i > 0 and let (M∗, ν∗) be the state reached before the duration
d′i. Since time may elapse in this state, all enabled transitions have non null
upper bound for their interval, hence these bounds are greater than or equal to
dmin. Since the transitions have been enabled at or after configuration (M ′, ν′),

we have ∀t, ν∗(t) ≤ dmin/2 − δ′ < dmin/2, thus (M∗, ν∗)
dmin/2
−−−−−→. But (M∗, ν∗)

is bisimilar to (`0, 1− δ′) which cannot let time elapse for a duration of dmin/2.
This is a contradiction. ut

Following this negative results, we compare the expressiveness of TPNs and TA
w.r.t. to Timed Language Acceptance and exhibit a subclass of TA that admits
bisimilar TPNs.

5 Equivalence w.r.t. Timed Language Acceptance

In this section, we prove that TA and labeled TPNs are equally expressive w.r.t.
timed languages acceptance, and give an effective syntactical translation from
TA to TPNs.

Let A = (L, l0, X,Σε, E, Inv, F,R) be a TA. Since we are concerned in this
section with the langage accepted by A we assume the invariant function is
uniformly true. Let Cx be the set of atomic constraints on clock x that are
used in A. The Time Petri Net resulting from our translation will be built from
“elementary blocks” modeling the truth value of the constraints in Cx. We next
link them with blocks for resetting clocks. In the next subsection we show how
to encode atomic constraints into TPNs.

As a consequence of corollary 1, the semantics I, A and PA for TPNs are
equivalent w.r.t. language acceptance. In this section, we use the I semantics.

5.1 Encoding Atomic Constraints

Let ϕ ∈ Cx be an atomic constraint on x. From ϕ, we define the TPN Nϕ, given
by the widgets of Fig. 10 ((a) and (b)) and Fig. 11. In the figures, a transition
is written t(σ, I) where t is the name of the transition, σ ∈ Σε and I ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following semantics:
the grey box is seen as a macro place; an arc from this grey box means that
there are as many copies of the transition as places in the grey box. For instance
the TPN of Fig. 10.(b) has 2 copies of the target transition r: one with input

19

Px

γtt

rb

re

tx(ε, [c, c])

t′(ε,]0,∞[)

r(ε, [0, 0])

•

(a) Widget Tx>c

Pxrb

γttre

tx(ε, [c, c])r(ε, [0, 0])

•

(b) Widget Tx≥c (assume c > 0)

Fig. 10. Widgets for Tx>c and Tx≥c

Px

γtt

rb

Pu

re

Pi

tx(ε, [0, c[)
(resp. [0, c])

r(ε, [0, 0])
u(ε, [0, 0])

Only from Pi

•

•

Fig. 11. Widget Tx<c (resp. Tx≤c)

20

places Px and rb and output places re and Px and another fresh copy of r with
input places rb and γtt and output places re and Px. Note that in the widgets
of Fig. 11 we put a token in γtt when firing r only on the copy of r with input
place Pi (otherwise the number of tokens in place γtt could be unbounded). Also
we assume that the automaton A has no constraint x ≥ 0 (as it evaluates to
true they can be safely removed) and thus that the widget of Fig. 10.(b) only
appears with c > 0.

Each of these TPNs basically consists of a “constraint” subpart (in the grey
boxes for Fig. 10 and in the dashed box for Fig. 11) that models the truth value of
the atomic constraint, and another “reset” subpart that will be used to update
the truth value of the constraint when the clock x is reset. The “constraint”
subpart features the place γtt: the intended meaning is that when a token is
available in this place, the corresponding atomic constraint ϕ is true.

When a clock x is reset, all the grey blocks modeling an x-constraint must be
set to their initial marking which has one token in Px for Fig. 10 and one token
in Px and γtt for Fig. 11. Our strategy to reset a block modeling a constraint is
to put a token in the rb place (rb stands for “reset begin”). Time cannot elapse
from there on (strong semantics for TPNs), as there will be a token in one of
the places of the grey block and thus transition r will be enabled.

We first prove three useful lemmas, the first one providing a structural in-
variant for the grey boxes of the widgets:

Lemma 2. For each widget of Fig. 10, each reachable configuration (M, ν)
(from the initial marking) has exactly one token in one of the places of the
grey box.

Lemma 3. For the widgets of Fig. 11, each reachable configuration (M, ν) (from
the initial marking) satisfies either i) M(Px) = 1, M(γtt) = 1 and M(Pi) = 0 or
ii) M(Pu) = 1 and M(γtt) = 1 or iii) M(Px) = 0, M(γtt) = 0 and M(Pi) = 1.

Proof. The proof is easy for the widgets of Fig. 10. For the widgets of Fig. 11,
just notice that as soon as tx is fired, the output transition u is enabled (there
must be a token in γtt as it can only be removed by the firing of u). Later on,
either the token remains in Pi forever, or if the copy of r from Pi is fired a token
is put in γtt and Px.

From lemmas 2 and 3 we obtain the following:

Lemma 4. If there is a token in rb, exactly one (instance of a) copy of r is
firable and due to the time constraint [0, 0], time cannot progress until it is fired.

5.2 Resetting Clocks

Assume R ⊆ X is a non empty subset of clocks. Let D(R) be the set of atomic
constraints that are in the scope of R (the clock of the constraint is in R). We
write D(R) = {ϕ1, ϕ1, · · · , ϕn}. To update all the widgets Nϕi

, we connect the
places rb and re of each widget Nϕ as described on Fig. 12. The picture inside

21

Tϕn
Tϕ2Tϕ1

r1b r1e r2b r2e rn
b rn

e

r1b (R) r2b(R) r3b(R) rn−1
b (R) rn

b (R)

• • •

• • •

r r r

(ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0])

Fig. 12. Widget NReset(R) to reset the widgets Nϕi
, 1 ≤ i ≤ n

the dashed box denotes the widget NReset(R). We denote by r1b (R) the first place
of this widget and rn

b (R) the last one. To update the (truth value of the) widgets
Nϕi

it then suffices to put a token in r1b (R). In null duration it will go to rn
b (R)

and have the effect of updating each widget Nϕi
on its way.

5.3 The Complete Construction

First we create fresh places P` for each ` ∈ L. Then we build the widgets Nϕ, for
each atomic constraint ϕ that appears in A. Finally for each R ⊆ X s.t. there is
an edge e = (`, γ, a, R, `′) ∈ E we build a reset widget NReset(R).
Then for each edge (`, γ, a, R, `′) ∈ E with γ = ∧i=1,nϕi and n ≥ 0 we proceed
as follows:

1. assume γ = ∧i=1,nϕi and n ≥ 0,
2. create a transition f(a, [0,∞[) and if n ≥ 1 another one r(ε, [0, 0]),
3. connect them to the places of the widgets Nϕi

and NReset(R) as described on
Fig. 13. In case γ = tt (or n = 0) there is only one input place to f(a, [0,∞[)
which is P`. In case R = ∅ there is no transition r(ε, [0, 0]) and the output
place of f(a, [0,∞[) is P`′ .

To complete the construction we just need to put a token in the place P`0 if
`0 is the initial location of the automaton, and set each widget Tϕ to its initial
marking, for each atomic constraint ϕ that appears in A, and this defines the
initial marking M0. The set of final markings is defined by the set of markings
M s.t. M(P`) = 1 for ` ∈ F and the set of repeated markings by by the set of
markings M s.t. M(P`) = 1 for ` ∈ R. We denote by ∆(A) the TPN obtained as
described previously. Notice that by construction 1) ∆(A) is 1-safe and moreover
2) in each reachable marking M of ∆(A)

(
∑

`∈LM(P`)
)

≤ 1.

5.4 ∆(A) and A accepts the same timed language

We now prove the following proposition:

Proposition 4. If ∆(A) is defined as above, then L(A) = L(∆(A)).

22

NReset(R)

Nϕn

Nϕ2

Nϕ1

γ1
tt

γ2
tt

γn
tt

. . .

P`

r1b(R) rn
b (R) P`′

f(a, [0,∞[)
r(ε, [0, 0])

Fig. 13. Widget Ne of an edge e = (`, γ, a,R, `′)

Proof. The proof works as follows: we first show that ∆(A) weakly simulates A
which implies L(A) ⊆ L(∆(A)). Then we show that we can define a TA A′ s.t.
L(A) = L(A′) and A′ weakly simulates ∆(A) which entails L(∆(A)) ⊆ L(A′) =
L(A). It is sufficient to give the proof for the case where A has no ε transitions.
In case A has ε transitions we rename them with a fresh letter µ 6∈ Σε and obtain
an automaton Aµ with no ε transitions. We apply our construction to Aµ and
obtain a TPN in which we replace every label µ by ε.

Recall that A = (L, `0, X,Σε, E, Inv, F,R) and ∆(A) = (P, T,Σε,
•(.), (.)•,

M0, Λ, I, F∆, R∆) and write X = {x1, · · · , xk}, P = {p1, · · · , pm} and T =
{t1, · · · , tn}. We assume that the set of atomic constraints of A is CA. The place
γtt of a widget Nx./c (for x ./ c an atomic constraint of A) is written γx./c

tt .

Proof that ∆(A) simulates A. We define the relation � ⊆ (L ×Rn
≥0)×(Np×Rm

≥0)
by:

(`, v) � (M, ν) ⇐⇒











(1)M(P`) = 1

(2) for each ϕ = x ./ c, ./∈ {<,≤}, M(Pu) = 0

(3) for each ϕ ∈ CA, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(I)

Now we prove that � is a weak simulation relation of A by ∆(A), and this by
checking the 4 conditions of Def. 4:

1. final and repeated states: by definition of ∆(A) and lemmas 2 and 3 and the
definition of �;

2. initial states: it is clear that (l0,0) � (M0,0);

3. continuous transitions: let (`, v)
d
−→ (`, v + d). Take (M, ν) s.t. (`, v) �

(M, ν). As the widgets Nϕi
are non-blocking, time d can elapse from (M, ν),

and there is a run (M, ν)
ρ
−→ (M ′, ν′) with Duration(trace(ρ)) = d and

Untimed(trace(ρ)) = ε. We can choose ρ without any transitions f(a, [0,∞[)

23

so that a token remains in P` and M ′(P`) = 1. Thus to prove (`, v + t) �
(M ′, ν′) it remains to prove items (2) and (3) of equation (I).
Let ϕ = x ./ c with ./∈ {<,≤}.
– if ϕ(v) = tt and ϕ(v + d) = ff, then there is some d′ ≤ d s.t. transition
tx of widget Nϕ is enabled and it must be fired before ϕ becomes false.
Thus tx is fired at d′ (which is possible as there is no token in Pu and
thus the token is in Px) and subsequently u in the same widget, thus
transfering the tokens from Px, γ

ϕ
tt to Pi.

– if ϕ(v) = tt and ϕ(v + d) = tt, it is possible to do nothing in widget Nϕ

and let the token in Px and γϕ
tt.

– if ϕ(v) = ff then ϕ(v + d) = ff, then there must be a token in Pi and we
let time elapse without firing any transition.

Let ϕ = x ./ c with ./∈ {>,≥}.
– if ϕ(v) = tt then ϕ(v + d) = tt and M(γϕ

tt) = 1. We just let time elapse
in Nϕ.

– if ϕ(v) = ff and ϕ(v + d) = tt, there is d′ ≤ d s.t. transitions tx must be
fired (and t′ can be fired at d′ + ξ with ξ > 0 for Nx>c). We fire those
transitions at d′ and let d− d′ elapse.

– if ϕ(v) = ff and ϕ(v + d) = ff we also let time elapse and leave a token
in Px.

This way for each constraint ϕ = x ./ c, there is a run ρϕ = (M, ν)
d
−→ε

(Mϕ, νϕ) s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (I).
Taken separately we have for each constraint (`, v) � (Mϕ, νϕ). It is not
difficult8 to build a run ρ with an interleaving of the previous runs ρϕ s.t.

ρ = (M, ν)
t
−→ε (M ′, ν′) and (M ′, ν′) satisfies requirements (2) and (3) of

equation (I) for each constraint ϕ, and thus (`, v) � (M ′, ν′).

4. discrete transitions: Let (`, v)
a
−→ (`′, v′) and (`, v) � (M, ν). Then there is

an edge e = (`, γ, a, R, `′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 and ϕi is an atomic
constraint. By definition 9, v ∈[[ϕi]] for 1 ≤ i ≤ n. This implies M(γϕi

tt) = 1
(definition of �). Thus the transition f(a, [0,∞[) is fireable in the widget Ne

leading to (M ′, ν′). From there on we do not change the marking of widgets
Nϕi

for the constraints ϕi that do not need to be reset (the clock of ϕi is
not in R). We also use the widget NReset(R) to reset the constraints ϕi with
a clock in R and finally put a token in P`′ . The new state (M ′′, ν′′) obtained
this way satisfies (`′, v′) � (M ′′, ν′′).

This completes the proof that ∆(A) simulates A and thus L(A) ⊆ L(∆(A)).

Proof of L(∆(A)) ⊆ L(A). To prove this, we cannot easily exhibit a simulation
of ∆(A) by A. Indeed, ∆(A), because of the widgets Nx./c with ./∈ {<,≤}, has
to make a decision at some point to fire transition tx and immedialty after u, i.e.
it is as if it decides that x ./ c is now false and the transitions with this guard
cannot be fired anymore (until they are reset). To use the simulation framework,

8 Just find an ordering for all the date d′ at which a transition must be fired and fire
those transitions in this order with time elapsing between them.

24

we build first a TA A′ that accepts the same language as A but has the capability
to sometimes (non deterministically) decide it will not use a transition with a
guard x ./ c until it is reset. It is then possible to build a simulation relation of
∆(A) by A′.

` `′

γ ∧ ψ, a,R

(a) Edge (`, γ ∧ ψ, a,R, `′) in A

` `′

(
V

(x5c)∈K5
bx5c) ∧ (γ ∧ ψ), a, R,Ω(R)

W

(x5c)∈K5

„

bx�c = tt, ε
bx5c := ff

« ...

(b) Extended edge in A′.

Fig. 14. From A to A′.

We denote 5 for either {<,≤} and = for {>,≥}. Let K5 be the set of

constraints x 5 c in A. For each x 5 c ∈ K5 we introduce a boolean variable
bx5c. Each bx5c is initially true.

We start with A′ = A. The construction of the new features of A′ is depicted
on Fig. 14. Let (`, γ ∧ ψ, a,R, `′) be an edge of A′ with γ = ∧x5c∈K5

x 5 c and

ψ = ∧x=c∈K=
x = c. For such an edge we strengthen9 the guard γ∧ψ to obtain γ′

as follows: γ′ = γ ∧ψ ∧
∧

x5c∈K5
bx5c. This way the transition (`, γ ∧ψ, a,R, `′)

can be fired in A′ only if the corresponding guard in A and the conjunction of
the bx5c is true as well. We also reset to true all the variables bx5c s.t. x ∈ R on

a transition (`, γ ∧ ψ, a,R, `′) and Ω(R) corresponds to the reset of all bx5c s.t.

x ∈ R, Ω(R) = ∧x∈Rbx5c := tt.

Now let ` be location of A′. For each variable bx5c we add a loop edge

(`, bx5c = tt, ε, bx5c := ff, `) in A′, i.e. the automaton A′ can decide non determ-

inistically10 to set bx5c to false if it is true (see Fig. 14). There are as many loops
on each location as the number of variables bx5c. The new non deterministic TA

A′ accepts exactly the same language as A i.e. L(A′) = L(A).

We can now build a simulation relation of ∆(A) by A′. We denote (`, v, b)
a configuration of A′ with b the vector of bϕ variables. We define the relation

9 We need an extended type of TA with boolean variables; this does not add any
expressive power to the model.

10 This means we add ε transitions to A′; nevertheless the restriction we made at the
beginning that A has no ε transitions is useful when proving that ∆(A) simulates
A and not required to prove that A′ weakly simulates ∆(A).

25

� ⊆ (Np × Rm
≥0) × (L × Rn

≥0 × Bk) by:

(M, ν) � (`, v, b) ⇐⇒































(1)M(P`) = 1

(2)∀ϕ = x > c ∈ K>, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(3)∀ϕ = x ≥ c ∈ K≥, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1∨

(M(Pϕ
x) = 1 ∧ ν(tϕx) = c)

(4)∀ϕ ∈ K�,M(Pϕ
i) = 1 ⇐⇒ (bϕ = ff ∨ v 6∈[[ϕ]])

(II)
Now we prove that � is a weak simulation relation of ∆(A) by A.

– property on final and repeated states is satisfied by definition of A′,
– for the initial configuration, it is clear that (M0,0) � (l0,0, b0) (in b0 all the

variables b are true),

– continuous time transitions: let (M, ν)
d
−→ (M ′, ν′) with d ≥ 0. Let (M, ν) �

(`, v, b). As there are no invariant in A′ time d can elapse from (`, v, b). If no
ε transition fires in the TPN, then all the truth values of the constraints stay

unchanged. Thus (`, v, b)
d
−→ (`, v + d, b) in A′ s.t. (M ′, ν′) � (`, v + d, b).

– discrete transitions: let (M, ν)
a
−→ (M ′, ν′). We distinguish the cases a = ε

and a ∈ Σ.
If a = ε then we are updating some widgets Nϕ (ε transition is not a reset
transition because reset can occur only when M(P`) = 0)). We split the
cases according to the different types of widgets:

• update of a widget Nx>c: either tx or t′ is fired. If tx is fired then the
time elapsed since the x was last reset is equal to c. Thus M(γtt) = 0
and v(x) ≤ c and v 6∈[[x > c]]. This implies (M ′, ν′) � (`, v).
If t′ is fired on the contrary, v′(x) > c but again (M ′, ν′) � (`, v, b).

• update of a widget Nx≥c: the same reasoning as before can be used and
leads to (M ′, ν′) � (`, v, b).

• update of a widget Nx<c: In this case either tx or u is fired. Assume
tx is fired. Thus M ′(Pi) = 0. The time elapsed since x was last reset is
strictly less than c and v ∈[[ϕ]]. bϕ is true in (`, v, b) as M(Pi) = 0. Thus
(M ′, ν′) � (`, v, b). Now assume u is fired. Again M(Pi) = 0 and thus
v(x) < c and bϕ is true. This time M ′(Pi) = 1. In the automaton A′ we
fire the transition setting bϕ to false and we end up in a state (`, v, b′)
s.t. (M ′, ν′) � (`, v, b′). The same reasoning applies for Nx≥c.

If a ∈ Σ then the transition is f(a, [0,∞[) of some widget Ne for e =
(`, γ, a, R, `′). The firing of f have left the input places γtt unchanged. By
equation II and the definition of A′ we can fire a matching transition in A′

leading to a state (`′, v′, b′). We have M ′(P`) = M ′(P`′) = 0 and this state

is not in the simulation relation. We then fire in the TPN a run (M ′, ν′)
0
−→ε

(M ′′, ν′′) of duration 0 carrying out the reset of the clocks x ∈ R and leading
to (M ′′, ν′′) s.t. M ′′(P`′) = 1. Two cases can occur:

• This run is only made up of epsilon transitions corresponding to the
reset of widgets over x ∈ R which then return in their initial state. For

26

widgets Nx≤c and Nx<c, we obtain token in Px and γtt. As corresponding
variables b′ϕ are true in state (`′, v′, b′), we have (M ′′, ν′′) � (`′, v′, b′).

• the previous run is also composed of update transitions of widgets Nϕ

i.e. firing of tϕx of Nϕ. In this case :
∗ if x ∈ R then tϕx is fired before the reset of Nϕ. Then after the reset

of Nϕ, we have M ′′(Pϕ
x) = 1 and (M ′′, ν′′) � (`′, v′, b′),

∗ if x 6∈ R then ν′′(tϕx) = v′(x) = c. In in Nϕ we have M ′′(γϕ
tt) = 1 and

it satisfies requirements (3) of equation II. For the update of blocks
Nx≤c and Nx<c, we then fire in A′, the loop transitions setting to
false the corresponding variables bϕ leading to (`′, v′, b′′) such that
(M ′′, ν′′) � (`′, v′, b′′).

This completes the proof that A′ simulates ∆(A) and thus L(∆(A)) ⊆ L(A′)
and L(∆(A)) ⊆ L(A).

We can thus conclude that L(∆(A)) = L(A), which ends the proof of Pro-
position 4. ut

5.5 Consequences of the Previous Results

Let k-T PN be the set of k-bounded TPNs (Note that boundedness is not decid-
able for TPNs). Let B-T PN = {T | ∃k ≥ 0 |T ∈ k-T PN}, i.e. the set of bounded
TPNs. From the previous proposition we can state the following corollaries:

Corollary 3. The classes B-T PN and T A are equally expressive w.r.t. timed
language acceptance, i.e. B-T PN =L T A.

Proof. From Theorem 1, we know that B-T PN ≤L T A. Proposition 4 proves
that T A ≤L T PN and hence B-T PN =L T A. ut

Corollary 4. k-T PN =L 1-T PN .

Proof. Let T ∈ k-T PN . We use Theorem 1 and thus there is a TA AT s.t.
L(T) = L(AT). From AT we use Proposition 4 and obtain ∆(AT) which is a
1-safe TPN. ut

6 Bisimulation of TA by TPNs

We now focus on the expressiveness of the models w.r.t. weak time bisimilarity.
In the sequel, we often abbreviate weak timed bisimilarity by bisimilarity.

First, we recall two related results:

– There are unbounded TPNs which do not admit a bisimilar TA. This is a
direct consequence of the following observation: the untimed language of a
TA is regular which is not necessarily the case for PNs (and thus for TPNs).

– For any bounded TPN, there is a TA which is bisimilar to it (see Theorem 1
from [8]).

27

This last result was proved by the construction of a synchronized product
of automata enlarged with a vector of bounded integers (a model equivalent to
standard automata). The proposed construction is structural and linear w.r.t.
to the size of the PN. It has the additional advantage that the available tools
exploit the product in order to reduce the complexity of verification. Here we
are mainly concerned with expressivity. So we can also give a straightforward
construction based on the reachability space:

– With each transition t, we associate a clock xt.
– With each reachable markingM , we associate a location `M . The invariant of
`M is given by

∧

t∈En(M) xt ∈ I(t)↓, (recall that I(t) is the interval associated

with t).

– With each firing M
t
−→ M ′ (in the untimed PN), we associate an edge e =

(`M , γ, t, R, `M ′) with γ = xt ∈ I(t) and R defined according to the chosen
semantic. For instance, if PA semantics is chosen then
R = {xt′ | t′ /∈ En(M) ∧ t′ ∈ En(M ′)}.

In this section, we consider the TPNs originally defined by Merlin (i.e.
without strict constraints) and labeled-free TA (i.e. where two different edges
have different labels and no label is ε) and we develop the main result of the pa-
per: a characterization of the subclass of TA which admit a bisimilar TPN. From
this characterization, we will deduce that given a TA, the problem of deciding
whether there is a TPN bisimilar to it, is PSPACE-complete. Furthermore, we
will provide two effective constructions for such a TPN: the first one with ra-
tional constants has a size linear w.r.t. the TA, while the other, which uses only
integer constants has an exponential size.

6.1 Regions of a timed automaton

Since our proofs are based on the regions of a timed automaton, we detail their
definition. Recall that a region is a pair composed by a location and an ele-
mentary time zone of the grid defined by the clocks and the granularity g. In
the sequel, the topology of the regions is implicitely derived from the one of its
associated zone. We now formally define the particular case of regions for a max-
imal constant K = ∞. Obviously it may lead to an infinite region automaton
but will be a helpful tool for proving our characterization. Note also that the
following definition is equivalent to the original one but is more appropriate for
our theoretical developments.

Definition 12 (Regions of an automaton w.r.t. the g-grid and constant
K = ∞). A time-closed region r is given by:

– `r the location of r,
– minr ∈ NX

g the minimal vector of the topological closure of r,

– The number sizer of different fractional parts of clock values in the grid NX
g ,

with 1 ≤ sizer ≤ |X | and the onto mapping ordr : X 7→ {1, . . . , sizer} which
gives the relative positions of these fractional parts,

28

The region is then r = {(`r,minr + δ) | δ ∈ RX
≥0 ∧ ∀x, y ∈ X [ordr(x) = 1 ⇔

δ(x) = 0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y) ⇔ δ(x) < δ(y)]}.

A time-open region r is defined with the same attributes as the time-closed region
by: r = {(`r,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ X, δ(x) + d < 1/g}.

The set [X]r is the set of equivalence classes of clocks w.r.t. their fractional parts,
i.e. x and y are equivalent iff ordr(x) = ordr(y).

This definition needs to be slightly modified when dealing with a constant
K < ∞, by introducing a subset of relevant clocks, for which the value is less
than K (recall that K > m where m is the maximal constant in the constraints
of the timed automaton).

Definition 13 (Regions of an automaton w.r.t. the g-grid and finite
constant K). A time-closed region r is given by:

– `r the location of r,
– minr ∈ NX

g with ∀x, minr(x) ≤ K the minimal vector of the topological
closure of r,

– ActXr = {x ∈ X |minr(x) < K} the subset of relevant clocks,
– the number sizer of different fractionnal parts for the values of relevant clocks

in the NActXr

g grid, with 1 ≤ sizer ≤Max(|ActXr|, 1) and the onto mapping
ordr : X 7→ {1, . . . , sizer} giving the ordering of the fractionnal parts. By
convention, ∀x ∈ X \ActXr, ordr(x) = 1.

Then r = {(`r,minr + δ) | δ ∈ RX
≥0 ∧ ∀x, y ∈ ActXr[ordr(x) = 1 ⇔ δ(x) =

0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y) ⇔ δ(x) < δ(y)]}

A time-open (description of) a region r is given by the same attributes (and
conditions) as a time-closed region with:
r = {(`r,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ ActXr, δ(x) + d < 1/g}.

Note that letting time elapse leads to an alternation of time-open regions
(where time can elapse) and time-closed ones (where no time can elapse). We
also remark that minr /∈ r except if there is a single class of clocks relative to r
(for instance if r is a singleton). More generally, whatever be the grid and the
maximal constant, we note r, the topological closure of r: it is a finite union of
regions and from the definition, minr is the minimum vector of r.

Reachability. Recall that a region is reachable if it belongs to the region auto-
maton. However it does not mean that all the configurations of the region are
reachable. Nevertheless, by induction on the reachability relation inside the re-
gion automaton it can be shown that every configuration is “quasi-reachable” in
the following sense:
For each reachable region r, there is a region reach(r) w.r.t. the 1-grid and the
constant ∞ such that:

29

– reach(r) ⊂ r;
– each configuration of reach(r) is reachable;
– if reach(r) is a time-open region then r admits a time-open description else
r admits a time-closed description.

Note that consequently ∀x ∈ ActXr,minreach(r)(x) = minr(x) and ∀x ∈
X \ActXr,minreach(r)(x) ≥ K and that ordr restricted to ActXr is identical to
ordreach(r).

Let us define R by (l, v)R(l, v′) iff ∀x ∈ X, v′(x) = v(x) ∨ (v(x) ≥ K ∧
v′(x) ≥ K). Then R is a strong time bisimulation relation. From the previous
observations, we note that each configuration of a reachable region is strongly
time bisimilar to a reachable configuration of this region. Thus speaking about
reachability of regions is a slight abuse of notations.

6.2 From bisimulation to uniform bisimulation

As a first step toward our characterization, we prove that when a TPN and a TA
are bisimilar, the condition can in fact be strengthened in what we call uniform
bisimulation.

We first prove a lemma which is also a strengthened version of lemma 1. It
points out the effect of time granularity on the behaviour of TPN when strict
constraints are excluded.

Lemma 5. Let (M, ν) and (M, ν + δ) be two admissible configurations of a g-

TPN with ν, δ ∈ R
En(M)
≥0 . Let w be an instantaneous firing sequence, then:

(a) (M, ν)
w
−→⇒ (M, ν + δ)

w
−→

(b) If ν ∈ Ng
En(M) and δ ∈ [0, 1/g[En(M) then (M, ν + δ)

w
−→⇒ (M, ν)

w
−→

Proof. There are two kinds of transitions firing in w: those corresponding to a
firing of a transition (say t) still enabled from the beginning of the firing sequence
and those corresponding to a newly enabled transition (say t′).
Proof of (a) Since t is firable from (M, ν), ν(t) ∈ I(t) ⊂ I(t)↑, so ν(t) +
δ(t) ≥ ν(t) also belongs to I(t)↑. Since t ∈ En(M) and (M, ν + δ) is reachable,
ν(t) + δ(t) ∈ I(t)↓. Thus ν(t) + δ(t) ∈ I(t) and t is also firable from (M, ν + δ).
Since t′ is newly enabled, 0 ∈ I(t′) and t′ is also firable when it occurs starting
from (M, ν + δ).
Proof of (b) The case of newly enabled transitions in w is handled as before.
Now let t be firable in (M, ν + δ). Since t ∈ En(M) and (M, ν) is reachable,
ν(t) ∈ I(t)↓. Since ν(t)+δ(t) ∈ I(t)↑, (denoting by eft(t) the minimum of I(t)↑),
we have eft(t) ≤ ν(t)+δ(t) but eft(t) belongs to the g-grid, thus eft(t) ≤ ν(t) ⇔
ν(t) ∈ I(t)↑. So t is firable from (M, ν). ut

Lemma 6 (From bisimulation to uniform bisimulation). Consider a timed
automaton A bisimilar to some g-TPN N via some relation R. The semantics
considered for N is PA as it gives the maximal expressivity. We consider the
region automaton of A w.r.t. the grid NX

g and the constant K = ∞. Then:

30

– if a region r belongs to R(A) then r also belongs to R(A);
– with each reachable region r is associated a configuration of the net (Mr, νr)

with νr ∈ N
En(Mr)
g and a mapping φr : En(Mr) → [X]r which fulfill:

• If r is time-closed, then ∀(`r,minr + δ) ∈ r,
(`r,minr + δ)R(Mr, νr + projr(δ))
where projr(δ)(t) = δ(φr(t)).

• If r is time-open, then ∀(`r,minr + δ + d) ∈ r,
(`r,minr + δ + d)R(Mr , νr + projr(δ) + d)

Proof. We prove this uniform version of the bisimulation by induction on the
reachability relation between regions. First note that the choice of a particular
clock x in the class φr(t) is irrelevant when considering the value δ(x). Thus the
definition of projr is sound.

We prove our assertion by induction on the transition relation in the region
automaton. The basis case is straightforward with {(l0,0)} and {(M0,0)}. For
the induction part, we consider 4 cases, according to the incoming or target
region and to the nature of the step.

1. A time step from a time-closed region Let r be a time-closed region which
is not maximal and let us denote r′ = succ(r) the immediate time successor of

r. Let (`r,minr + δ0) be some item of r. (`r,minr + δ0)
d
−→ for some d >

0. Thus (by induction hypothesis) in N there is a step sequence of (Mr, νr +

projr(δ0))
d0t1...tndn−−−−−−−→ with all transitions labelled by ε and

∑

dk = d. Let dk

be the first non zero elapsing of time. By application of lemma 5-b, the firing
sequence t1 . . . tk is firable from (Mr, νr).

Let us choose (Mr′ , νr′) the configuration reached by this sequence. By ap-
plication of lemma 5-a, this firing sequence is also fireable from any (Mr, νr +
projr(δ)) bisimilar to (`r,minr+δ) ∈ r and it leads to (Mr′ , νr′+projr′(δ)) (still
bisimilar to (`r,minr+δ)) where φr′ (resp. νr′) is equal to φr (resp. νr) for trans-
itions always enabled during the firing sequence and φr′ (resp. νr′) is obtained by
associating the class of index 1 (resp. by associating the value 0) to the transitions
newly enabled. Since (Mr′ , νr′) let the time elapse and since N is a g-TPN, we
note that ∀t ∈ En(Mr′), νr′(t)+1/g ∈ I(t)↓. Now let (`r,minr +δ+d) ∈ r′, one
has ∀x ∈ X , δ(x) + d ≤ 1/g. Thus ∀t ∈ En(Mr′), projr′(δ(x)) + d ≤ 1/g, which

implies (Mr′ , νr′ +projr′(δ))
d
−→ (Mr′ , νr′ +projr′(δ)+d), this last configuration

being necessarily bisimilar to (`r,minr + δ + d).

2. A time step from a time-open region. Let r be an time-open region
and let us denote r′ = succ(r). Let us define Xmax

r the class [x]r with maximal
index. We remark that minr′ = minr + δ0 where if x ∈ Xmax

r then δ0(x) = 1/g
else δ0(x) = 0. We choose (Mr′ , νr′) = (Mr, νr + projr(δ0)). Let t ∈ En(Mr)
and x ∈ φr(t) then φr′(t) = [x]r′ (letting time elapse does not split the classes).
So projr and projr′ are identical.

Now let (lr′ ,minr′ + δ) ∈ r′. (lr′ ,minr′ + δ) = (`r,minr + δ0 + δ).
Now let d = δ(x) for x belonging the class of index 1 in [Xr]. Then (`r,minr+

δ0 + δ) = (`r,minr + δ′ + d) where if x ∈ Xmax
r then δ′(x) = 1/g − d else

31

δ′(x) = δ(x) − d. (`r,minr + δ′ + d) is bisimilar to (Mr, νr + projr(δ
′) + d) =

(Mr, νr + projr(δ
′ + d)) = (Mr, νr + projr(δ1 + δ)) = (Mr, νr + projr(δ1) +

projr(δ)) = (Mr′ , νr′ + projr′ (δ))).
For this step, we have not used the characteristics of time Petri nets.

3. A discrete step into a time-closed region.

Case a. We first consider the case where r is a time-closed region.
Let (`r,minr +δ0) be some element of r. Suppose that (`r,minr +δ0)

e
−→

(l′, v′ + δ′

0
) with ∀x ∈ R(e), v′(x) = δ′

0
(x) = 0, ∀x /∈ R(e), v′(x) = minr(x)∧

δ
′

0
(x) = δ0(x). Then in N there is a firing sequence (Mr, νr + projr(δ0))

w
−→

labelled by e. Due to lemma 5, this firing sequence is also fireable from
any (Mr, νr + projr(δ)) bisimilar to (`r,minr + δ) ∈ r. By bisimilarity,

(`r,minr +δ)
e
−→ for any (`r,minr + δ) ∈ r. Let r′ be the region including

(`′, v′ + δ′

0
), then any configuration of r′ is reachable by this discrete step.

Note that `r′ = l′ and minr′ = v′.
From (Mr, νr + projr(δ)), the sequence w leads to some (M ′, ν′) bisimilar
to (`r′ ,minr′ + δ′)). We now show how to define Mr′ , νr′ and φr′ . First
Mr′ = M ′. Second, νr′(t) = νr(t) for transitions t always enabled during the
firing sequence and νr′ = 0 otherwise. At last, φr′ is obtained from φr as
follows. Let t be a transition newly enabled during the firing sequence, then
φr′(t) is associated to the class of index 1. Let t be a transition always enabled
during the firing sequence. There are three cases to consider for φr′(t): either
there is a x ∈ φr(t) not reset, then φr′(t) = |x]r′ otherwise φr′(t) is the class
of maximal index which preceedes φr(t) and contains a clock not reset or
else the class of index 1. The two last affectations are sound since it means
that whatever the value of δ(t) fulfilling the order between classes, the firing
sequence w leads to bisimilar configurations (as being bisimilar to the same
configuration of the automaton).

Case b. The case where r is a time-open region is handled in a similar way.
Let (`r,minr +δ0 + d0) be some element of r. Suppose that (`r,minr +δ0 +

d0)
e
−→ (`′, v′ + δ′

0
) with ∀x ∈ R(e), v′(x) = δ′

0
(x) = 0, ∀x /∈ R(e), v′(x) =

minr(x)∧δ′

0
(x) = δ0(x)+d0. Then in N there is a firing sequence (Mr, νr +

projr(δ0)+d0)
w
−→ labelled by e. Due to lemma 5, this firing sequence is also

fireable from any (Mr, νr + projr(δ) + d) bisimilar to (`r,minr + δ + d) ∈ r.

By bisimilarity, (`r,minr +δ + d)
e
−→ for any (`r,minr + δ + d) ∈ r. Let r′ be

the region including (l′, v′ + δ′

0
), then any configuration of r′ is reachable by

this discrete step. Note that lr′ = l′ and minr′ = v′.
From (Mr, νr +projr(δ)+d), the sequence w leads to some (M ′, ν′) bisimilar
to (lr′ ,minr′ + δ

′)). We now show how to define Mr′ , νr′ and φr′ . First
Mr′ = M ′. Second, νr′(t) = νr(t) for transitions t always enabled during the
firing sequence and νr′ = 0 otherwise. At last, φr′ is obtained from φr as
follows. Let t be a transition newly enabled during the firing sequence, then
φr′(t) is associated to the class of index 1. There are three cases to consider
for φr′(t): either there is a x ∈ φr(t) not reset, then φr′(t) = |x]r′ otherwise
φr′(t) is the class of maximal index which preceedes φr(t) and contains a

32

clock not reset or else the class of index 1. The two last affectations are
sound since it means that whatever the value of δ(t) fulfilling the order
between classes, the firing sequence w leads to bisimilar configurations (as
being bisimilar to the same configuration of the automaton).

4. A discrete step into a time-open region. In order to reach a time-
open region by a discrete step, the corresponding transition must start from a
time-open region and must not reset any clock. Let (`r,minr + δ + d) ∈ r and

(`r,minr +δ+d)
e
−→ (l′,minr +δ+d). Here we have used the hypothesis that no

clock is reset. Then there is a firing sequence (Mr, νr +projr(δ)+d)
w
−→ labelled

by e. Due to the lemma 5, (Mr, νr + projr(δ))
w
−→. (`r, vr + δ) is bisimilar to

(Mr, νr + projr(δ)). Thus (`r,minr + δ)
e
−→ (l′,minr + δ)

d
−→ (l′,minr + δ + d).

Then this region can be reached via a discrete step into a time-closed region
followed by a time step. So we do not need to examine this case. ut

6.3 A characterization of bisimilarity

The characterization of TA bisimilar to some TPN is closely related to the
topological closure of reachable regions: it states that any region intersecting the
topological closure of a reachable region is also reachable and that a discrete
step either from a region or from the minimal vector of its topological closure
is possible in the whole topological closure. The two automata B0 and B1 in
Figure 6.3 will illustrate our results: the automaton B0 admits a bisimilar TPN
whereas B1 does not.In the sequel, we suppose that any atomic constraint related
to a clock x occurring in the invariant of a location is added to the guard of each
incoming transition which does not reset x.

`0
x ≤ 1

`1
x ≤ 1

l2

x ≤ 1, a, ∅

x = 1, b, {y}

x ≥ 1 ∧ y ≤ 0, c, ∅

B0 :

`0
x ≤ 1

`1
x ≤ 1

l2
x ≤ 1, a, {y} x ≥ 1 ∧ y ≤ 0, c, ∅

B1 :

Fig. 15. Two automata with different behavior w.r.t bisimulation with a TPN

Theorem 5 (Characterization of TA bisimilar to some TPN). Let A be
a (label-free) timed automaton, let R(A) its region automaton w.r.t. the 1-grid

33

and a constant K strictly greater than any constant occurring in the automaton,
then A is weakly timed bisimilar to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A,
(a) Every region r′ s.t. r′ ∩ r 6= ∅ is reachable

(b) ∀(`r, v) ∈ r, (`r, v)
e
−→⇒ (`r,minr)

e
−→

(c) ∀(`r, v) ∈ r, (`r,minr)
e
−→⇒ (`r, v)

e
−→

Furthermore, if these conditions are satisfied then we can build a 1-bounded
2-TPN bisimilar to A whose size is linear w.r.t. the size of A and a 1-bounded
1-TPN bisimilar to A whose size is exponential w.r.t. the size of A.

We note T A− this class of automata. Using the theorem, we justify why the
automaton B1 does not admit a bisimilar TPN. The region r = {(`1, x = 1∧0 <
y < 1} is reachable. The guard of edge c is true in minr = (`1, (1, 0)) whereas it
is false in r.

We prove Theorem 5 in three steps in the next paragraphs.

6.4 Proof of Necessity

Proof (of Necessity). The fact that conditions (a), (b), and (c) are satisfied with
respect to the g-grid and the constant K = ∞ is straightforward:

– (a) This assertion is included in the inductive assertions.
– (b) Let r be a reachable region, let (`r,minr + δ) ∈ r be a configuration

with δ ∈ [0, 1/g[X, then ∃(M, ν) ν ∈ N
En(M)
g bisimilar to (`r,minr) and

(M, ν + δ
′) with δ

′ ∈ [0, 1/g[En(M) bisimilar to (`r, v + δ). Suppose that

(`r,minr+δ)
e
−→, then (M, ν+δ′)

w
−→ with w an instantaneous firing sequence

and label(w) = e. Now by lemma 5-b, (M, ν)
w
−→, thus (`r,minr)

e
−→.

– (c) Let r be a region, and (`r,minr +δ) ∈ r with δ ∈ [0, 1/g]X thus ∃(M, ν)
bisimilar to (`r,minr) and (M, ν + δ′) with δ′ ∈ [0, 1/g]En(M) bisimilar

to (`r,minr + δ). Suppose that (`r,minr)
e
−→, then (M, ν)

w
−→ with w an

instantaneous firing sequence and label(w) = e. Now by lemma 5-a, (M, ν +

δ′)
w
−→, thus (`r,minr + δ)

e
−→.

In order to complete the proof, we successively show that if the conditions are
satisfied w.r.t. the g-grid and infinite constant, they are satisfied w.r.t. the 1-grid
and infinite constant and when satisfied w.r.t the 1-grid and infinite constant,
they are satisfied w.r.t the 1-grid and the usual finite constant. This is done by
the next two lemmas.

Lemma 7 (about the conditions and the grid). Let A be a timed auto-
maton, and g ∈ N>0. If the conditions (a),(b),(c) are satisfied by the region
automaton associated with the g-grid, then they are satisfied by the region auto-
maton associated with the 1-grid (where in both cases the constant K = ∞).

Proof. Let us denote R(A)g the region automaton of A w.r.t. the g-grid. By
definition of regions, we remark that r a region of R(A) is a finite union of

34

regions of R(A)g (say r =
⋃

i=1..k ri). Thus r =
⋃

i=1..k ri which proves the
implication for (a).
Assume that (b) is satisfied by R(A)g. Let (`r,minr + δ + d) ∈ r be a region

of R(A) and assume (`r,minr + δ + d)
e
−→. We define δ′ by δ′(x) = δ(x)/g

. Then since A has integer constraints (`r,minr + δ′ + d/g)
e
−→. Moreover this

configuration belongs to r and then to a region r′ ∈ R(A)g whose minimal vector

is minr. Then applying (b), we obtain (`r,minr)
e
−→.

Assume that (c) is satisfied by R(A)g. Let (`r, v) ∈ r where r is a region of

R(A) and assume (`r,minr)
e
−→. Then there is an increasing path among the

minimum vectors of regions of R(A)g all included in r. This path is such that
any two consecutive elements belong to the closure of some region; it starts at
(`r,minr) and finishes at (`r,minr∗

) such that (`r, v) ∈ r∗ (with r∗ a region of

R(A)g). Thus applying iteratively (c) yields (`r, v)
e
−→. ut

Lemma 8 (about the conditions and the constant K). Let A be a timed
automaton. If the conditions (a),(b),(c) are satisfied by the region automaton
associated with the 1-grid and constant K = ∞, then they are satisfied by the
region automaton associated to the 1-grid and a finite constant.

Proof. Let us denote R(A)∞ the region automaton of A w.r.t. K = ∞. Let r
be a reachable region in R(A) and reach(r) the associated region of R(A)∞.
Note that `reach(r) = `r and that ∀x ∈ ActXr,minreach(r) = minr and ∀x ∈
X,minreach(r) ≥ minr. Suppose that reach(r) is time-closed (resp. time-open)
then r admits a time-closed (resp. time-open) description where the ordr and
ordreach(r) mappings are identical for clocks inActXr. Thus ∀(`r, v) ∈ r, ∃(`r, v

′) ∈
reach(r) such that ∀x ∈ ActXr, v

′(x) = v(x).
Now take a convergent sequence limi→∞(`r, vi) = (`r, v) with (`r, vi) ∈ r

so that (`r, v) ∈ r. Then the corresponding sequence {(`r, v′i)} being bounded
admits an accumulation point (`r, v

′) ∈ r. It is routine to show that (`r, v) and
(`r, v

′) belong to the same region in R(A). This proves that condition (a) for
R(A)∞ implies condition (a) for R(A).
Assume that (b) is satisfied by R(A)∞. Let (`r, v) ∈ r be a reachable region of

R(A) and (`r, v)
e
−→. Let reach(r) be the associated reachable region of R(A)∞

then ∃(`r, v
′) ∈ reach(r) strongly time bisimilar to (`r, v), thus (`r, v

′)
e
−→. Us-

ing condition (b), (`r,minreach(r))
e
−→. Since (`r,minreach(r)) is strongly time

bisimilar to (`r,minr), we have (`r,minr)
e
−→.

Assume that (c) is satisfied by R(A)∞ and consider (`r, v) ∈ r where r is a region

of R(A) and (`r,minr)
e
−→. Let reach(r) be the associated reachable region

of R(A)∞, then ∃(`r, v
′) ∈ reach(r) strongly time bisimilar to (`r, v). Since

(`r,minreach(r)) is strongly time bisimilar to (`r,minr), (`r,minreach(r))
e
−→.

Thus using condition (c), (`r, v
′)

e
−→. By bisimilarity, we obtain (`r, v)

e
−→. ut

We now give the proof that the condition is sufficient. The proof is split into
two parts, corresponding respectively to the construction of a 2-TPN and the
construction of a 1-TPN.

35

6.5 First construction

Proof (for the first construction of sufficiency). We first describe the construc-
tion of a 2-TPN N bisimilar to A. The principles of this construction are similar
to those used for the language equivalence. We build a subnet per elementary
condition (including the part associated with the clock resetting). However ex-
cept for the conditions x ≥ c and the resetting part, all the constructions are
different. We first remark that x < a occurring in an invariant may be safely
omitted. Indeed (see the assumptions on timed automata), it never forbids to
enter the state. If it would forbid the progress of time in some configuration, then
the associated region would be a maximal time-open region r. Due to condition
(a), r is reachable but since r is time-open, r ∩ succ(r) 6= ∅, so that succ(r) is
reachable which contradicts the maximality of r.

All edges of N are weighted by 1. Unless explicitely stated, the transitions
are labelled by ε.

Fx≥aRtodox
i

Tx≥aRtodox
i+1

changex≥a

[a, a]
resetx≥a

•

(a) Widget for condition x ≥ a (as-
sume a > 0)

Fx>aRtodox
i

Tx>aRtodox
i+1

changex>a

[a+ 1, a+ 1]
resetx>a

•

(b) Widget for condition x > a

Fig. 16. Widgets for conditions x ≥ a and x > a

– With each location ` of the automaton, we associate an eponymous place `.
The place ` is initially marked iff the location ` is the initial one.

– The conditions associated with a clock x are arbitrarily numbered from 1 to
n(x) where n(x) is the number of such conditions. We consider that when x ≤
a (a 6= 0) occurs in at least one transition and in at least one invariant it is
associated to two different conditions. Then we add places {Rtodox

i }i≤n(x)+1

for the management of the resets.
– With each condition x ≥ a (a 6= 0) occurring in a transition of the auto-

maton, we associate a widget (see Figure 16 (a)) composed by two places
Tx≥a, Fx≥a and three transitions changex≥a, reset

1
x≥a, reset

2
x≥a. The place

Fx≥a is initially marked while Tx≥a is unmarked. The interval associated
to changex≥a is [a, a]; •changex≥a = {Fx≥a} and changex≥a

• = {Tx≥a}.
The interval associated to reset1x≥a and reset2x≥a is [0, 0]. Let i be the num-

ber of the condition x ≥ a. •reset1x≥a = {Fx≥a, Rtodo
x
i } and reset1x≥a

•
=

36

Tx≤aRtodox
i

Fx≤aRtodox
i+1

changex≤a

[a+ 1
2
, a+ 1

2
]

resetx≤a

•

(a) Widget for condition x ≤ a

Fx<aRtodox
i

Tx<aRtodox
i+1

changex<a

[a− 1
2
, a− 1

2
]

resetx<a

•

(b) Widget for condition x < a
(assume a > 0)

Fig. 17. Widgets for conditions x ≤ a and x < a

FReachx≤a `Rtodox
i

TReachx≤aRtodox
i+1

reachx≤a

[a, a]
resetx≤a stopx≤a

`

•

Fig. 18. Widget for invariant x ≤ a

TC1

TC2

TCm

. . .

. . .

. . .

. . .

`

W 1
e W 2

e W
n(e)
e

Rtodox1
1

Rtodox1
n(x1)+1 Rtodox2

n(x2)+1

Rtodox2
1 Rtodo

xn(e)

1

Rtodo
xn(e)

n(xn(e))+1

`′

firee , e , [0,∞[

next1e next
n(e)
e

Fig. 19. Widget of an edge (l, γ = {c1, . . . , cm(e)}, e,R = {x1, . . . , xn(e)}, l
′)

37

{Fx≥a, Rtodo
x
i+1}.

•reset2x≥a = {Tx≥a, Rtodo
x
i } and reset2x≥a

•
= {Fx≥a,

Rtodox
i+1}.

– With each condition x > a occurring in a transition of the automaton, we
associate a widget (Figure 16 (b)) composed by two places Tx>a, Fx>a and
three transitions changex>a, reset

1
x>a, reset

2
x>a. The place Fx>a is initially

marked while Tx>a is unmarked. The interval associated to changex>a is
[a+1, a+1]; •changex>a = {Fx>a} and changex>a

• = {Tx>a}. The interval
associated to reset1x>a and reset2x>a is [0, 0]. Let i be the number of the condi-
tion x > a. •reset1x>a = {Fx>a, Rtodo

x
i } and reset1x>a

•
= {Fx>a, Rtodo

x
i+1}.

•reset2x>a = {Tx>a, Rtodo
x
i } and reset2x>a

•
= {Fx>a, Rtodo

x
i+1}.

– With each condition x ≤ a occurring in a transition of the automaton, we
associate a widget (Figure 17 (a)) composed by two places Tx≤a, Fx≤a and
three transitions changex≤a, reset

1
x≤a, reset

2
x≤a. The place Tx≤a is initially

marked while Fx≤a is unmarked. The interval associated to changex≤a is [a+
1/2, a+1/2]; •changex≤a = {Tx≤a} and changex≤a

• = {Fx≤a}. The interval
associated to reset1x≤a and reset2x≤a is [0, 0]. Let i be the number of the condi-

tion x ≤ a. •reset1x≤a = {Tx≤a, Rtodo
x
i } and reset1x≤a

•
= {Tx≤a, Rtodo

x
i+1}.

•reset2x≤a = {Fx≤a, Rtodo
x
i } and reset2x≤a

•
= {Tx≤a, Rtodo

x
i+1}.

– With each condition x < a (a 6= 0) occurring in a transition of the auto-
maton, we associate a widget (Figure 17 (b)) composed by two places Tx<a,
Fx<a and three transitions changex<a, reset

1
x<a, reset

2
x<a. The place Tx<a is

initially marked while Fx<a is unmarked. The interval associated to changex<a

is [a− 1/2, a− 1/2]; •changex<a = {Tx<a} and changex<a
• = {Fx<a}. The

interval associated to reset1x<a and reset2x<a is [0, 0]. Let i be the num-
ber of the condition x < a. •reset1x<a = {Tx<a, Rtodo

x
i } and reset1x<a

•
=

{Tx<a, Rtodo
x
i+1}.

•reset2x<a = {Fx<a, Rtodo
x
i } and reset2x<a

•
= {Tx<a,

Rtodox
i+1}.

– With each condition x ≤ a (a 6= 0) in a invariant, we associate a widget (Fig-
ure 18) composed by two places TReachx≤a, FReachx≤a and three trans-
itions reachx≤a, resetR

1
x≤a, resetR

2
x≤a. The place FReachx≤a is initially

marked while TReachx≤a is unmarked. The interval associated to reachx≤a

is [a, a]; •changex≤a = {FReachx≤a} and changex≤a
• = {TReachx≤a}. The

intervals associated to resetR1
x≤a and resetR2

x≤a is [0, 0]. Let i be the number

of the condition x ≤ a. •resetR1
x≤a = {FReachx≤a, Rtodo

x
i } and

resetR1
x≤a

•
= {FReachx≤a, Rtodo

x
i+1}.

•resetR2
x≤a = {TReachx≤a, Rtodo

x
i }

and resetR2
x≤a

•
= {FReachx≤a, Rtodo

x
i+1}.

– With each edge (l, γ = {c1, . . . , cm(e)}, e, R = {x1, . . . , xn(e)}, l
′), we asso-

ciate a widget (Figure 19) composed by places {W i
e}i≤n(e) and transitions

firee, {next
i
e}i≤n(e). The transition firee has label e; its interval is [0,∞[;

•firee = {l, Tc1, . . . , Tcm(e)
} and firee

• = {W 1
e , Rtodo

x1
1 , Tc1, . . . , Tcm(e)

}.

The interval associated to transitions nextie is [0, 0]. ∀i < n(e), •nextie =

{W i
e , Rtodo

xi

n(xi)+1} and nextie
•

= {W i+1
e , Rtodo

xi+1

1 }. •next
n(e)
e = {W

n(e)
e ,

Rtodo
xn(e)

n(xn(e))+1} and next
n(e)
e

•
= {`′}. When R = ∅, the widget reduces

38

to the transition firee with •firee = {`, Tc1, . . . , Tcm(e)
} and firee

• =
{`′, Tc1, . . . , Tcm(e)

}.
– If a condition x ≤ 0 occurs in the invariant of l, then one adds a transition
stop` with interval [0, 0], •stop` = stop`

• = {`}. If a condition x ≤ a (a 6= 0)

occurs in the invariant of l, then one adds a transition stopx≤a
` with interval

[0, 0], •stopx≤a
` = stopx≤a

`

•
= {`, TReachx≤a}.

We decompose the reachable configurations (and markings) into interme-
diate ones (some W i

e is marked) and permanent ones (some ` is marked). An
easy induction shows that in permanent configurations (M, ν) the enabled timed
transitions relative to a clock are “synchronized”: ν(changec) = ν(changec′) =
ν(reachc′′) as soon as c, c′, c′′ relates to the same clock x. We define ν(x) as
this common value if at least one such transition is enabled and otherwise
ν(x) = K(x) where K(x) is the maximal value relative to clock x occuring in the
net N . Furthermore from any intermediate configuration (M, ν), the behaviour
of the net is quasi-deterministic until it reaches a permanent configuration: there
are only firing sequences (i.e. no time step) and some of them lead to permanent
configurations. Furthermore these permanent configurations (say (Mnext, νnext))
have the same marked place ` and the same values νnext(x).

It is also obvious that once some firee is fired, the construction ensures the
existence of a “resetting” sequence which reinitializes the widgets associated to
the clocks to be reset.

Bisimulation relation. We now define the relation R between reachable config-
urations of the automaton A and the net N . Let us define (`, v)R(M, ν) iff:

– either M is a permanent marking and M(`) is marked and if ν(x) < K(x)
then v(x) = ν(x) else v(x) ≥ K(x).

– or M is an intermediate marking leading to some permanent (Mnext, νnext)
and (`, v)R(Mnext, νnext). This definition is sound due to the common fea-
tures of the different (Mnext, νnext).

It remains to prove that R is a bisimulation, which is done in the next lemma.
ut

Lemma 9. The relation R defined above is a weak timed bisimulation.

Proof. We first consider moves from A.
Case 1: (`, v)

e
−→ (`′, v′) First, let us prove that (M, ν)

σ
−→ with σ labelled by

e. At first, σ begins by σ′ which consists to fire all the changec fireable leading

to some (M ′, ν′) (with (`, v)R(M ′, ν′)). Now we prove that (M ′, ν′)
firee

−−−→. By
definition of R, M(`) is marked. Let c be a condition occuring in the guard of e.
If c = [x ≥ a] then v(x) ≥ a which implies

ν(x) ≥ a and that Tx≥a is marked (eventually with the help of σ′).
If c = [x > a] then let r be the region to which (`, v) belongs. minr(x) = bv(x)c.

Using condition (b), (l,minr)
e
−→. Thus v(x) ≥ minr(x) ≥ a + 1 which implies

ν(x) ≥ a+ 1 and that Tx>a is marked (eventually with the help of σ′).

39

If c = [x ≤ a] then v(x) ≤ a which implies ν(x) ≤ a and that Tx≤a is marked
(remember that changex≤a fires when ν(x) = a+ 1/2).
If c = [x < a] then let r be the region to which (`, v) belongs. Then there exists

(`, v1) ∈ r with v1(x) = dv(x)e. Using condition (b) and then (c), (l, v1)
e
−→.

Thus v(x) ≤ v1(x) ≤ a− 1 which implies ν(x) ≤ a− 1 and that Tx<a is marked
(remember that changex<a fires when ν(x) = a− 1/2).
Thus firee is fireable from (M ′, ν′). We complete σ by the “resetting” sequence
leading to a configuration bisimilar to (`′, v′)

IfM is an intermediate marking, one fires a sequence leading to some (Mnext, νnext)
and performs the previous simulation.

Case 2: (`, v)
d
−→ (`, v + d)

Suppose that x ≤ a belongs to the invariant of `. This means that v(x)+d ≤
a. Thus from (M, ν), we let a time d elapse interleaved with possible firings of
change transitions. The stop transitions associated to ` will be possibly firable
but only at the end of this step sequence.

IfM is an intermediate marking, one fires a sequence leading to some (Mnext, νnext)
and performs the previous simulation.

Conversely, we consider moves from N .

Case 3: (M, ν)
t
−→ (M ′, ν′)

If t is labelled by ε, then by construction (`, v)R(M ′, ν′).
Thus we only to need to examine the case of firee (M is then a perman-

ent marking). Let r be the region to which (`, v) belongs. We will show that

(`,minr)
e
−→. Then by condition (c), we will obtain that (`, v)

e
−→.

Let c be a condition occuring in the guard of e.
If c = [x ≥ a] then Tx≥a is marked which implies that ν(x) ≥ a and then
v(x) ≥ a, thus minr(x) = bv(x)c ≥ a.
If c = [x > a] then then Tx>a is marked which implies that ν(x) ≥ a + 1 and
then v(x) ≥ a+ 1 thus minr(x) = bv(x)c ≥ a+ 1 > a
If c = [x ≤ a] then Tx≤a is marked which implies that ν(x) ≤ a+ 1/2 and then
v(x) ≤ a+ 1/2 thus minr(x) = bv(x)c ≤ a
If c = [x < a] then Tx<a is marked which implies that ν(x) ≤ a− 1/2 and then
v(x) ≤ a− 1/2 thus minr(x) = bv(x)c ≤ a− 1 < a

So (`, v)
e
−→ (`′, v′) for some (`′, v′). By construction of N and definition of

R, (`′, v′)R(M ′, ν′).

Case 4: (M, ν)
d
−→ (M, ν + d)

An intermediate marking cannot let elapse time. Thus M is a permanent
marking. Let x ≤ a belonging to the invariant of

l. a 6= 0 otherwise from (M, ν), stopl must be fired and time may not elapse.

Similarly since stopx≤a
l is only possibly fireable from (M, ν + d), it follows that

ν(x) + d ≤ a, thus v(x) + d ≤ a.

Consequently (`, v)
d
−→ (`, v + d) and obviously (`, v + d)R(M, ν + d). ut

We finally illustrate this construction on the timed automaton B0 from Figure 6.3
above and its translation given below (with some simplifications related to this

40

particular TA). For readability, immediate transitions (where interval [0, 0] is
represented in black and ε labels are not shown).

•

•

•

•

[1/2, 1/2] toFy≤0

Ty≤0

c, [0,+∞[l2`1

`0

a, [0,+∞[

b, [0,+∞[

Tx≥1[1, 1]

inv0

Fig. 20. The TPN bisimilar to b0

First, note that the subnet associated to the constraint y ≤ 0 switches the
condition to false (firing of toFy≤0) when the implicit value of y maintained in
the net reaches 1/2. Seemingly, this translation appears to be less constrained
than the original condition. We explain how we prove that this translation is
nevertheless sound. Let r be the region corresponding to the current configura-
tion (`, v) of the automaton simulated by the net, if the net is able to simulate
a discrete step of the automaton, we prove that in the configuration (`,minr) of
the automaton this step is also possible. Thus by condition (c), the step is also
possible from (`, v). On the other hand, if a discrete step is possible for (`, v)
in the automaton, we show that this step is also simulatable in the net using
both conditions (b) and (c) and the following fact: ∀x ∈ X, ∃(`r, v

′), (`r, v
′′) ∈ r

such that v′(x) = bv(x)c and v′′(x) = dv(x)e. We also need to handle the invari-
ants. First it is straightforward to observe that due to condition (a), an atomic
constraint x < c occuring in an invariant may be safely deleted since its effective-
ness leads to the existence of a region r whose time-successor (which intersects
r) would not be reachable. The subnet associated to the atomic constraint x ≤ 1
occuring in the invariant of `0 leads to transition inv0 (not modifying the mark-
ing) which is fireable as soon as the simulated value of x reaches 1 and the place
`0 is marked. Thus time cannot progress except if the location is left.

41

6.6 Second construction

Proof (for the second construction of sufficiency). When the conditions on the
unlabeled timed automaton A are satisfied, we build a 1-TPN N with atomic
semantics which is weakly timed bisimilar to A. We suppose that all invariant
conditions of a location are added to the guard of each ingoing transition. Recall
that K = m + 1, where m is the maximal constant for A. The construction of
the TPN is a partial replication of both the region automaton of A and the class
automaton, as explained later. There is first a subnet for each clock x, in which
only the integral parts of x appear in the places (but with a fractional part that
can reach 1).

• . . .

hx
0 hx

1tx0

[1, 1]

tx1

[1, 1]

txK−1

[1, 1]

hx
K

Then we add one place C for each class C = (`, Z) of the class automaton,
with the initial class marked. Now let e = (`, g, a, R, `′) be a transition of A. For

each pair (v, v′) of clock valuations in NX , with v, v′ ≤
−→
K , we build a subnet

which simulates the transition (`, v)
e
−→ (`′, v′), where we have v′(x) = 0 if x ∈ R

and v′(x) = v(x) otherwise. Let C1 = (`, Z1), . . . , Ck = (`, Zk) be the subset of
classes such that ∃v′′ ∈ Zi ∧ ∀x ∈ X, v′′(x) = v(x) ∨ (v′′(x) ≥ K ∧ v(x) = K))
for 1 ≤ i ≤ k, and C′

1, . . . , C
′
k the classes obtained by applying transition e to

C1, . . . , Ck respectively. We have a transition with label e for each Ci (with k = 2
in the figure below), all with interval [0,+∞[. Note that all reset operations for
clocks in R are executed successively with instantaneous transitions. Moreover,
the upper part of the net ensures that the invariant conditions of location l are
satisfied (this part has been omitted for `′).

Like in the previous proof, we say that a configuration (and the corresponding
marking) (M, ν) of the TPN is permanent if M(`) = 1 for some l. Otherwise,
it is an intermediate configuration (and marking), where M(resetxe) = 1 for
some (exactly one of each) x and e, meaning that some reset operations are in
progress. Here again, a permanent configuration is reached instantaneously from
such an intermediate configuration, with only firing sequences completing the
reset operations for transition e (interleaved with possibly transitions firings of
some txc).

Furthermore, for a configuration (M, ν), there is exactly one non empty place
hx

c for each clock x. Writing cx for the constant such that M(hx
cx

) = 1, we have
either cx = K or 0 ≤ ν(txcx

) ≤ 1, where ν(txc) is the time elapsed since arrival of
the token in the place hx

cx
. This means that the value of clock x is either v(x) ≥ K

or v(x) = cx + ν(txcx
) with bv(x)c equal to either cx or cx + 1. In the latter case,

transition txcx
can be fired instantaneously, leading to the configuration (M ′, ν′)

with one token in place hx
cx+1 and either cx + 1 = K or ν′(txcx+1) = 0. We can

thus reach a configuration where c = (cx)x∈X is maximal.

42

. . .

l

hz
c , z ≤ c ∈ Inv(`)

[0,+∞[

e

hx
v(x), x ∈ R

hx
v(x), x /∈ R resetxe

hx
0 , x ∈ R

resetye

l′

C1

C2

e

C′
1

C′
2

Fig. 21. Simulation of a transition

Bisimulation relation. The relation R is defined as the set of pairs ((M, ν), (`, v))
such that:

– either (M, ν) is a permanent configuration with M(`) = 1, the relation
between v and ν is the one described above, and there exists exactly one
class C = (`, Z) such that M(C) = 1 and v ∈ Z;

– or (M, ν) is an intermediate configuration leading to some permanent con-
figuration (M ′, ν′) such that ((M ′, ν′), (`, v)) ∈ R.

We end the proof with an auxiliary lemma and the fact that R is a weak time
bisimulation. ut

The following lemma which relates regions and classes, shows how the class
automaton will be used to control the firing of a transition when the minimal
point c is in not in the same region than v.

Lemma 10. Let A be an automaton satisfying the conditions of theorem 5, let
C = (`, Z) be a class of the class automaton and (`, v) ∈ C. Let (`, v) ∈ r where
r is a region w.r.t. to the choice K = ∞ (which means that there is a infinite
number of regions). Then ∀(`, v′) ∈ r, (`, v′) ∈ C. In particular, (`, bvc) ∈ C.

Proof. The proof is by induction on the reachability relation between regions.
The case of a discrete step follows from conditions (b) and (c) of theorem 5. The

43

case of a time step follows from the choice of K = ∞ which implies that given
a region r, every item of succ(r) is reached by a time step from an item of r.

Lemma 11. The relation R defined above is a weak time bisimulation.

Proof. Assume that (M, ν)R(`, v) and consider a move in A.

Case 1: (`, v)
d
−→ (`, v+ d) (with d 6= 0). In this case, we must consider different

subcases, according to the regions that can be reached by elapsing time. We
consider only moves in which at most one different region is reached, the general
case would be a combination of those elementary moves. First note that since
v′ = v + d can be reached, no invariant condition needs to be activated in N .
Moreover, if (M, ν) is an intermediate configuration, we first apply the sequence
described above and reach the equivalent configuration (M1, ν1). Also in this
case, since classes are unchanged by elapsing time, if we prove that a delay move
is possible from (M1, ν1), we immediately obtain that the class is the same in
the resulting configuration. Thus, the resulting configuration will be equivalent
to (`, v + d).

• If v belongs to a time-open region, the case where v′ belongs to the same
time-open region is easy, it simply corresponds to a delay transition from
(M1, ν1) in N , each clock being in some hx

c and staying inside (no token
move), with (M1, ν1 + d) equivalent to (`, v + d).
If v′ has reached an integer value, we consider a clock x with greatest integral
part, so that v′(x) = bv(x)c+ 1 = v(x) + d with v(y) + d ≤ bv(y)c+1 for all
other clocks. In this case also, we obtain a delay move in N from (M1, ν1).

• If there are some clocks x for which v(x) has an integer value, then elapsing
time leads to the successor region, which is time-open. From (M1, ν1), it
is possible to reach with instantaneous transitions a configuration (M2, ν2)
where for all clocks with integer values, M2(h

x
c) = 1 with c maximal, and

(M2, ν2) still equivalent to (`, v). Now from (M2, ν2), a delay move can be

applied so that (M, ν)
∗
−→ (M1, ν1)

∗
−→ (M2, ν2)

d
−→ (M2, ν2+d), with (M2, ν2+

d)R(`, v + d).

Case 2: If (`, v)
e
−→ (`′, v′) for some e = (`, g, a, R, l′) then condition (b) implies

that a transition (`, bvc)
e
−→ (`′, bv′c) is also possible in A. Here again we may

have to apply from (M, ν) a sequence of instantaneous transitions, leading to
(M1, ν1) where place l is marked, and from there we can reach an equivalent
configuration (M2, ν2) with c = (cx)x∈X maximal. Let C = (`, Z) be the class
for which M(C) = 1, with v ∈ Z. From lemma 10, (`, bvc) also belongs to C,
and ∀x ∈ X, bvc(x) = cx ∨ (bvc(x) ≥ K ∧ cx = K) so that the transition e
(corresponding to this vector and this class) can be fired in N , immediately
followed by the corresponding reset sequence, leading to (M ′, ν′). Since exactly
one class C′ is marked after e, we have (M ′, ν′)R(`′, v′) by the definition of R.

For the converse, we consider a move in N .

Case 3: (M, ν)
d
−→ (M, ν + d) (with d 6= 0). Then, neither reset transitions nor

transitions of the form txc can be fired in N . Thus, the places hx
c which contain

44

a token are such that ν(txc) < 1 and ν(txc) + d ≤ 1. For the state (`, v), we have

M(`) = 1 and v(x) = c + ν(txc). The move (`, v)
d
−→ (`, v + d) is possible in

A since (`, v + d) belongs either to the region of (`, v) or to its time successor

which is reachable by condition (a). Therefore (`, v)
d
−→ (`, v + d) in A with

(M, ν + d)R(`, v + d).

Case 4: (M, ν)
t
−→ (M ′, ν′). For any transition of N which is not associated

with some transition e = (`, g, a, R, l′) in A, no time can elapse so there is no
need for a move in A because (M ′, ν′) is still equivalent to (`, v). Suppose now
that t is associated to an edge e, we have M(`) = 1, M(C) = 1 for some class
C = (`, Z) with v ∈ Z. Since t is fireable, considering the valuation c = (cx)x∈X

the construction implies that ∃v′′ ∈ Z s.t. ∀x ∈ X, v′′(x) = cx ∨ (v′′(x) ≥
K ∧ cx = K), which implies that the segment [v′′, v] ⊆ Z, from the convexity
of Z, with 0 ≤ v(x) − v′′(x) = v(x) − cx ≤ 1 for each x s.t. cx < K. Thus,
[(`, v′′), (`, v)] is contained in the topological closure r of some reachable region

such that minr = c and l = lr. Since (`, c)
e
−→ (`′, c′) is possible in A, and (`, v′′)

is strongly time bisimilar to (`, c), one has (`, v′′)
e
−→ (`′, v′′′). Now condition (c)

implies that a move (`, v)
e
−→ (`′, v′) is also possible in A. From the definition,

(M ′, ν′)R(`′, v′).
ut

For instance, for the automaton B0 from Figure 6.3, we have four classes:
C0 = {l0, 0 ≤ x = y ≤ 1}, C1 = {l1, 0 ≤ x = y ≤ 1}, C′

1 = {l1, x = 1 ∧ y = 0}
and C2 = {l2, 0 ≤ y = x − 1}. We show below the subnet corresponding to the
transition c at point (l1, (1, 0)) and class C′

1.

l1 l2

[0,+∞[

c

hx
1

hy
0

C′
1 C2

Consider the following run in B0: (l0, (0, 0))
a
−→ (l1, (0, 0))

1
−→ (l1, (1, 1)). The

simulation of this run by N may lead to the following configuration: l1, h
x
0 , h

y
0

and C1 are marked and tx0 and ty0 have been enabled for 1 t.u. Suppose that the
sequence tx0t

′x
0 is fired, marking the place tx1 , then without the input place C′

1

the transition labelled c could be erroneously fired. Since C′
1 is unmarked this

firing is disabled.

6.7 Complexity results

This characterization leads to the the following complexity results.

45

Proposition 5 (Complexity results). Given a (label-free) timed automaton
A, deciding whether there is a TPN weakly timed bisimilar to A is PSPACE-
complete. The reachability problem for the class T A− is PSPACE-complete.

Proof. The reachability problem for regions is in PSPACE. In order to check
whether the condition (a) is false we non deterministically pick a region r and
a region r′ which intersects r and check whether r is reachable and r′ is not
reachable. In order to check whether the condition (b) is false we non determ-
inistically pick a region r and a edge e and check whether r is reachable and e
is firable from r and not fireable from (lr,minr). In order to check whether the
condition (c) is false we non deterministically pick a region r, a region r′ which
intersects r and a edge e and check whether r is reachable and e is not firable
from r or r′ and fireable from (lr,minr). By Savitch construction, we obtain a
deterministic algorithm in PSPACE.
In order to show the PSPACE-hardness, we use the construction given in [2] (in
appendix D) which reduces the acceptation problem for linear bounded Turing
machine (LBTM) to the reachability problem for TA with restricted guards. The
computed TA (called AM,w0) satisfies the conditions (a) and (b) but does not
satisfy the condition (c). However it can be safely transformed in order to satisfy
this condition by adding the invariant t ≤ 1 to any state (q, i) and the invariant
t ≤ 0 to any state (i, θ, j). This intermediate automaton is now bisimilar to a
TPN.

Then we transform the edges entering the end state by resetting t and at last
we add an edge (end, t = 0, e, ∅, end).

If the LBTM M does not accept the word w0, then the state end is not
reachable and AM,w0 satisfies the conditions (a),(b),(c).

If the LBTM M accepts the word w0, then the state end is reachable and
AM,w0 does not satisfy the condition (c) (the additional edge is fireable when
entering end but not after letting the time elapse). The fact that the reachability
problem for the class T A− is PSPACE-complete was proved implicitely within
the proof above.

At last, we complete these results by adapting them to other models of TA.
The previous characterization holds for TA with diagonal constraints and when
satisfied a bisimilar 1-bounded 1-TPN whose size is exponential w.r.t. the TA
may be built. A simpler characterization holds for TA without strict (and di-
agonal) constraints. Nevertheless, for these two models, the complexity of the
membership and reachability problems is still PSPACE-complete.

Proposition 6 (TAs with diagonal constraints). Let A be an unlabelled
timed automaton with diagonal constraints, let R(A) its region w.r.t. the 1-grid,
then A is weakly timed bisimilar to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A,

(a) Every region r′ s.t. r′ ∩ r 6= ∅ is reachable

(b) ∀(`r, v) ∈ r, (`r, v)
e
−→⇒ (`r,minr)

e
−→

(c) ∀(`r, v) ∈ r, (`r,minr)
e
−→⇒ (`r, v)

e
−→

46

Furthermore, if these conditions are satisfied then one can build a 1-bounded
1-TPN bisimilar to A whose size is exponential w.r.t. the size of A.

At last, deciding whether there is a TPN weakly time bisimilar to A is
PSPACE-complete.

Proof. The proof of necessity and the second construction of the TPN bisimilar
to A need to be slightly adaptated to take into account the nature of the regions
of an automaton with diagonal constraints since they are based on properties of
the region automaton whereas the construction of the class automaton is still
valid for automata with diagonal constraints.

The PSPACE-hardness is obviously true while the membership to PSPACE
deduced from implicit explorations of the region automaton is still valid. ut

Despite the fact that excluding strict constraints simplifies the characteriza-
tion, the complexity of the membership problem remains the same.

Proposition 7 (TA without strict constraints). Let A be an unlabelled
timed automaton without strict constraints, let R(A) its region w.r.t. the 1-grid,
then A is weakly timed bisimilar to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A, ∀(`r, v) ∈ r, (`r,minr)

e
−→⇒ (`r, v)

e
−→

Furthermore, deciding whether there is a TPN weakly time bisimilar to A is
PSPACE-complete.

Proof. It is straightforward to show that conditions (a) and (b) are satisfied by
an automaton without strict constraints. Similarly the condition (c) is easily
deduced from the current condition when the automaton does not include strict
constraints.

The PSPACE membership is obviously true. We remark that although the
net of [2] (in appendix D) contains contraints xi > 1, they can be safely changed
to xi ≥ 2. Thus the PSPACE hardness follows. ut

7 Conclusion

In this paper, we have investigated different questions relative to the expressive-
ness of TPNs. At first, we have shown that TAs and bounded TPNs (enlarged
with strict constraints) are equivalent w.r.t. the timed language equivalence. We
have also provided a more general and efficient construction of a TPN equival-
ent to a TA than the previous ones. Then we have focused on the weak time
bisimilarity equivalence and we have developed our main contribution: a char-
acterization of TAs time bisimulateable by a TPN. From this characterization,
we have proved that deciding whether a TA admits a time bisimilar TPN is
a PSPACE-complete problem. Furthermore the reachability problem is still
PSPACE-complete for this subclass of TAs. Finally we have proved that for
bounded TPNs the different semantics lead to equivalent models w.r.t. the time
bisimilarity but that this is no more true with strict constraints.

We are now looking for similar (multiple) characterizations for TPNs enlarged
with strict constraints since in this context the choice of the semantics is relevant.

47

We will also try to apply the same techniques to compare the different models
of Petri nets with time.

References

1. P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In ICATPN’01, volume
2075 of LNCS, pages 53–72. Springer-Verlag, june 2001.

2. L. Aceto and F. Laroussinie. Is Your Model Checker on Time? On the Complex-
ity of Model Checking for Timed Modal Logics. Journal of Logic and Algebraic
Programming, volume 52-53, pages 7-51. Elsevier Science Publishers, august 2002.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
B, 126:183–235, 1994.

4. R. Alur and L. Fix and T. A. Henzinger. Event-Clock Automata: A Determinizable
Class of Timed Automata. Theoretical Computer Science, 211:253–273, 1999.

5. T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical Computer
Science, 243(1–2):409–447, 2000.

6. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,
March 1991.

7. M.Boyer and M.Diaz. Non equivalence between time Petri nets and time stream
Petri nets. In Proceedings of 8th International Workshop on Petri Nets and Per-
formance Modeling (PNPM’99), Zaragoza, Spain, pages 198–207.

8. Franck Cassez and Olivier H. Roux. Structural Translation of Time Petri Nets into
Timed Automata. In Michael Huth, editor, Workshop on Automated Verification
of Critical Systems (AVoCS’04), Electronic Notes in Computer Science. Elsevier,
August 2004.

9. D. de Frutos Escrig, V. Valero Ruiz, and O. Marroqúın Alonso. Decidability of
properties of timed-arc Petri nets. In ICATPN’00, Aarhus, Denmark, volume 1825
of LNCS, pages 187–206, june 2000.

10. M. Diaz and P. Senac. Time stream Petri nets: a model for timed multimedia
information. In ATPN’94, volume 815 of LNCS, pages 219–238, 1994.

11. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, volume 407 of LNCS, 1989.

12. S. Haar, F. Simonot-Lion, L. Kaiser, and J. Toussaint. Equivalence of Timed State
Machines and safe Time Petri Nets. In Proceedings of WODES 2002, Zaragoza,
Spain, pages 119–126.

13. W. Khansa, J.P. Denat, and S. Collart-Dutilleul. P-Time Petri Nets for manufac-
turing systems. In WODES’96, Scotland, pages 94–102, 1996.

14. D. Lime and O. H. Roux. State class timed automaton of a time Petri net. In
PNPM’03. IEEE Computer Society, September 2003.

15. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, CA, 1974.

16. M. Pezzé and M. Young. Time Petri Nets: A Primer Introduction. Tutorial presen-
ted at the Multi-Workshop on Formal Methods in Performance Evaluation and
Applications, Zaragoza, Spain, september 1999.

17. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974.

48

18. J. Sifakis. Performance Evaluation of Systems using Nets. In Net Theory and
Applications, Advanced Course on General Net Theory of Processes and Systems,
Hamburg, volume 84 of LNCS, pages 307–319, 1980.

49

