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Abstract. We prove that for all 0 ≤ t ≤ k and d ≥ 2k, every graph G
with treewidth at most k has a ‘large’ induced subgraph H, where H has
treewidth at most t and every vertex in H has degree at most d in G.
The order of H depends on t, k, d, and the order of G. With t = k, we
obtain large sets of bounded degree vertices. With t = 0, we obtain large
independent sets of bounded degree. In both these cases, our bounds on
the order of H are tight. For bounded degree independent sets in trees,
we characterise the extremal graphs. Finally, we prove that an interval
graph with maximum clique size k has a maximum independent set in
which every vertex has degree at most 2k.

1 Introduction

The ‘treewidth’ of a graph has arisen as an important parameter in the Robert-
son/Seymour theory of graph minors and in algorithmic complexity. See Bod-
laender [2] and Reed [7] for surveys on treewidth. The main result of this paper,
proved in Section 5, states that every graph G has a large induced subgraph of
bounded treewidth in which every vertex has bounded degree in G. The order
of the subgraph depends on the treewidth of G, the desired treewidth of the
subgraph, and the desired degree bound. Moreover, we prove that the bound is
best possible in a number of cases.

Before that, in Sections 2 and 3 we consider two relaxations of the main
result, firstly without the treewidth constraint, and then without the degree
constraint. That is, we determine the minimum number of vertices of bounded
degree in a graph of given treewidth (Section 2), and we determine the minimum
number of vertices in an induced subgraph of bounded treewidth, taken over all
graphs of given treewidth (Section 3). This latter result is the first ingredient
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in the proof of the main result. The second ingredient is in Section 4, where we
prove that the subgraph of a k-tree induced by the vertices of bounded degree
has surprisingly small treewidth.

A graph with treewidth 0 has no edges. Thus our results pertain to indepen-
dent sets for which every vertex has bounded degree in G. Here our bounds are
tight, and in the case of trees, we characterise the extremal trees. Furthermore,
by exploiting some structural properties of interval graphs that are of indepen-
dent interest, we prove that every interval graph with no (k + 2)-clique has a
maximum independent set in which every vertex has degree at most 2k. These
results are presented in Section 6.

1.1 Preliminaries

Let G be a graph. All graphs considered are finite, undirected, and simple. The
vertex-set and edge-set of G are denoted by V (G) and E(G), respectively. The
number of vertices of G is denoted by n = |V (G)|. The subgraph induced by a
set of vertices S ⊆ V (G) has vertex set S and edge set {vw ∈ E(G) : v, w ∈ S},
and is denoted by G[S].

A k-clique (k ≥ 0) is a set of k pairwise adjacent vertices. Let ω(G) denote
the maximum number k such that G has a k-clique. A chord of a cycle C is an
edge not in C whose endpoints are both in C. G is chordal if every cycle on at
least four vertices has a chord. The treewidth of G is the minimum number k
such that G is a subgraph of a chordal graph G′ with ω(G′) ≤ k + 1.

A vertex is simplicial if its neighbourhood is a clique. For each vertex v ∈
V (G), let G \ v denote the subgraph G[V (G) \ {v}]. The family of graphs called
k-trees (k ≥ 0) are defined recursively as follows. A graph G is a k-tree if either
(a) G is a (k+1)-clique, or (b) G has a simplicial vertex v whose neighbourhood
is a k-clique, and G \ v is a k-tree.

By definition, the graph obtained from a k-tree G by adding a new vertex
v adjacent to each vertex of a k-clique C is also a k-tree, in which case we
say v is added onto C. For every k-tree G on n vertices, ω(G) = k + 1; G has
minimum degree k; and G has kn − 1

2k(k + 1) edges, and thus G has average
degree 2k− k(k + 1)/n. It is well known that the treewidth of a graph G equals
the minimum number k such that G is a spanning subgraph of a k-tree.

We will express our results using the following notation. Let G be a graph.
Let Vd(G) = {v ∈ V (G) : degG(v) ≤ d} denote the set of vertices of G with
degree at most d. Let Gd = G[Vd(G)]. A subset of Vd(G) is called a degree-d set.
For an integer t ≥ 0, a t-set of G is a set S of vertices of G such that the induced
subgraph G[S] has treewidth at most t. Let αt(G) be the maximum number of
vertices in a t-set of G. Let αt

d(G) be the maximum number of vertices in a
degree-d t-set of G. Observe that αt

d(G) = αt(Gd).
Let G be a family of graphs. Let αt(G) be the minimum of αt(G), and let

αt
d(G) be the minimum of αt

d(G), taken over all G ∈ G. Let Gn,k be the family
of n-vertex graphs with treewidth k. Note that every graph in Gn,k has at least
k + 1 vertices. These definitions imply the following. Every graph G ∈ G has
αt

d(G) ≥ αt
d(G) and αt(G) ≥ αt(G). Furthermore, there is at least one graph G
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for which αt
d(G) = αt

d(G), and there is at least one graph G for which αt(G) =
αt(G). Thus the lower bounds we derive in this paper are universal and the upper
bounds are existential.

As described above, our main result is a lower bound on αt
d(Gn,k) that is tight

in many cases. Here, lower and upper bounds are ’tight’ if they are equal when
ignoring the terms independent of n. Many of our upper bound constructions
are based on the k-th power of an n-vertex path P k

n . This graph has vertex set
{v1, v2, . . . , vn} and edge set {vivj : |i− j| ≤ k}. Obviously P k

n is a k-tree.
For t = k, a degree-d t-set in a graph G with treewidth k is simply a set of

vertices with degree at most d. Thus in this case, αk
d(G) = |Vd(G)|. At the other

extreme, a graph has treewidth 0 if and only if it has no edges. A set of vertices
I ⊆ V (G) is independent if G[I] has no edges. Thus a 0-set of G is simply an
independent set of vertices of G. As is standard, we abbreviate α0(G) by α(G),
α0

d(G) by αd(G), etc. An independent set I of G is maximum if |I| ≥ |J | for every
independent set J of G. Thus α(G) is the cardinality of a maximum independent
set of G.

2 Large Subgraphs of Bounded Degree

In this section we prove tight lower bounds on the number of vertices of bounded
degree in graphs of treewidth k. We will use the following result of Bose et al. [3].

Lemma 1 ([3]). Let G be a graph on n vertices, with minimum degree δ, and
with average degree α. Then for every integer d ≥ δ,

|Vd(G)| ≥
(

d + 1− α

d + 1− δ

)
n .

Theorem 1. For all integers k ≥ 0 and d ≥ 2k − 1,

lim
n→∞

αk
d(Gn,k)

n
=

d− 2k + 1
d− k + 1

.

Proof. First we prove a lower bound on αk
d(Gn,k). Let G be a graph in Gn,k

with αk
d(G) = αk

d(Gn,k). If a vertex v of G has degree at most d in a spanning
supergraph of G, then v has degree at most d in G. Thus we can assume that G
is a k-tree. Hence G has minimum degree k and average degree 2k− k(k + 1)/n.
By Lemma 1,

αk
d(Gn,k) = |Vd(G)| ≥

(
d + 1− 2k + k(k + 1)/n

d + 1− k

)
n

=
(

d− 2k + 1
d− k + 1

)
n +

k(k + 1)
d− k + 1

. (1)

Now we prove an upper bound on αk
d(Gn,k) for all n ≡ 2k (mod d−k+1), and

for all k ≥ 0 and d ≥ 2k−1. Let s be the integer such that n−2k = s(d−k+1).
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Then s ≥ 0. We now construct a graph G ∈ Gn,k. Initially let G = P k
(s+2)k be

the k-th power of the path (v1, v2, . . . , v(s+2)k). Let r = d− 2k + 1. Then r ≥ 0.
Add r vertices onto the clique (vik+1, vik+2, . . . , vik+k) for each 1 ≤ i ≤ s. Thus
G is a k-tree, as illustrated in Figure 1. The number of vertices in G is

(s + 2)k + sr = (s + 2)k + s(d− 2k + 1) = s(d− k + 1) + 2k = n . (2)

Each vertex vi, k + 1 ≤ i ≤ (s + 1)k, has degree 2k + r = d + 1. Hence such a
vertex is not in a degree-d set. The remaining vertices all have degree at most
d. Thus

αk
d(Gn,k) ≤ αk

d(G) = |Vd(G)| = rs+2k =
(

d− 2k + 1
d− k + 1

)
n +

2k2

d− k + 1
. (3)

r r r

k k k k k

Fig. 1. The graph G with k = 3, d = 7, and s = 3 (and thus r = 2).

Observe that the difference between the lower and upper bounds in (1) and
(3) is only

2k2 − k(k + 1)
d + 1− k

=
k(k − 1)
d + 1− k

≤ k − 1 .

It is easily seen that for all ε > 0, there is an n0 such that for all n ≥ n0,

0 ≤ αk
d(Gn,k)

n
− d− 2k + 1

d− k + 1
≤ ε .

Therefore the sequence {αk
d(Gn,k)/n : n ≥ 2k} converges to d−2k+1

d−k+1 . ut

3 Large Subgraphs of Bounded Treewidth

We now prove a tight bound on the maximum order of an induced subgraph of
bounded treewidth in a graph of treewidth k.

Theorem 2. For all integers n and 0 ≤ t ≤ k,

αt(Gn,k) =
(

t + 1
k + 1

)
n .
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Proof. First we prove the lower bound. Let G be a graph in Gn,k. First suppose
that G is a k-tree. By definition, V (G) can be ordered (v1, v2, . . . , vn) so that
for each vertex vi, the predecessors {vj : j < i, vivj ∈ E(G)} of vi are a clique
of min{k, i − 1} vertices. Now colour G greedily in this order. That is, for i =
1, 2, . . . , n, assign to vi the minimum positive integer (a colour) not already
assigned to a neighbour of vi. Clearly k + 1 colours suffice. Let S be the union
of the t + 1 largest colour classes (monochromatic set of vertices). Thus |S| ≥
(t + 1)n/(k + 1). For each vertex vi in S, the predecessors of vi that are in S
and vi itself form a clique, and thus have pairwise distinct colours. Thus vi has
at most t predecessors in S, and they form a clique in G[S]. Hence G[S] has
treewidth at most t, and S is the desired t-set. Now suppose that G is not a
k-tree. Then G is a spanning subgraph of a k-tree G′. Thus G′ has a t-set S with
at least (t + 1)n/(k + 1) vertices. Now G[S] is a subgraph of G′[S]. Thus G[S]
also has treewidth at most t.

For the upper bound, we now show that every t-set of P k
n has at most (t +

1)n/(k + 1) vertices. First suppose that t = 0. A 0-set is an independent set.
Clearly every independent set of P k

n has at most n/(k+1) vertices. Now consider
the case of general t. Let S be a t-set of P k

n . By the above bound, P k
n [S] has an

independent set I of at least |S|/(t + 1) vertices. Now I is also an independent
set of P k

n . Thus |I| ≤ n/(k + 1). Hence |S|/(t + 1) ≤ n/(k + 1), and |S| ≤
(t + 1)n/(k + 1). ut

4 Structure of Bounded Degree Subgraphs

In this section we study the structure of the subgraph of a k-tree induced
by the vertices of bounded degree. We first prove that in a k-tree with suf-
ficiently many vertices, not all the vertices of a clique have low degree. A
clique C = (v1, v2, . . . , vk) of a graph G is said to be ordered by degree if
degG(vi) ≤ degG(vi+1) for all 1 ≤ i ≤ k − 1.

Theorem 3. Let G be a k-tree on n ≥ 2k + 1 vertices. Let (u1, u2, . . . , uq) be a
clique of G ordered by degree. Then degG(ui) ≥ k + i− 1 for all 1 ≤ i ≤ q.

Note that Theorem 3 is not true if n ≤ 2k, as the statement would imply that
a (k+1)-clique has a vertex of degree n. Thus the difficulty in an inductive prove
of Theorem 3 is the base case. Theorem 3 follows from the following stronger
result with n ≥ 2k + 1 ≥ k + q.

Lemma 2. Let G be a k-tree on n vertices. Let C = (u1, u2, . . . , uq) be a clique
of G ordered by degree. If n ≥ k + q then

degG(ui) ≥ k + i− 1, 1 ≤ i ≤ q ; (4)

otherwise n ≤ k + q − 1, and

degG(ui) ≥

{
k + i− 1 if 1 ≤ i ≤ n− k − 1 ,

n− 1 if n− k ≤ i ≤ q .
(5)



6 Prosenjit Bose, Vida Dujmović, David R. Wood

Proof. We proceed by induction on n. In the base case, G is a (k + 1)-clique,
and every vertex has degree k. The claim follows trivially. Assume the result
holds for k-trees on less than n vertices. Let C be a q-clique of a k-tree G on
n ≥ k + 2 vertices. Since every k-tree on at least k + 2 vertices has two non-
adjacent simplicial vertices [4], at least one simplicial vertex v is not in C. Since
n ≥ k + 2 and v is simplicial, the graph G1 = G \ v is a k-tree on n− 1 vertices.
Now C is a q-clique of G1. Let C = (u1, u2, . . . , uq) be ordered by degree in G1.
By induction, if n ≥ k + q + 1 then

degG1
(ui) ≥ k + i− 1, 1 ≤ i ≤ q ; (6)

otherwise n ≤ k + q, and

degG1
(ui) ≥

{
k + i− 1 if 1 ≤ i ≤ n− k − 2 ,

n− 2 if n− k − 1 ≤ i ≤ q .
(7)

First suppose that n ≥ k+q+1. Then by (6), degG(ui) ≥ degG1
(ui) ≥ k+i−1,

and (4) is satisfied. Otherwise n ≤ k + q. Let B = {un−k−1, un−k, . . . , uq}. Then
|B| ≥ 2, and by (7), every vertex in B has degree n−2 in G1. That is, each vertex
in B is adjacent to every other vertex in G1. Let X be the set of neighbours of
v. Since v is simplicial, X is a k-clique. At most one vertex of B is not in X,
as otherwise X ∪B would be a (k + 2)-clique of G1. Without loss of generality,
this exceptional vertex in B, if it exists, is un−k−1. The other vertices in B are
adjacent to one more vertex, namely v, in G than in G1. Thus degG(ui) ≥ k+i−1
for all 1 ≤ i ≤ n− k − 1, and degG(ui) = n− 1 for all n− k ≤ i ≤ q. Hence (5)
is satisfied. ut

We can now prove the main result of this section.

Theorem 4. For all integers 1 ≤ k ≤ ` ≤ 2k, and for every k-tree G on n ≥ `+2
vertices, the subgraph G` of G induced by the vertices of degree at most `, has
treewidth at most `− k.

Proof. Let C = (u1, u2, . . . , uq) be a clique of G ordered by degree. Suppose, for
the sake of contradiction, that there are at least ` − k + 2 vertices of C with
degree at most `. Let j = `− k + 2. Since C is ordered by degree, deg(uj) ≤ `.
Since n ≥ ` + 2, we have j ≤ n − k. By Lemma 2, deg(uj) ≥ k + j − 1 (unless
j = n−k, in which case deg(uj) = n−1 ≥ `+1, which is a contradiction). Hence
k+j−1 ≤ `. That is, k+(`−k+2)−1 ≤ `, a contradiction. Thus C contributes
at most `− k + 1 vertices to G`, and ω(G`) ≤ `− k + 1. Now, G` is an induced
subgraph of G, which is chordal. Thus G` is chordal. Since ω(G`) ≤ ` − k + 1,
G` has treewidth at most `− k. ut

Note the following regarding Theorem 4:

– There are graphs of treewidth k ≥ 2 for which the theorem is not true. For
example, for any p ≥ k + 1, consider the graph G consisting of a (k + 1)-
clique C and a p-vertex path with one endpoint v in C. Then G has at least
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2k + 1 vertices, has treewidth k, and every vertex of G has degree at most
k, except for v which has deg(v) = k + 1. For ` = k, G` is comprised of
two components, one a k-clique and the other a path, in which case G` has
treewidth k − 1 > `− k = 0. For k + 1 ≤ ` ≤ 2k − 1, G` = G has treewidth
k > `− k.

– The theorem is not true if k ≤ n ≤ ` + 1. For example, for any 1 ≤ k ≤
` ≤ 2k − 1, the k-tree obtained by adding ` + 1 − k vertices onto an initial
k-clique has ` + 1 vertices, maximum degree `, and treewidth k > `− k.

– The case of ` = k is the well-known fact that in a k-tree with at least k + 2
vertices, distinct simplicial vertices are not adjacent. Put another way, the
set of simplicial vertices of a k-tree with at least k + 2 vertices is a 0-set.

5 Large Subgraphs of Bounded Treewidth and Bounded
Degree

The following theorem is the main result of the paper.

Theorem 5. For all integers 0 ≤ t ≤ k, d ≥ 2k, and n ≥ 2k + 1,

αt
d(Gn,k) ≥

 d− 2k + 1

d− 3
2k + 1 + t(t+1)

2(k+1)

 (
t + 1
k + 1

)
n +

k(t + 1)

d− 3
2k + 2 + t(t+1)

2(k+1)

Proof. Let G be a graph in Gn,k with αt
d(G) = αt

d(Gn,k). A degree-d t-set of a
spanning supergraph of G is a degree-d t-set of G. Thus we can assume that G
is a k-tree.

Consider ` with k + t ≤ ` ≤ 2k. By Theorem 4, G` has treewidth at most
`− k. Since t ≤ `− k, by Theorem 2,

αt(G`) ≥
(

t + 1
`− k + 1

)
|V`(G)| .

Since ` ≤ d, αt(G`) ≤ αt
d(G), which implies that

|V`(G)| ≤
(

`− k + 1
t + 1

)
αt

d(G) . (8)

Now, G has kn − 1
2k(k + 1) edges and minimum degree k. Let ni be the

number of vertices of G with degree exactly i. Thus,∑
i≥k

i · ni = 2|E(G)| = 2kn− k(k + 1) = −k(k + 1) +
∑
i≥k

2k · ni .

Thus,

∑
i≥2k+1

(i− 2k)ni = −k(k + 1) +
2k−1∑
i=k

(2k − i)ni = −k(k + 1) +
2k−1∑
i=k

|Vi(G)| ,
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and

∑
i≥2k+1

(i− 2k)ni = −k(k + 1) +
k+t−1∑

i=k

|Vi(G)| +
2k−1∑
i=k+t

|Vi(G)| .

By (8),

∑
i≥2k+1

(i− 2k)ni ≤ −k(k + 1) + t · |Vk+t(G)| +
2k−1∑
i=k+t

(i− k + 1) · αt
d(G)

t + 1

≤ −k(k + 1) + t · αt
d(G) +

αt
d(G)

t + 1

k∑
i=t+1

i

= −k(k + 1) + αt
d(G)

(
t +

1
t + 1

(
k(k + 1)− t(t + 1)

2

))
= −k(k + 1) + αt

d(G)
(

t(t + 1) + k(k + 1)
2(t + 1)

)
.

Since d ≥ 2k,

−k(k+1)+ αt
d(G)

(
t(t + 1) + k(k + 1)

2(t + 1)

)
≥

∑
i≥d+1

(i−2k)ni ≥ (d−2k+1)
∑

i≥d+1

ni .

Hence,

|Vd(G)| = n−
∑

i≥d+1

ni ≥ n +
k(k + 1)

d− 2k + 1
− αt

d(G)
(

t(t + 1) + k(k + 1)
2(t + 1)(d− 2k + 1)

)
.

By Theorem 2,

αt
d(G) = αt(Gd)

≥ t + 1
k + 1

|Vd(G)|

≥ (t + 1)n
k + 1

+
k(t + 1)

d− 2k + 1
− αt

d(G)
(

t(t + 1) + k(k + 1)
2(k + 1)(d− 2k + 1)

)
.

It follows that

αt
d(G) ≥ (d− 2k + 1)(t + 1)n + k(k + 1)(t + 1)

(d− 3
2k + 1)(k + 1) + 1

2 t(t + 1)
.

The result follows. ut

A number of notes regarding Theorem 5 are in order:

– Theorem 5 with t = k is equivalent to the lower bound in Theorem 1.



Induced Subgraphs of Bounded Degree and Bounded Treewidth 9

– For d < 2k, no result like Theorem 5 is possible, since αt
d(P

k
n ) = 2(t + 1).

– The proof of Theorem 5 is similar to a strategy developed by Biedl and
Wilkinson [1] for finding bounded degree independent sets in planar graphs.

We now prove an existential upper bound on the cardinality of a degree-d
t-set.

Theorem 6. For all integers k ≥ 1 and d ≥ 2k− 1 such that 2(d− 2k + 1) ≡ 0
(mod k(k+1)), there are infinitely many values of n, such that for all 0 ≤ t < k,

αt
d(Gn,k) ≤

(
d− 2k + 1
d− 3

2k + 1

) (
t + 1
k + 1

)
n +

(k − 1)(t + 1)(d− 2k + 1) + k(t + 1)(k + 1)
(d− 3

2k + 1)(k + 1)
.

Proof. Our construction employs the following operation. Let G be a k-tree con-
taining an ordered k-clique C = (v1, v2, . . . , vk). A block at C consists of k+1 new
vertices {x1, x2, . . . , xk+1} where x1 is added onto the k-clique {v1, v2, . . . , vk};
x2 is added onto the k-clique {v1, v2, . . . , vk−1, x1}; x3 is added onto the k-clique
{v1, v2, . . . , vk−2, x1, x2}; and so on, up to xk+1 which is added onto the k-clique
{x1, x2, . . . , xk}. Clearly the graph obtained by adding a block to a k-clique of
a k-tree is also a k-tree

Our graph is parameterised by the positive integer n0 ≥ 2k + 3. Initially let
G be the k-th power of a path (v1, v2, . . . , vn0). Note that any k + 1 consecutive
vertices in the path form a clique. Let r be the non-negative integer such that
2(d − 2k + 1) = rk(k + 1). Add r blocks to G at (vi, vi+1, . . . , vi+k−1) for each
3 ≤ i ≤ n0 − k − 1, as illustrated in Figure 2.

v
1

v
2

v
3 � � �

v
k
+
2

v
n
0

v
n
0
−

1

v
n
0
−

2
� � �

v
n
0
−

k
−

1

Fig. 2. The graph G with k = 3 and d = 11 (and thus r = 1).

G is a k-tree with n = n0 + r(k + 1)(n0 − (k + 3)) vertices. Let S be a
maximum degree-d t-set of G. Consider a vertex vi for k + 2 ≤ i ≤ n0 − k − 1.
Since n0 ≥ 2k + 3 there is such a vertex. The degree of vi is

2k + r
k∑

i=1

i = 2k + 1
2rk(k + 1) = d + 1 .
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Thus vi 6∈ S. Since each block {x1, x2, . . . , xk+1} is a clique, and treewidth-t
graphs have no (t + 2)-clique, at most t + 1 vertices from each block are in S.
Similarly, since {v1, v2, . . . , vk+1} and {vn0−k, vn0−k+1, . . . , vn0} are cliques, at
most t + 1 vertices from each of these sets are in S. Thus

αt
d(Gn,k) ≤ αt

d(G) = |S| ≤ (t + 1)
(
r(n0 − (k + 3)) + 2

)
. (9)

Substituting the equality n0 = n+r(k+1)(k+3)
1+r(k+1) into (9),

αt
d(Gn,k)
t + 1

≤ r(n + k − 1) + 2
1 + r(k + 1)

. (10)

The claimed bound on αt
d(Gn,k) follows by substituting the equality r = 2(d−2k+1)

k(k+1)

into (10). Observe that n is a function of n0 and n0 is independent of d. Thus
there are infinitely many values of n for each value of d. ut

6 Bounded Degree Independent Sets

Intuitively, one would expect that a maximum independent set would not have
vertices v of high degree, as this would prevent the many neighbours of v from
being in the independent set. In this section, we explore the accuracy of this
intuition in the case of k-trees. Recall that αd(G) is the maximum cardinality of
a degree-d independent set in a graph G.

Motivated by applications in computational geometry, the previously known
results regarding bounded degree independent sets have been for planar graphs
[6, 5, 8, 1]. The best results were obtained by Biedl and Wilkinson [1], who proved
tight bounds (up to an additive constant) on αd(G) for planar G with d ≤ 15.
For d ≥ 16 there is a gap in the bounds.

Theorem 2 with t = 0 proves that every n-vertex graph G with treewidth
k has α(G) ≥ n/(k + 1), and that this bound is tight for P k

n . Theorem 5 with
t = 0 gives the following lower bound on the size of a degree-d independent set
in a graph of treewidth k (for all k ≥ 1 and d ≥ 2k):

αd(Gn,k) ≥
(

d− 2k + 1
d− 3

2k + 1

) (
n

k + 1

)
+

k

d− 3
2k + 1

.

Note that such a bound is not possible for d < 2k since αd(P k
n ) = 2 for d < 2k.

Theorem 6 proves the corresponding upper bound. In particular, for all k ≥ 1,
there are infinitely many values of d, and for each such d, there are infinitely
many values of n for which

αd(Gn,k) ≤
(

d− 2k + 1
d− 3

2k + 1

) (
n

k + 1

)
+

(k − 1)(d− 2k + 1) + k(k + 1)
(d− 3

2k + 1)(k + 1)
.

These lower and upper bounds are tight. In fact, they differ by at most one. We
conclude that

lim
n→∞

lim
d→∞

αd(Gn,k)
n

=
d− 2k + 1

(d− 3
2k + 1)(k + 1)

.
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6.1 Trees and Interval Graphs

Gn,1 is precisely the family of n-vertex forests. Observe that Theorems 5 and 6
with k = 1 and t = 0 prove that for all d ≥ 1,

αd(Gn,1) =
(d− 1)n + 2

2d− 1
.

A tree T for which αd(T ) = (d−1)n+2
2d−1 is called αd-extremal. We omit the proof

of the following characterisation of the αd-extremal trees. A tree is d-regular if
every vertex has degree 1 or d, and there is at least one vertex of degree d.

Theorem 7. Let d be a positive integer. A tree T on n ≥ 5 vertices is αd-
extremal if and only if T is obtained from a (d + 1)-regular tree by subdividing
every leaf-edge once.

A graph G is an interval graph if one can assign to each vertex v ∈ V (G)
a closed interval [Lv, Rv] ⊆ R such that vw ∈ E(G) if and only if [Lv, Rv] ∩
[Lw, Rw] 6= ∅. An interval graph G has tree-width equal to ω(G) + 1. (In fact, it
has path-width equal to ω(G)+1.) Thus the previous results of this paper apply
to interval graphs. However, for bounded degree independent sets in interval
graphs, we can say much more, as we show in this section. In an interval graph, it
is well known that we can assume that the endpoints of the intervals are distinct.
We say a vertex w is dominated by a vertex v if L(v) < L(w) < R(w) < R(v).

Lemma 3. Let G be an interval graph with ω(G) ≤ k + 1. Suppose G has a
vertex v with deg(v) ≥ 2k + 1. Then there is a vertex w that is dominated by v
and deg(w) ≤ 2k − 1.

Proof. For each vertex y ∈ V (G), let A(y) = {x ∈ V (G) : L(x) < L(y) < R(x)}
and B(y) = {x ∈ V (G) : L(x) < R(y) < R(x)}. Observe that x is dominated by
y if and only if xy ∈ E(G) but x 6∈ A(y) ∪ B(y). Also |A(y)| ≤ k as otherwise
A(y)∪{y} would be a clique of at least k+2 vertices. Similarly |B(y)| ≤ k. Thus
|A(y) ∪B(y)| ≤ 2k.

Now consider the given vertex v. Since deg(v) ≥ 2k + 1, v has a neighbour
u 6∈ A(v)∪B(v). Thus u is dominated by v. Let w be a vertex with the shortest
interval that is dominated by v. That is, if u and w are dominated by v, then
R(w)− L(w) ≤ R(u)− L(u). Thus w does not dominate any vertex, and every
neighbour of w is in A(w) ∪ B(w). Now |A(w)| ≤ k, |B(w)| ≤ k, and v ∈
A(w) ∩B(w). Thus deg(w) ≤ 2k − 1. ut

Note that Lemma 3 with k = 1 is the obvious statement that a vertex of
degree at least three in a caterpillar is adjacent to a leaf.

Theorem 8. Every interval graph G with ω(G) ≤ k + 1 has a degree-2k maxi-
mum independent set. That is, α2k(G) = α(G).
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Proof. Let I be a maximum independent set of G. If I contains a vertex v
with deg(v) ≥ 2k + 1, apply Lemma 3 to obtain a vertex w dominated by
v such that deg(w) ≤ 2k − 1. Replace v by w in I. The obtained set is still
independent, since every neighbour of w is also adjacent to v, and is thus not
in I. Apply this step repeatedly until every vertex in I has degree at most 2k.
Thus α2k(G) ≥ |I| = α(G). By definition, α2k(G) ≤ α(G). ut

The bound of 2k in Theorem 8 is best possible, since P k
n is an interval graph

with ω(G) ≤ k + 1 and only 2k vertices of degree at most 2k− 1. Thus α(P k
n ) =

dn/(k + 1)e � α2k−1(P k
n ).
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