Skip to main content

A DPA Countermeasure by Randomized Frobenius Decomposition

  • Conference paper
Information Security Applications (WISA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3786))

Included in the following conference series:

  • 878 Accesses

Abstract

There have been various methods to prevent DPA (Differential Power Analysis) on elliptic curve cryptosystems. As for the curves with efficient endomorphisms, Hasan suggested several countermeasures on anomalous binary curves, and Ciet, Quisquater and Sica proposed a countermeasure on GLV curves. Ciet et al.’s method is based on random decomposition of a scalar, and it is a two-dimensional generalization of Coron’s method. Hasan’s and Ciet et al.’s countermeasures are applied only to a small class of elliptic curves.

In this paper, we enlarge the class of DPA-resistant curves by proposing a DPA countermeasure applicable to any curve where the Frobenius expansion method can be used. Our analysis shows that our countermeasure can produce a probability of collision around O (2− 20) with only 15.4–34.0% extra computation for scalar multiplications on various practical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–428. Springer, Heidelberg (1986)

    Google Scholar 

  3. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  4. Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11, 219–234 (1998)

    Article  MATH  Google Scholar 

  5. Cheon, J., Park, S., Kim, D.: Two efficient algorithms for arithmetic of elliptic curves using Frobenius map. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 195–202. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Smart, N.: Elliptic curve cryptosystems over small fields of odd characteristic. Journal of Cryptology 12, 141–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Park, Y.H., Jeong, S., Kim, C., Lim, J.: An alternate decomposition of an integer for faster point multiplication on certain elliptic curves. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Sica, F., Ciet, M., Quisquater, J.J.: Analysis of the Gallant-Lambert-Vanstone Method Based on Efficient Endomorphisms: Elliptic and Hyperelliptic Curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 388–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Park, T.J., Lee, M.K., Park, K.: New frobenius expansions for elliptic curves with efficient endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 264–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Park, T.J., Lee, M.K., Kim, E., Park, K.: A general expansion method using efficient endomorphisms. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 112–126. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  14. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography-an algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Liardet, P.Y., Smart, N.: Preventing SPA/DPA in ECC systems using the Jacobi form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 391–401. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Möller, B.: Securing elliptic curve point multiplication against Side-Channel Attacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Hasan, M.: Power analysis attacks and algorithmic approaches to their countermeasures for Koblitz curve cryptosystems. IEEE Transactions on Computers 50, 1071–1083 (2001); A preliminary version was presented at CHES 2000, pp. 94–109 (2000)

    Google Scholar 

  20. Ciet, M., Quisquater, J.J., Sica, F.: Preventing differential analysis in GLV elliptic curve scalar multiplication. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 540–550. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to a finite field. IEEE Trans. Inform. Theory 39, 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Solinas, J.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)

    Google Scholar 

  23. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19, 195–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm combining Frobenius map and table reference to adapt to higher characteristic. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 176–189. Springer, Heidelberg (1999)

    Google Scholar 

  25. Kobayashi, T.: Base-φ method for elliptic curves over OEF. IEICE Trans. Fundamentals E83-A, 679–686 (2000)

    Google Scholar 

  26. Park, T.J., Lee, M.K., Park, K., Chung, K.: Speeding up scalar multiplication in genus 2 hyperelliptic curves with efficient endomorphisms. ETRI Journal 27(5) (to appear, 2005)

    Google Scholar 

  27. Solinas, J.: Low-weight binary representations for pairs of integers, Technical Report CORR 2001-41, CACR (2001), Available at: http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, TJ., Lee, MK., Hong, D., Chung, K. (2006). A DPA Countermeasure by Randomized Frobenius Decomposition. In: Song, JS., Kwon, T., Yung, M. (eds) Information Security Applications. WISA 2005. Lecture Notes in Computer Science, vol 3786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604938_21

Download citation

  • DOI: https://doi.org/10.1007/11604938_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31012-9

  • Online ISBN: 978-3-540-33153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics