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Abstract. It is known that Linear Temporal Logic (LTL) has the same
expressive power as alternating 1-weak automata (A1W automata, also
called alternating linear automata or very weak alternating automata).
A translation of LTL formulae into a language equivalent A1W automata
has been introduced in [1]. The inverse translation has been developed
independently in [2] and [3]. In the first part of the paper we show that
the latter translation wastes temporal operators and we propose some
improvements of this translation. The second part of the paper draws a
direct connection between fragments of the Until-Release hierarchy [4]
and alternation depth of nonaccepting and accepting states in A1W
automata. We also indicate some corollaries and applications of these
results.

1 Introduction

The study of connections between temporal logics and automata proved to be
very fruitful. The best example is the translation of linear temporal logic (LTL)
formulae into nondeterministic Büchi automata [5, 6], which is one of the cor-
nerstones of the automata-based model checking of LTL properties [7].

It is known for a long time that nondeterministic Büchi automata are more
expressive than LTL [8]. Only a few years ago, the alternating 1-weak Büchi
automata (or A1W automata for short, also known as alternating linear automata
or very weak alternating automata) have been identified as the type of automata
with the same expressive power as LTL. Muller, Saoudi, and Schupp [1] have
introduced a translation of LTL formulae into equivalent A1W automata. The
translation of A1W automata into equivalent LTL formulae has been presented
independently by Rohde [2], and Löding and Thomas [3].

The LTL→A1W translation has been recently used to build new and more
efficient algorithms translating LTL formulae into nondeterministic Büchi au-
tomata [9, 10]. Another application of this translation arises in connection with
verification algorithms working directly on alternating automata (for pointers
see [11]). The growing popularity of A1W automata is hindered by the fact that
it is often hard to see what language is recognized by an automaton. Here is the
point where the A1W→LTL translation can help as LTL formulae are easy to un-
derstand, especially if they contain only few occurrences of temporal operators.
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Unfortunately, the “standard” A1W→LTL translation does not provide optimal
results as it wastes next operators. For example, the automaton corresponding
to the formula a U (b∧(b U c)) is translated into formula a U (b∧X(b U c)). In this
paper we propose an improved A1W→LTL translation reducing the number of
next operators in the resulting formula. Our improved translation also prefers
the use of less expressive and easy-to-read unary temporal operators eventually
or globally instead of binary operator until. We prove that for an A1W automa-
ton produced by the standard translation of an LTL formula ϕ our translation
provides a formula with the same (or even lower) nesting depths of until, next,
and eventually operators comparing to these nesting depths in ϕ.

The improved translation also allows to define classes of A1W automata with
the same expressive power as LTL fragments with temporal operators until, next,
and eventually, where the nesting depth of each operator can be bounded. Sev-
eral interesting and previously studied LTL fragments fit into this general pattern,
namely fragments of the until hierarchy [12, 13], fragments without eventually op-
erator andwithboundednesting depth(s) ofnext or until or both operators studied
in [14, 15], and the fragment without until operator known as restricted LTL [16].

The second part of this paper presents connections between A1W automata
and some LTL fragments that are not covered by the pattern above, namely
fragments of the until-release (alternating) hierarchy [4] and fragments of the
hierarchy of temporal properties [17, 18]. In particular, we show that alternation
of until and release operators in a formula corresponds to alternation of nonac-
cepting and accepting states in an equivalent A1W automaton. Some corollaries
of this correspondence are presented as well.

The paper is structured as follows. In Section 2 we recall the definitions of
LTL and alternating 1-weak automata together with standard translations be-
tween these formalisms. Section 3 provides an improved version of A1W→LTL
translation and indicates some applications. Section 4 is devoted to the connec-
tion between A1W automata and the until-release hierarchy. Section 5 sums up
presented results and mentions some topics for future research. All proofs are
omitted due to the space limitations; they can be found in the full version of
this paper [19].

2 Preliminaries

2.1 Linear Temporal Logic (LTL)

The syntax of LTL is given by the abstract syntax equation

ϕ ::= � | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | ϕ1 U ϕ2,

where � stands for true and a ranges over a countable set Λ = {a, b, c, . . .} of
letters. We also use ⊥ to abbreviate ¬�, Gϕ to abbreviate ¬F¬ϕ, and ϕR ψ
to abbreviate ¬(¬ϕU ¬ψ). The temporal operators X, F, U, G, R are called next,
eventually, until, globally, and release, respectively. Let us note that Fϕ can be
equivalently defined as an abbreviation for � Uϕ.
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We define the semantics of LTL in terms of languages over infinite words.
An alphabet is a finite set Σ ⊆ Λ. A word over alphabet Σ is an infinite sequence
w = w(0)w(1)w(2) . . . ∈ Σω of letters from Σ. For every i ∈ N0, by wi we denote
the suffix of w of the form w(i)w(i + 1)w(i + 2) . . ..

The validity of an LTL formula ϕ for w ∈ Σω is defined as follows:

w |= �
w |= a iff a = w(0)
w |= ¬ϕ iff w �|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 ∧ w |= ϕ2
w |= Xϕ iff w1 |= ϕ
w |= Fϕ iff ∃i ∈ N0 : wi |= ϕ
w |= ϕ1 U ϕ2 iff ∃i ∈ N0 : wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1

Given an alphabet Σ, an LTL formula ϕ defines the language LΣ(ϕ) = {w ∈
Σω | w |= ϕ}.

Now we define a notation for LTL fragments given by bounds on nesting
depths of temporal operators. Let O ∈ {X, F, U} be a temporal operator. The
nesting depth of O in a formula ϕ, written O-depth(ϕ), is defined in the following
way, where Z and Z ′ range over unary and binary (temporal as well as boolean)
operators respectively.

O-depth(�) = 0
O-depth(a) = 0

O-depth(Zϕ) =
{

O-depth(ϕ) + 1 if Z = O
O-depth(ϕ) otherwise

O-depth(ϕ1Z
′ ϕ2) =

{
max{O-depth(ϕ1), O-depth(ϕ2)} + 1 if Z ′ = O
max{O-depth(ϕ1), O-depth(ϕ2)} otherwise

For all m, n, k ∈ N0 ∪ {∞}, we set

LTL(Um, Xn, Fk) = {ϕ | U-depth(ϕ) ≤ m, X-depth(ϕ) ≤ n, F-depth(ϕ) ≤ k}.

We abuse this fragment notation by omitting the upper indices equal to ∞.
Moreover, we usually omit the whole operator if its index is 0. For example, by
LTL(Xn, F) we mean the fragment LTL(U0, Xn, F∞).

2.2 Alternating 1-Weak Büchi Automata (A1W)

The transition function of an alternating automaton assigns to each state and
letter a positive boolean formula over states. The set of positive boolean formulae
over set Q (denoted B+(Q)) consists of formulae � (true), ⊥ (false), all elements
of Q, and boolean combinations over Q built with ∧ and ∨. A subset S of Q is
a model of ϕ ∈ B+(Q) iff ϕ is satisfied by the valuation assigning true just to
states in S. A set S is a minimal model of ϕ (denoted S |= ϕ) iff S is a model
of ϕ and no proper subset of S is a model of ϕ.

An alternating Büchi automaton is a tuple A = (Σ, Q, q0, δ, F ), where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ →
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B+(Q) is a transition function, and F ⊆ Q is a set of accepting states. By A(p)
we denote the automaton A with initial state p ∈ Q instead of q0.

A run of an alternating automaton is a (potentially infinite) tree. A tree is
a set T ⊆ N

∗
0 such that if xc ∈ T , where x ∈ N

∗
0 and c ∈ N0, then also x ∈ T and

xc′ ∈ T for all 0 ≤ c′ < c. A Q-labeled tree is a pair (T, r) where T is a tree and
r : T → Q is a labeling function. A run of an automaton A = (Σ, Q, q0, δ, F )
over word w ∈ Σω is a Q-labeled tree (T, r) such that r(ε) = q0 and for each
x ∈ T the set S = {r(xc) | c ∈ N0, xc ∈ T } satisfies S |= δ(r(x), w(|x|)). A run
(T, r) is accepting iff for each infinite path π in T it holds that Inf (π) ∩ F �= ∅,
where Inf (π) is the set of all labels (i.e. states) appearing infinitely often on π.
An automaton A accepts a word w ∈ Σω iff there exists an accepting run of A
over w. A language of all words accepted by an automaton A is denoted by L(A).

Let Succ(p) denote the set Succ(p) = {q | ∃a ∈ Σ, S ⊆ Q : S ∪ {q} |= δ(p, a)}
of all possible successors of p, and Succ′(p) = Succ(p) � {p}. An automaton
is called 1-weak if there exists an ordering < on the set of states Q such that
q ∈ Succ′(p) implies q < p. In the following we use A1W automaton or simply
automaton meaning ‘alternating 1-weak Büchi automaton’. Further, instead of
S |= δ(a, p) we write p

a→ S and say that an automaton has a transition leading
from p to S under a. A state p of an automaton has a loop whenever p ∈ Succ(p).

p

q1 q2

q3

a

a

a

b

b

b
c

c

c

Fig. 1. The automaton accepting the language a∗b{a, b, c}∗cω

An A1W automaton A = (Σ, Q, q0, δ, F ) can be drawn as a graph; nodes are
the states and every transition p

a→ S is depicted as a branching edge labelled
with a and leading from node p to the nodes in S. Edges that are not leading to
any node correspond to the cases when S is the empty set. Initial and accept-
ing states are indicated in the standard way. For example, Figure 1 depicts an
automaton accepting the language a∗b{a, b, c}∗cω.

2.3 LTL→A1W Translation [1, 11]

In this subsection we treat every (sub)formula of the form Fϕ as an abbreviation
for � Uϕ.

Let ϕ be an LTL formula and Σ be an alphabet. The formula can be translated
into an automaton A satisfying L(A) = LΣ(ϕ), where A = (Σ, Q, qϕ, δ, F ) and
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Fig. 2. Part of an automaton translated into the formula ϕp = (a ∧ Xϕq)U (b ∧ Xϕr)

– the states Q = {qψ, q¬ψ | ψ is a subformula of ϕ} correspond to the subfor-
mulae of ϕ and their negations,

– the transition function δ is defined inductively as:

δ(q�, a) = �
δ(qa, b) = � if a = b, δ(qa, b) = ⊥ otherwise
δ(q¬ψ, a) = δ(qψ, a)
δ(qψ∧ρ, a) = δ(qψ, a) ∧ δ(qρ, a)
δ(qXψ, a) = qψ

δ(qψUρ, a) = δ(qρ, a) ∨ (δ(qψ , a) ∧ qψUρ)

where α denotes the positive boolean formula dual to α defined by induction
on the structure of α as:

� = ⊥ q¬ψ = qψ β ∧ γ = β ∧ γ

⊥ = � qψ = q¬ψ β ∨ γ = β ∨ γ

– the set of accepting states is F = {q¬(ψUρ) | ψ U ρ is a subformula of ϕ}.

We use the notation AΣ(ϕ) for the automaton given by the translation of an
LTL formula ϕ with respect to an alphabet Σ.

For example, the translation applied on the formula ϕ = (a U b) ∧ FGc and
the alphabet Σ = {a, b, c} produces the automaton depicted on Figure 1, where
p, q1, q2, q3 stand for qϕ, qaUb, qFGc, qGc, respectively.

2.4 A1W→LTL Translation [2, 3]

Let A = (Σ, Q, q0, δ, F ) be an A1W automaton. For each p ∈ Q we define an LTL
formula ϕp such that LΣ(ϕp) = L(A(p)) (in particular LΣ(ϕq0 ) = L(A)). The
definition proceeds by induction respecting the ordering of states; the formula
ϕp employs formulae of the form ϕq where q ∈ Succ′(p). This is the point where
the 1-weakness of the automaton is used. To illustrate the inductive step of
the translation, let us consider the situation depicted on Figure 2. The formula
corresponding to state p is ϕp = (a ∧ Xϕq)U (b ∧ Xϕr).

Before we give a formal definition of ϕp, we introduce some auxiliary formulae.
Let a ∈ Σ be a letter and S ⊆ Q be a set of states.

θ(a, S) = a ∧
∧
q∈S

Xϕq αp =
∨

p
a→ S

p ∈ S

θ(a, S � {p}) βp =
∨

p
a→ S

p 	∈ S

θ(a, S)
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c

Fig. 3. An automaton for the formula aU (b ∧ (bU c)) and alphabet {a, b, c}

The formula θ(a, S) represent a situation where the automaton makes a transition
under a into the set of states S. Formulae αp and βp correspond to all transitions
leading from state p; αp covers transitions with a loop while βp covers the others.
The definition of ϕp then depends on whether p is an accepting state or not.

ϕp =

{
αp U βp if p �∈ F

(αp U βp) ∨ Gαp if p ∈ F

Given an automaton A with an initial state q0, we set ϕ(A) = ϕq0 .

3 Improved A1W→LTL Translation

The weak point of the A1W→LTL translation presented above is that for each
successor q ∈ Succ′(p) of a state p the formula ϕp contains a subformula Xϕq even
if the X operator is not needed. This is illustrated by the automaton A in Figure 3
produced by translating formula a U (b∧(b U c)) with respect to alphabet {a, b, c}.
The reverse translation provides an equivalent formula ϕ(A) = a U (b∧X(b U c)).

Let p
a→ S be a transition and X ⊆ S. We now formulate conditions that

are sufficient to omit the X operator in front of ϕq (for every q ∈ X) in the
subformula of ϕp corresponding to the transition p

a→ S.

Definition 1. Let p
a→ S be a transition of an automaton A. A set X ⊆ S �{p}

is said to be X-free for p
a→ S if the following conditions hold.

1. For each q ∈ X there is S′
q ⊆ S such that q

a→ S′
q.

2. Let Y ⊆ X and for each q ∈ Y let S′
q ⊆ Q be a set satisfying q

a→ S′
q and

q �∈ S′
q. Then there exists a set S′′ ⊆ (S � Y ) ∪

⋃
q∈Y S′

q satisfying p
a→ S′′.

Figure 4 illustrates the conditions for X-freeness. Please note that it can be
the case that p ∈ S. Further, in the first condition it can be the case that q ∈ S′

q.
It is easy to see that the empty set is X-free for every transition. Further,

every subset of an X-free set for a transition is X-free for the transition as well.
On the other hand, Figure 5 demonstrates that a union of two X-free sets need
not be X-free.

Let Xfree be an arbitrary but fixed function assigning to each transition p
a→ S

a set that is X-free for p
a→ S. We now introduce an improved A1W→LTL trans-

lation. Roughly speaking, the translation omits the X operators in front of sub-
formulae which correspond to the states in X-free sets given by the function Xfree.
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Fig. 4. The conditions for X-freeness
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Fig. 5. The sets {q1}, {q2} are X-free for p
a→ {q1, q2} while the set {q1, q2} is not

The improved A1W→LTL translation exhibits similar structure as the origi-
nal one. Instead of formulae of the form θ(a, S) representing a transition under a
leading from an arbitrary state p to S, we define a specialized formula θ′p(a, S)
for each transition p

a→ S.

θ′p(a, S) = a ∧
∧

q ∈ S � Xfree(p a→ S)
q 	= p

Xϕ′
q ∧

∧
q ∈Xfree(p a→S)

ϕ′
q
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α′
p =

∨
p

a→ S
p ∈ S

θ′p(a, S) β′
p =

∨
p

a→ S
p 	∈ S

θ′p(a, S)

In the following definition of a formula ϕ′
p we identify some cases when U can be

replaced by “weaker” operators F or G. To this end we define two special types of
states. A state p is of the F-type if there is a transition p

a→ {p} for every a ∈ Σ.
A state p is of the G-type if every transition of the form p

a→ S satisfies p ∈ S.

ϕ′
p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β′
p if p �∈ Succ(p)

⊥ if p ∈ Succ(p), p �∈ F, p is of G-type

Fβ′
p if p ∈ Succ(p), p �∈ F, p is of F-type and not of G-type

α′
p Uβ′

p if p ∈ Succ(p), p �∈ F, p is neither of F-type nor of G-type

� if p ∈ Succ(p), p ∈ F, p is of F-type

Gα′
p if p ∈ Succ(p), p ∈ F, p is of G-type and not of F-type

(α′
p Uβ′

p) ∨ Gα′
p if p ∈ Succ(p), p ∈ F, p is neither of F-type nor of G-type

By ϕXfree(A) we denote the formula ϕ′
q0

given by the improved translation using
the function Xfree. The following Theorems 1 and 2 say that the translation is
correct and that it does not waste temporal operators.

Theorem 1. Let A be an A1W automaton over alphabet Σ. Let Xfree be a func-
tion assigning an X-free set to each transition of A. Then L(A) = LΣ(ϕXfree(A)).

Theorem 1 is proved by induction with respect to ordering of states in the
automaton A. The theorem is a direct corollary of the following lemma.

Lemma 1. Let p
a→ S be a transition of an A1W automaton A such that for

each q ∈ Succ′(p) the equivalence ϕq ⇐⇒ ϕ′
q holds. Then θ(a, S � {p}) =⇒

θ′p(a, S). Further, θ′p(a, S) =⇒ βp ∨ αp. Moreover, if p �∈ S then θ′p(a, S) =⇒ βp.

Theorem 2. For each formula ϕ ∈ LTL(Um, Xn, Fk) and each alphabet Σ there
exists a function Xfree such that ϕXfree(AΣ(ϕ)) ∈ LTL(Um, Xn, Fk).

The function Xfree can be effectively constructed from the transition relation
of the automaton. For further details about the construction and for full proofs
see [19].

The improved translation enables us to study relations between fragments of
the form LTL(Um, Xn, Fk) and classes of A1W automata. In particular, we can
provide alternative definitions of language classes corresponding to some previ-
ously studied LTL fragments, namely fragments of the form LTL(Uk, X, F) con-
stituting the so-called until hierarchy [12, 13], fragments of the form LTL(U, Xn),
LTL(Um, X), or LTL(Um, Xn) studied in [14, 15], and the fragments LTL(X, F)
also called restricted LTL [16]. Due to the lack of space we mention only the
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alternative definition of languages definable in LTL(X, F). The other cases are a
bit more complicated and can be found in [19].

Lemma 2. A language is definable by a formula of LTL(X, F) if and only if
there exists an A1W automaton recognizing the language such that every state
with a loop is of F-type or G-type.

4 Until-Release Hierarchy and A1W Automata

The until-release hierarchy of LTL formulae has been introduced in [4]. It is
based on alternation depth of U and R operators. Therefore it is also called
alternating hierarchy. This hierarchy has a strong connection to the hierarchy of
temporal properties introduced by Manna and Pnueli [17, 18]. Moreover, there
is a relation between classes of until-release hierarchy and complexity of their
model checking problem (see [4]).

Definition 2. The classes URi, RUi of the Until-Release hierarchy are defined
inductively.

– The classes UR0 and RU0 are both identical to LTL(X).
– The class URi+1 is the least set containing RUi and closed under the appli-

cation of operators ∧, ∨, X, and U.
– The class RUi+1 is the least set containing URi and closed under the appli-

cation of operators ∧, ∨, X, and R.

Let us note that the hierarchy collapses on the third level with respect to its
expressive power. More precisely, each language is definable by LTL if and only if
it is definable by a positive boolean combination of UR2 and RU2 formulae. These
formulae are contained in UR3 as well as in RU3. In the following we identify
a fragment of the alternating hierarchy with the set of languages defined by
formulae of this fragment.

We now define the alternation depth of nonaccepting and accepting states in
the graph of an A1W automaton. We also define classes of languages recognized
by automata with a given alternation depth.

Definition 3. Let A = (Σ, Q, q0, δ, F ) be an A1W automaton. For each i ∈ N0
we inductively define sets of states σi and πi as follows.

– σ0 is the smallest set of states satisfying
• {p | p �∈ F and Succ(p) = ∅} ⊆ σ0 and
• if p �∈ F and Succ(p) ⊆ σ0 then p ∈ σ0,

– π0 is the smallest set of states satisfying
• {p | p ∈ F and Succ(p) = ∅} ⊆ π0 and
• if p ∈ F and Succ(p) ⊆ π0 then p ∈ π0,

– σi+1 is the smallest set of states satisfying
• σi ∪ πi ⊆ σi+1 and
• if p �∈ F and Succ′(p) ⊆ σi+1 then p ∈ σi+1,
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– πi+1 is the smallest set of states satisfying
• σi ∪ πi ⊆ πi+1 and
• if p ∈ F and Succ′(p) ⊆ πi+1 then p ∈ πi+1.

We also define functions σA, πA : Q −→ N0 as

σA(p) = min{i | p ∈ σi} and πA(p) = min{i | p ∈ πi}.

Finally, for each i ∈ N0 we define sets Σi and Πi as

Σi = {L(A) | A = (Σ, Q, q0, δ, F ) is an A1W automaton and σA(q0) ≤ i},
Πi = {L(A) | A = (Σ, Q, q0, δ, F ) is an A1W automaton and πA(q0) ≤ i}.

The following theorem says that a language is definable by a formula of URi

if and only if it is recognized by an A1W automaton with alternation depth
of nonaccepting and accepting states at most i. An analogous statement holds
for RUi and alternation depth of accepting and nonaccepting states. It is worth
mentioning that the proof of the following theorem is not as simple as one can
think when looking at the definition of a formula ϕp in the standard A1W→LTL
translation. See [19] for details.

Theorem 3. For each i ∈ N0 it holds that URi = Σi and RUi = Πi.

The theorem allows us to transform the results proved for the until-release hi-
erarchy in [4] into statements about our hierarchy of Σi and Πi classes. This is
exemplified by the two following corollaries. For definitions of language classes
mentioned in the latter corollary (safety, guarantee, obligation,. . . ) we refer
to [17, 18].

Corollary 1. The hierarchy of Σi and Πi classes collapses on the third level,
i.e. Σ3 = Π3 = Σi = Πi for all i > 3.

Corollary 2. A language definable in LTL is in safety, guarantee, obligation,
response, persistence, or reactivity class iff it is in Π1, Σ1, Π2 ∩ Σ2, Π2, Σ2, or
Π3 ∩ Σ3, respectively.

5 Summary and Future Work

The paper presents two main results. The first is the improved translation of
A1W automata into LTL formulae that are language equivalent. The second
result is a new automata-based definition of classes in the until-release hierar-
chy [4]. We also provide some corollaries of these results and indicate further
applications.

Besides the presented results our research brought several topics for future
work. For example, we would like to know whether there are some more general
or/and simpler conditions for a set to be X-free (see Definition 1). Another inter-
esting question is the relation between the sizes of LTL formulae and equivalent
A1W automata. Both standard and improved A1W→LTL translations can be
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modified to produce formulae that can be represented by directed acyclic graphs
of linear size with respect to the size of the original automata. However, we con-
jecture that A1W automata can be exponentially more succinct than LTL if we
stick with the standard representation of LTL formulae.
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