
Block ciphers sensitive to Gröbner Basis Attacks

Johannes Buchmann, Andrei Pychkine, Ralf-Philipp Weinmann
{buchmann,pychkine,weinmann}@cdc.informatik.tu-darmstadt.de

Technische Universität Darmstadt

Abstract. We construct and analyze Feistel and SPN ciphers that have a sound design strategy against linear and
differential attacks but for which the encryption process can be described by very simple polynomial equations. For
a block and key size of 128 bits, we present ciphers for which practical Gröbner basis attacks can recover the full
cipher key requiring only a minimal number of plaintext/ciphertext pairs. We show how Gröbner bases for a subset
of these ciphers can be constructed with neglegible computational effort. This reduces the key–recovery problem
to a Gröbner basis conversion problem. By bounding the running time of a Gröbner basis conversion algorithm,
FGLM, we demonstrate the existence of block ciphers resistant against differential and linear cryptanalysis but
vulnerable against Gröbner basis attacks.

Keywords: secret–key cryptography, cryptanalysis, block ciphers, algebraic attacks, Gröbner bases

1 Introduction

Since the publication of Courtois’ and Pieprzyk’s XSL method [1] and Murphy and Robshaw’s embedding
of AES-128 [2], a considerable interest in algebraic attacks on block ciphers has been provoked. While
linearization based attacks on stream ciphers have been shown to be very successful, the claimed attacks on
Rijndael-128 and Serpent have thus far been highly controversial. Gröbner bases however are a proven tool
for solving polynomial systems. Cid, Murphy and Robshaw [3] recently did a first step of investigating the
viability of an algebraic attack using Gröbner bases on scaled-down versions of the AES.

The goal of this paper is to show that non-trivial iterated block ciphers with a reasonable block and
key length – in our case 128 bits – can be constructed that are resistant against linear and differential
cryptanalysis but which can be broken by computing an appropriate Gröbner basis.

To this end we present two families of ciphers, Flurry, a Feistel network and Curry, a SPN construc-
tion. For both we specify suitable parameters and give estimates on the complexity of attacks using linear
and differential cryptanalysis. We explain how to obtain polynomial equations describing the key recovery
problem and how Gröbner bases can be used to solve them. Experimental results are given for selected
examples. Finally we show how the key recovery problem for a subset of these ciphers is related to the
problem of Gröbner basis conversion.

1.1 Notation

We define the notation that we will be used throughout the rest of this paper.
All operations of the block ciphers described in this paper are carried out over a finite field F := GF (2k)

with k ∈ {8, 16, 32, 64}. We fix θ to be a generating element of F over GF (2), i.e. F := GF (2)(θ).
The internal state of our cipher consists of multiple elements of F . To refer to individual elements of the

state after the execution of a complete round transformation we use the following conventions:

– For Feistel ciphers, the internal state is represented by a vector. We use variables x
(e)
i to denote elements

of the internal state of the cipher after the eth application of the round function and variables k
(e)
i to

denote elements of the expanded key used in round e.
– For SPN ciphers, the internal state is represented by a square matrix. We denote the internal state

variables after the eth application of the round function by x
(e)
i,j and the expanded key variables by k

(e)
i,j .



We define the state of round 0 to be the initial state and call the variables of the initial state plaintext
variables. Correspondingly the variables referring to the state after the execution of the last round are called
ciphertext variables. The set of state variables of a cipher is denoted by X , the set of expanded key variables
by K. All polynomials considered are then elements of the polynomial ring R = F [X ∪ K].

A power product of variables of (X ∪ K) shall be called a term, whilst the product of a term and a
coefficient c ∈ F shall be called a monomial.

2 Description of the cipher families

In this section we give blueprints for Feistel and SPN ciphers that allow for a simple algebraic representations.
For these we present parameters sets offering high resistance against differential and linear cryptanalysis
and describe how to construct a system of polynomial equations.

2.1 The Feistel case: Flurry

We construct the family Flurry(k, m, r, f, D) of Feistel ciphers. We explain the parameters used in this
family:
– m ∈ N: the plaintext space, the ciphertext space and the cipher key space are F 2m.
– r ∈ N: the number of rounds
– f : F → F : a non-linear mapping that gives the S-Box of the round function
– D = (di,j) ∈ Fm×m: this matrix describes the linear diffusion mapping of the round function.

We set R = (r1, . . . , rm) ∈ Fm, L = (l1, . . . , lm) ∈ Fm and K = (k1, . . . , km) ∈ Fm. The round function
ρ : Fm × Fm × Fm → Fm × Fm of a Flurry cipher is then defined as:

ρ(L,R,K) = (R,G(R + K) + L)

with G : Fm × Fm → Fm being the parallel application of m S-Boxes followed by a linear transform:

G(r1, . . . , rm, k1, . . . , km) = D ×


f(r1 + k1)
f(r2 + k2)

...
f(rm + km)

 .

A plaintext (L0, R0) is encrypted into a ciphertext (Lr, Rr) by iterating the round function ρ over the
number of rounds r:

(Li, Ri) = ρ(Li−1, Ri−1,Ki−1) i = 1, 2, . . . , r − 1
(Lr, Rr) = ρ(Lr−1, Rr−1,Kr−1) + (Kr,Kr+1)

After the last round transformation, an additional key addition is performed on both halves of the state.
Analogously, using the inverse function ρ−1

ρ−1(L,R,K) = (G(L + K) + R,L)

we can decrypt a ciphertext with the following sequence of steps:

(Lr−1, Rr−1) = ρ−1(Lr + Kr, Rr + Kr+1,Kr−1)
(Li−1, Ri−1) = ρ−1(Li, Ri,Ki−1) i = r − 1, r − 2, . . . , 1

The number of F -components of a cipher key, plaintext or ciphertext is denoted by t = 2m.

2



The key schedule The key schedule is affine linear over GF (2k). We write the cipher key as a tuple of
vectors (K0,K1) ∈ Fm×Fm. Let the round keys for the first two rounds be K0,K1 and recursively compute
subsequent round keys for 2 ≤ i ≤ r + 1 as follows:

Ki = D ·KT
i−1 + Ki−2 + vi

where D is the same matrix used in the round function of the cipher and the vi are round constants:

vi = ((θ + 1)i, (θ + 1)i+1, . . . , (θ + 1)i+m−1)

2.2 The SPN case: Curry

In this section we construct a family Curry(k, m, r, f, D) of ciphers similar to Square [4]. We explain the
parameters used in this family:
– m ∈ N: the plaintext space, the ciphertext space and the cipher key space are Fm×m.
– r ∈ N: the number of rounds
– f : F → F : a bijective non-linear mapping that gives the S-Box of the round function
– D = (di,j) ∈ Fm×m: an invertible matrix used for diffusion

The round function ρ : Fm×m × Fm×m → Fm×m of a Curry cipher is defined as:

ρ(S, K) = D ·G(S + K)T

with G : Fm×m → Fm×m being the parallel application of m2 S-Boxes:

G((si,j)) = (f(si,j))

A plaintext S0 is encrypted into a ciphertext Sr by iterating the round function ρ exactly r times followed
by an additional key addition after the last round:

Si = ρ(Si−1,Ki−1) i = 1, 2, . . . , r − 1
Sr = ρ(Sr−1,Kr−1) + Kr

Analogously, using the inverse function ρ−1

ρ−1(S, K) = G−1((D−1 · S)T ) + K

we can decrypt a ciphertext with the following sequence of steps:

Sr−1 = ρ−1(Sr + Kr,Kr−1)
Si−1 = ρ−1(Si,Ki) i = r − 1, r − 2, . . . , 1

Just as for Flurry, let the number of F -components of a key, plaintext or ciphertext be denoted by t, this
time t = m2.

The key schedule For Curry the first round key is equivalent to the cipher key K0 ∈ Fm×m. Just as
for Flurry the key schedule is affine linear over GF (2k). Subsequent round keys Ki, i ≥ 1 are recursively
computed as follows:

Ki = D ·Ki−1 + Mi

where D is the same matrix used in the round function and Mi = ((aj,l)) with aj,l = θi+(j−1)m+l. The
matrices Mi are round constants.

3



2.3 Selected parameters

We will now specify suitable parameters for the S-Box function and the linear transformation. These will
be used to more thoroughly investigate instances of our cipher constructions throughout this paper. The
number of rounds shall be left unspecified for now.

The S-Box functions The only non-linear components of Flurry and Curry ciphers are the S-Boxes.
In order to obtain a cipher with good resistance against differential and linear cryptanalysis even for a low
number of rounds the S-Boxes must be chosen very carefully. Two important characteristics of a S-Box are
its differential uniformity and its nonlinearity, i.e. the distance of the S-Box function to an affine function.
These are defined as follows:

Definition 1. Let f : F → F be a mapping and

δ = max
a,b∈F

a 6=0

#{x ∈ F : f(x + a) = f(x) + b}.

Then f is called differentially δ-uniform.

In the following definition we use the map

F → GF (2)k, a =
k−1∑
i=0

(
aiθ

i
)
7→ (a0, . . . , ak−1)

to identify F with GF (2)k. For a = (a0, . . . , ak−1), b = (b0, . . . , bk−1) we set

〈a, b〉 =
k−1∑
i=0

aibi

Definition 2. The nonlinearity of a function f : F 7→ F is defined as

N (f) = min
a,b∈F

b6=0

#{x ∈ F | 〈x, a〉 6= 〈f(x), b〉}

For monomial functions as well as the multiplicative inverse over finite fields of characteristic two the
k-uniformity and the nonlinearity have been well studied in the literature [5,6,7]. We want to keep the
degree of our S-Box functions low in order to make Gröbner basis attacks feasible. Table 1 shows the S-Box
functions that we have picked.

Table 1. S-Box mappings

function mapping bijective over GF (2k) δ-uniformity N (f)

f−1 x 7→


x−1 iff x 6= 0
0 iff x = 0

yes 4 2k−1 − 2
k
2

f3 x 7→ x3 no 2 ≥ 2k−1 − 2
k
2

f5 x 7→ x5 no 4 ≥ 2k−1 − 2
k
2 +1

f7 x 7→ x7 yes ≤ 6 ≥ 2k−1 − 3 · 2
k
2

We call f3, f5 and f7 monomial S-Boxes and f−1 the inversion S-box.

Lemma 1. 1. f3 is a 2-uniform mapping
2. f−1 and f5 are 4-uniform mappings.

4



3. f7 has δ-uniformity of 6 or less. For k = 4, f7 is 4-uniform.

Proof. Obviously for all a, b ∈ F with a 6= 0 the equation x7 + (x + a)7 = b has at most 6 roots. For claims
1 and 2, see [5].

Lemma 2. 1. The nonlinearity of f−1 is 2k−2 − 2
k
2 .

2. For a polynomial function f : F 7→ F of degree d the following holds true: N (f) ≥ 2n−1 − bd−1
2 c2

n
2

Proof. For claim 1, see [7], for claim 2 see [8].

The linear transformations We use matrices of Maximum Distance Separable codes – MDS matrices
for short – for the matrix D in the linear layer. We chose these types of linear transformations since they
have optimal diffusion properties. This strategy is widely used in modern block cipher design; all ciphers
following the wide-trail design use diffusion optimal matrices. The matrix D4 below actually is matrix used
in the MixColumns step of Rijndael, D2 is equivalent to a Pseudo-Hadamard Transform.

D2 =
(

θ 1
1 1

)
D4 =


θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ


Rijmen and Daemen introduced the notion of branch number of a linear transformation to measure the
quality of the diffusion provided. For a F -vector X := (x1, . . . , xm) we define w(X) to be the hamming
weight of X, i.e. the count of all non-zero coordinates of this vector. The following definition is according
to [9]:

Definition 3. Let M ∈ Fn×n be a matrix describing a be a linear map. The differential branch number
Bd(M) of M is then defined as

Bd(M) = min
X∈Fm

X 6=0

(w(X) + w(MX))

The linear branch number Bl(M) is defined as

Bl(M) = min
X∈Fm

X 6=0

(
w(X) + w(MT X)

)
For symmetric matrices such as D2, the linear and the differential branch number clearly coincide. For

D4 the linear and differential branch number coincide for a different reason [9]. Thus in our case it suffices
to speak of the branch number B(M) of a matrix M . In [9] it is shown that the branch number of MDS
matrices is maximal, i.e. B(M) = n+1 with n being the size of the matrix M . For block ciphers with m = 1
we use the identity matrix of size one, I1, trivially resulting in a branch number of B(I1) = 2.

Note that the diffusion matrices are also used in the key expansion process.

2.4 Polynomial representation of the ciphers

In the following we will detail how to obtain a system of polynomial equations that describes the transfor-
mation of a plaintext into a ciphertext block round by round using intermediate state variables. Please note
that our description is slightly simplified. For the sake of legibility we have omitted the round key addition
after the final round; for our experiments the final key addition has of course been retained.

5



– Flurry
For Feistel ciphers the left half of the state in round e is identical to the right half of the state in round
e− 1, giving rise to the following b tr

2 c trivial linear equations:

x
(e)
j + x

(e−1)
j+m = 0

Each monomial S-Box of the cipher induces a polynomial equation of degree deg(f). Thus we get a total
of b tr

2 c non-linear equations of form:

x
(e)
m+j + x

(e−1)
j +

m∑
l=1

dj,l · f
(
x

(e−1)
m+l + k

(e−1)
l

)
= 0

with 1 ≤ e ≤ r, 1 ≤ j ≤ m. When using the inversion S-Box the polynomial system is correct only with
probability

(
2k−1
2k

)mr
. The equations in this case are of a different form:

(
x

(e−1)
j + x

(e)
m+j

)
·

m∏
i=1

(
x

(e−1)
m+i + k

(e−1)
i

)
+

m∑
l=1

dj,l

m∏
i=1
i6=l

(
x

(e−1)
m+i + k

(e−1)
i

)
= 0

The linear equations for the key schedule of Flurry can be written as:

k
(e)
j + k

(e−2)
j + (θ + 1)et+j +

m∑
l=1

dj,lk
(e−1)
l = 0

with 2 ≤ e ≤ r, 1 ≤ j ≤ m.
– Curry

No trivial linear equations hold between intermediate state variables.
Denote by x

(e)
(i,j) the variable in row i, column j of the state in round e, analogously for k

(e)
(i,j). Then for

all rounds e > 0 the following equations hold with 1 ≤ i, j ≤ m:

x
(e)
i,j +

m∑
l=1

di,l · f
(
x

(e−1)
j,l + k

(e−1)
j,l

)
= 0

Again for f−1 the non-linear equations look different:

x
(e)
i,j ·

m∏
u=1

(
x

(e−1)
j,u + k

(e−1)
j,u

)
+

m∑
l=1

di,l ·
m∏

u=1
u 6=l

(
x

(e−1)
j,u + k

(e−1)
j,u

)
= 0

Using the above equations, the polynomial system also does not hold with probability one but with with

probability
(

2k−1
2k

)m2r
.

The linear equations for the key schedule can be expressed as follows:

k
(e)
i,j + (θ)e+(i−1)m+j +

m∑
l=1

di,lk
(e−1)
l,j = 0

with 1 ≤ e ≤ r, 1 ≤ i, j ≤ m.

Additionally, for each variable v ∈ (X ∪ K) the relation v2k
+ v = 0 holds. These relations are called field

equations; they will not be included in our polynomial system however.

6



3 Resistance against classical attacks

In this section we determine the strength of our cipher constructions against differential and linear crypt-
analysis. Differential cryptanalysis is a chosen-ciphertext attack due to Biham and Shamir and was the first
successful attack on the DES [10]. This type of attack makes use of statistical weaknesses of the first order
derivative of the cipher. Selecting carefully chosen plaintext pairs with specific differences, the cryptanalyst
makes assumption about their propagation through the cipher and predicts output differences in ciphertext
pairs. If these predictions are correct with sufficiently high probability they allow an attacker to determine
round key bits.

Linear cryptanalysis is a known plaintext attack that was developed by Matsui [11] to attack the DES.
For this attack to succeed, the cryptanalyst has to construct a key-independent linear approximation for
individual output bits of the cipher. By counting the number of time this linear approximation agrees with
the actual output of the cipher she can establish which value for the key bit is more likely.

The notion of practical security of block ciphers against differential and linear cryptanalysis was first
introduced by Knudsen [12]. The exact definition of this notion is postponed to the end of Section 3.2. We
will derive the number of rounds that will make our cipher practically secure against differential and linear
cryptanalysis.

Note that our objective was not to evaluate the strength of our ciphers against all known attacks. Our
ciphers may very well be vulnerable against one or several advanced attacks even if they resist standard
linear and differential cryptanalysis. Indeed, as an example we argue that the choices we have made for the
S-Boxes are very weak against interpolation attacks.

3.1 Estimating the resistance against differential and linear cryptanalysis

A fundamental parameter that influences the complexity of differential and linear attacks is the minimum
number of active S-Boxes N over consecutive rounds of the cipher. Kanda [13] gives useful results on both
SPN ciphers and Feistel ciphers with a SP round function; from these we derive the following lemma:

Lemma 3. The minimum number of active S-boxes in 4, 6, 8 consecutive rounds of a Feistel cipher with
SP round function is lower bounded by B(D), B(D) + 2 and 2B(D) + 1 respectively. For an SPN cipher the
minimum number of active S-Boxes for 2r consecutive rounds is lower bounded by rB(D).

In the following X denotes a uniformly distributed random variable in GF (2)n and ρ : GF (2)n → GF (2)n

a function for which we wish to compute the linear and differential probability.

Definition 4. The linear probability for a pair (a, b) ∈ GF (2)n ×GF (2)n with a 6= 0 is defined as

LP(a, b) = (2 · PrX {〈a,X〉 = 〈b, ρ(X)〉} − 1)2

In the above definition, a is called input mask and b is called output mask of a round. A vector of masks
A = (a1, . . . , ar+1) with ai 6= 0 for all 1 ≤ i ≤ r is called linear characteristic of a cipher.

Definition 5. The differential probability for a pair (∆x,∆y) ∈ GF (2)n ×GF (2)n with ∆x 6= 0 is defined
as

DP(∆x,∆y) = PrX {ρ(X) + ρ(X + ∆x) = ∆y}

The value ∆x is called input difference of a round, while ∆y is called output difference. A vector of differences
A = (a1, . . . , ar+1) with ai 6= 0 for all 1 ≤ i ≤ r is called differential characteristic of a cipher.

Definition 6. Let ΩL be the set of all linear characteristics and ΩD the set of all differential characteristics
of a cipher C. The maximum linear characteristic probability (MLCP) of C is

MLCP(C) = max
A∈ΩL

r∏
i=1

LP(ai, ai+1)

7



Analogously the maximum differential characteristic probability (MDCP) of C is

MDCP(C) = max
A∈ΩD

r∏
i=1

DP(ai, ai+1)

3.2 Differential and linear cryptanalysis of Flurry and Curry

In this section we show how to compute upper bounds of MLCP and the MDCP of ciphers of the Flurry
and Curry family. From these bounds we deduce the number of rounds required to make an instance
practically secure against differential and linear cryptanalysis.

The maximum differential probability of a function f : F → F can be calculated from δ as p(f) = δ
#F

where δ is according to Definition 1. The maximum linear probability of a mapping f : F → F can be
computed as

q(f) =
(

1− 2N (f)
#F

)2

where N (f) is defined as in Section 2.3. For both SPN ciphers and Feistel ciphers with an SP round function
the MDCP is bounded by p(f)N and the MLCP is bounded by q(f)N [13].

According to Knudsen [12], a block cipher with dependent round keys is practically secure against
differential and linear cryptanalysis if the MLCP and the MDCP is too low for an attack to work under
the assumption of independent round keys. Note however that for both r-round Feistel and r-round SPN
ciphers, we need to consider the MLCP and MDCP of r − 2 rounds because of attacks that guess bits of
the first and the last round key, so called 2R attacks.

3.3 Interpolation attacks

Jakobsen and Knudsen presented interpolation attacks in [14] as a counterpoint to the growing trend of
using algebraic S-Boxes such as those proposed by Nyberg. In fact, interpolation attacks can be seen as
the first algebraic attacks on block ciphers. The underlying intuition of this attack is that the relationship
between plaintext and ciphertext can always be expressed as a tuple of polynomial expressions. If the degree
of these polynomials is low enough, the coefficients of the polynomials can be interpolated from a number of
plaintext/ciphertext pairs. A key–dependent equivalent of the encryption or the decryption algorithm can
thus be found. Moreover, should the size of a round key be smaller than the size of the cipher key, the cipher
key can be recovered by applying the attack to all but the last round and verifying the guesses for the last
round key using the resulting tuple of polynomials – in effect peeling off the final round. This obviously
works for Feistel ciphers.

Flurry and Curry quite naturally are susceptible to interpolation attacks – their clean structure and
the monomial S-boxes make them textbook examples. As a matter of fact, the cipher PURE presented in
the original article is identical to the 64-bit cipher Flurry(32, 1, I1, f3, r) sans key scheduling.

Jakobsen and Knudsen give upper bounds on the number of required pairs for known-plaintext interpo-
lation attacks for selected examples. This number increases exponentially with the degree of the polynomial
function describing the S-Box, the number of rounds and the number of elements in the internal state, while
for the attacks we present in the next section this remains a fairly constant quantity.

4 Attacks using Gröbner Bases

Gröbner bases are standard bases of polynomial ideals that can be used for solving systems of polynomial
equations. What Gaussian elimination does for systems of linear equations, Gröbner basis algorithms try to
emulate for polynomial systems. Unfortunately the computational complexity of Gröbner basis algorithms
for nonlinear systems is no longer polynomial. In this paper we restrict ourselves to known-plaintext Gröbner

8



Basis attacks that recover a secret key of a block cipher from a small number of plaintext/ciphertext pairs
faster than an exhaustive search of the key space by computing Gröbner Bases.

We will briefly introduce the concepts necessary to explain our results. For a more thorough introduction
to Gröbner bases we refer the interested reader to [15] and [16]. In the following we will use the conventions
of [15].

Definition 7 (Term order). A term order < is a linear order on the set of terms such that

1. 1 ≤ t for all terms t

2. for all terms s, t1, t2 whenever t1 < t2 then st1 < st2

If a term order has been fixed, we define HT(f) to be the greatest term occuring in the polynomial f ∈ R
according to this order; this term is called the head term. Correspondingly HM(f) is the head monomial, i.e.
the head term of f multiplied with the matching coefficient.

We will now introduce two useful and widely used term orders. To accomplish this we first need to define some
technicalities: For a term t = ve1

1 ve2
2 · · · ven

n we define the exponent vector of t to be ε(t) = (e1, e2, . . . , en) ∈
Nn

0 . The total degree of the term t then is deg(t) =
∑n

i=1 ei.

Example 1 (Lexicographic term order). For terms s, t we define s <lex t iff there exists an i with 1 ≤ i ≤ n
such that the first i− 1 components of ε(s) and ε(t) are equal but the ith component of ε(s) is smaller than
the ith component of ε(t).

Example 2 (Degree reverse lexicographic term order). For terms s, t we define s <DRL t iff either deg(s) <
deg(t) or if deg(s) = deg(t) and s <lex t.

Definition 8 (Syzygy polynomial). The syzygy polynomial of two polynomials f, g is defined as

spol(f, g) =
lcm(HM(f),HM(g))

HM(f)
f − lcm(HM(f),HM(g))

HM(g)
g

For a set of polynomials G ⊂ R we can define the reduction of a polynomial f ∈ R to a remainder r which
we will denote by f →G r. The result of this operation may not uniquely defined if G is not a Gröbner
basis. In the following we will only be interested in polynomial divisions that leave no remainder.

Definition 9 (Reduction to zero). A polynomial f ∈ R reduces to zero modulo a set G = {g1, . . . , gn} ⊂
R, if there exists a vector of polynomials (m1, . . . ,mn) such that f−

∑n
i=1 migi = 0 with HT(migi) ≤ HT(f)

for all 1 ≤ i ≤ n.

Definition 10 (Gröbner basis). Let I be an ideal of R. A finite set of polynomials G ⊂ I is a Gröbner
basis of I if f →G 0 holds for every f ∈ I.

Let P be a set of multivariate polynomial equations pi = 0. For the ideal I generated by the set P = {pi}
computing the Gröbner basis relative to an appropriate term order, e.g the lexicographical term order enables
us to solve the system P

Computing a Gröbner basis relative to a total-degree order however usually is faster than computing
a lexicographical Gröbner basis of the same ideal. This was the reason for the development of algorithms
that change the term order of a Gröbner basis. Several algorithms for this task are known; the two most
prominent are the FGLM algorithm [17] and the Gröbner Walk [18]. While the FGLM algorithm as originally
described only works for zero-dimensional ideals, i.e. when the number of solutions of P in the closure of F
is finite, the Gröbner Walk does not have this restriction.

9



4.1 Key recovery using Gröbner Bases

In general, estimating the time and space complexity of Gröbner basis algorithms is a hard problem. For
the systems of equations coming from the cryptosystem HFE, Faugere and Joux were able to explain the
good performance of the F5 algorithm [19] solving these systems [20]. For polynomial systems induced by
block ciphers, no theoretical works estimating the performance of Gröbner basis algorithms are currently
known. We therefore carried out experiments to study the resistance of our ciphers against Gröbner Basis
attacks. Results of these experiments are presented and analysed in section 4.2.

The Gröbner basis attack we have successfully used on instances of Flurry and Curry to determine
the secret key from a small number of plaintext/ciphertext pairs entailed the following steps:

1. Set up a polynomial system P = {pi = 0} for the cipher in question with pi ∈ R as described in Section
2.4. The system P consists of both cipher and key schedule equations.

2. Request a plaintext/ciphertext pair ((P1, . . . Pt), (C1, . . . , Ct)). This gives rise to the following additional
system of linear equations G = {gi = 0}:

x
(0)
1 + P1 = 0

...
x

(0)
t + Pt = 0

x
(r)
1 + C1 = 0

...
x

(r)
t + Ct = 0

Let I be the ideal generated by the set of polynomials L = (
⋃

i{pi}) ∪ (
⋃

i{gi}). We call this ideal the
key recovery ideal.

3. Compute a degree-reverse lexicographic Gröbner basis GDRL of I. For ciphers using a multiplicative
inverse as S-Box function, the system may be inconsistent, resulting in GDRL = 1.

4. If GDRL = 1 go to Step 2, otherwise proceed.
5. Use a Gröbner basis conversion algorithm to obtain a lexicographical Gröbner basis Glex from GDRL.

The variable ordering should be such that the key variables of the first round are the least elements.
6. Compute the variety Z of I using the Gröbner basis Glex.
7. Request another plaintext/ciphertext pair (P ′, C ′).
8. Try all elements k ∈ Z as key candidates to encrypt P ′. If k does not encrypt P ′ to C ′, remove k from

Z, otherwise retain.
9. If Z still contains more than one element, go to step 7.

10. Terminate

Considerable complexity is hidden in step 6. To compute the variety of an ideal using a lexicographical
Gröbner basis, we need to successively eliminate variables by computing zeroes of univariate polynomials
and back-substituting results. Of course the complexity of this depends on the number of solutions of the
polynomial system (zeroes of the ideal) and the complexity of the algorithm for finding roots of univariate
polynomials. The standard algorithm for finding roots of univariate polynomials is the Berlekamp algorithm
which has a run-time complexity of O(d3) with d being the degree of the polynomial; this degree of course
is bounded by 2k − 1. The best algorithm for factoring polynomials is due to Kaltofen and Shoup [21] and
has a complexity of O(d1.815k) field operations. The number zeroes is equivalent to the number of distinct
keys encrypting the plaintext to a ciphertext. In general we can expect this number to be small.

4.2 Experimental results

We have performed experiments to analyze the resistance of Flurry and Curry using the computer algebra
system Magma [22], version 2.11-8, on an AMD Athlon 64 3200+ Linux PC equipped with 1024 Megabytes
of RAM. Magma implements Faugére’s F4 algorithm [23] and is widely considered the best publicly available

10



tool for computing Gröbner bases. We have chosen k and m such that the ciphers evaluated are 128-bit
block ciphers.

Table 2 lists a number of instantiations of Flurry and Curry ciphers for which we were able to
successfully recover the secret key. We see that ciphers with inversion-based S-boxes are easier to break than
ciphers which use a monomial S-box, even if the monomial is of very low degree. Furthermore we were unable
to determine an a priori indicator for selecting the most efficient Gröbner basis conversion algorithm – in
some cases FGLM was faster, in other cases the Gröbner walk; the same holds for the memory consumption.
We would like to point out that the 6, 8 and 10 round Flurry ciphers listed below are resistant to linear
and differential cryptanalysis.

Table 2. Experimental results achieved with Magma

cipher conversion CPU time memory used

Flurry(64, 1, I1, f−1, 4) Walk 0.011 sec 3.48 MBytes
Flurry(64, 1, I1, f−1, 4) FGLM 0.011 sec 3.48 MBytes
Flurry(64, 1, I1, f3, 4) Walk 0.04 sec 3.48 MBytes
Flurry(64, 1, I1, f3, 4) FGLM 0.029 sec 3.58 MBytes
Flurry(64, 1, I1, f5, 4) Walk 1.28 sec 3.97 MBytes
Flurry(64, 1, I1, f5, 4) FGLM 2.3 sec 6.36 MBytes
Flurry(64, 1, I1, f7, 4) Walk 13.61 sec 6.22 MBytes
Flurry(64, 1, I1, f7, 4) FGLM 82.62 sec 33.4 MBytes
Flurry(64, 1, I1, f−1, 6) Walk 0.15 sec 3.58 MBytes
Flurry(64, 1, I1, f−1, 6) FGLM 0.059 sec 3.58 MBytes
Flurry(64, 1, I1, f3, 6) Walk 59.91 sec 10.63 MBytes
Flurry(64, 1, I1, f3, 6) FGLM 145.08 sec 193.24 MBytes
Flurry(64, 1, I1, f−1, 8) Walk 3.43 sec 4.51 MBytes
Flurry(64, 1, I1, f−1, 8) FGLM 1.46 sec 4.46 MBytes
Flurry(64, 1, I1, f−1, 10) Walk 115.44 sec 14.74 MBytes
Flurry(64, 1, I1, f−1, 10) FGLM 60.61 sec 12.39 MBytes
Flurry(64, 1, I1, f−1, 12) Walk 4194.28 sec 99.97 MBytes
Flurry(64, 1, I1, f−1, 12) FGLM 2064 sec 142.90 MBytes
Flurry(32, 2, D2, f−1, 4) Walk 216.53 sec 25.58 MBytes
Flurry(32, 2, D2, f−1, 4) FGLM 65.78 sec 41.62 MBytes
Flurry(16, 4, D4, f−1, 2) Walk 264 sec 37.13 MBytes
Flurry(16, 4, D4, f−1, 2) FGLM 26.119 sec 18.56 MBytes

Curry(32, 2, D2, f−1, 3) Walk 1750.87 sec 138.77 MBytes
Curry(32, 2, D2, f−1, 3) FGLM 3676.26 sec 107.54 MBytes

As mentioned in Section 2.4 we did not add the field equations to our polynomial systems. In our case,
these equations are of extremely high degree. Generally it only makes sense to add these additional relations
if the ground field is very small.

4.3 Gröbner bases without polynomial reductions

In some cases it is possible to directly determine whether a set of polynomials forms a Gröbner basis without
computing normal forms. In the following let be G ⊂ R be a finite set of polynomials with 0 6= G.

Proposition 1 (First Buchberger criterion). Suppose that we have f, g ∈ G such that

lcm(HT(f),HT(g)) = HT(f) ·HT (g)

i.e the head terms of f and g are pairwise prime. Then spol(f, g) →G 0.

Proposition 1 is the first Buchberger criterion. Together with the following theorem given in [16], we can
decide whether a sequence of polynomials is a Gröbner basis from looking at the head terms alone.

11



Theorem 1. The set G is a Gröbner basis iff spol(f, g) →G 0 for all f, g ∈ G with f 6= g.

For the case of polynomial S-boxes, this enables us to compute degree-reverse lexographic Gröbner bases
of key-recovery ideals of Flurry and Curry without performing a single polynomial reduction. Observe
that for a total-degree order the head terms of all polynomials of I are univariate. For each polynomial of
round e, either a power of a state variable of the preceeding round or a power of a key variable of the current
round occur as head term. However some head terms occur more than once.

By using an appropriate degree reverse lexicographical term order we can force the set of head terms of
each round to be disjunct from the set of head terms of all other rounds:
– Curry

To make the variable ordering more legible, we reduce the number of indexing of our variables: we
identify x

(e)
i,j with xet+im+j and k

(e)
i,j with ket+im+j . We then fix the following variable order:

x0 < . . . < xt−1︸ ︷︷ ︸
plaintext variables

< xtr < . . . < xt(r+1)−1︸ ︷︷ ︸
ciphertext variables

< k0 < . . . < kt(r+1)−1︸ ︷︷ ︸
key variables

< xt < . . . < xtr−1︸ ︷︷ ︸
internal state variables

– Flurry
Again we decrease the number of indexes: we identify x

(e)
i with xet+i and k

(e)
i with ket+i. We then fix

the following variable order:

x0 < . . . < xt−1︸ ︷︷ ︸
plaintext variables

< xtr < . . . < x(t+1)r−1︸ ︷︷ ︸
ciphertext variables

< xt(r−1)+m < . . . < xtr−1︸ ︷︷ ︸
state variables of the right Feistel

half of the second last round

< k0 < . . . < km−1︸ ︷︷ ︸
key variables of

the first round

<

km(r−1) < . . . < kmr−1︸ ︷︷ ︸
key variables of round r

< km < . . . < km(r−1)−1 < kmr < . . . < km(r+2)−1︸ ︷︷ ︸
all other key variables

< xt < . . . < xt(r−1)+m−1︸ ︷︷ ︸
state variables of all other rounds

To make the following linear transformation easier to describe we use a vectorial representation for
Flurry and a matrix representation for Curry. The entries in the vector and matrix of each round are
the left-hand side polynomials of the nonlinear cipher equations.

We can multiply the vectors respectively matrices of all rounds by D−1 to obtain pairwise prime head
terms within each and across rounds. For Curry this is sufficient. For Flurry we also need to adjust the
key schedule equations. Observe that the nonlinear polynomials of the first and the last round have powers
of key variables as head terms. These key variables are of the first and the last round respectively. For the
first round this poses no problem. However for the last round the key schedule polynomials that produce
the round last key have the same head terms. To remedy this situation we need to rewrite the key schedule
equations. We express all round keys but the last round key as a linear combination of the first two round
keys and can then write the second round key as a linear combination of the first and the last round key.
This results in all head terms being pairwise prime. In order for this to work for Flurry, the order of the
matrix used in the key schedule needs to be greater than the number of rounds.

We have shown how to make the head terms of all polynomials pairwise prime. Hence by Theorem 1,
we have obtained a Gröbner basis. The trick however does not work Flurry and Curry instances with
inversion S-Boxes, as the head terms in these cases are never univariate.

4.4 Complexity of Gröbner basis conversions using FGLM

For the FGLM algorithm, we will show how to estimate the complexity of a Gröbner basis conversion. The
running time mainly depends on two parameters, the vector space dimension of the ideal I generated by
the Gröbner basis G ⊂ R and the number of variables of the polynomial ring R.

12



Definition 11. Let R := F [X]. For an ideal I ⊂ R the dimension of the F -vector space of the ideal R/I is
denoted by dim(R/I).

The following theorem shows how this invariant of an ideal can be computed in general.

Theorem 2. Let G be a Gröbner basis of the ideal I. Then

dim(R/I) = # {t ∈ T (R) : HT (f) - t for all f ∈ G}

Corollary 1. Let G = {g1, . . . , gn} be a Gröbner basis for the ideal I ⊂ F [x1, . . . , xn] with head terms
xd1

1 , . . . , xdn
n . Then dim(R/I) = d1 · · · · · dn.

Corollary 2. Let I be an ideal of an instantiation of either a Flurry or a Curry cipher as described in
Section 2.4 and f a polynomial function. Then the following holds:
1. dim(R/I) = deg(f)mr for Flurryk,m,f,r.
2. dim(R/I) = deg(f)m2r for Curryk,m,f,r.

We restate Theorem 5.1 of [17].

Theorem 3. Let K be a finite field and R = K[x1, . . . , xn]. Furthermore G1 ⊂ R is the Gröebner basis
relative to a term order <1 of an ideal I, and D = dim(R/I). We can then convert G1 into a Gröbner basis
G2 relative to a term order <2 in O(nD3) field operations.

In general we can assume the constant factor for the above estimate to be small. For the space complexity
of the algorithm, no bound is given in the original paper. We note that the dominant memory requirement
of the FGLM algorithm is a D × nD matrix over F . Thus the memory usage of the algorithm is upper
bounded by d(nD2k)/8e bytes.

This allows us to estimate the maximum resistance of Flurry and Curry ciphers with polynomial
S-Boxes against Gröbner basis attacks. Note that for the Curry cipher we need to use a bijective S-Box in
the round function; the lowest degree S-Box function in our paper that is bijective is f7.

Table 3. Upper bounds on the complexity of breaking 128-bit Flurry and Curry ciphers with FGLM

cipher n dim(R/I) # of operations memory required (bytes)

Flurry32,2,4,f3,D2 8 38 ≈ 212.68 O(241.0) 230.4

Flurry32,2,4,f5,D2 8 58 ≈ 218.58 O(258.7) 242.2

Flurry32,2,4,f7,D2 8 78 ≈ 222.46 O(270.4) 249.9

Flurry32,2,6,f3,D2 12 312 ≈ 219.02 O(260.6) 243.2

Flurry32,2,6,f5,D2 12 512 ≈ 227.86 O(287.2) 261.3

Flurry32,2,6,f7,D2 12 712 ≈ 233.69 O(2104.7) 273.0

Flurry32,2,8,f3,D2 16 316 ≈ 225.36 O(280.0) 256.7

Flurry32,2,8,f5,D2 16 516 ≈ 237.15 O(2115.5) 280.3

Flurry32,2,8,f7,D2 16 716 ≈ 244.92 O(2138.8) 295.8

Flurry16,4,4,f3,D2 16 316 ≈ 225.36 O(280.0) 255.7

Flurry16,4,4,f5,D2 16 516 ≈ 237.15 O(2115.5) 279.3

Flurry16,4,4,f7,D2 16 716 ≈ 244.92 O(2138.8) 294.8

Curry32,2,3,f7,D2 12 712 ≈ 233.69 O(2104.6) 273.0

For the Gröbner Walk we are unable to theoretically gauge the complexity. The running time for this
algorithm heavily depends on the source and target term order, whereas for FGLM it only depends on
invariants of the ideal. Kalkbrenner gives degree bounds [24] that can be applied to the Gröbner Walk;
these are very loose however. The best bound known a result about the growth of the degrees in each step;
it can be shown to be at most quadratic. Estimating the global complexity for the Gröbner Walk seems to
be a hard problem.

13



5 Conclusions

We have demonstrated that Gröbner basis algorithms can be used to successfully mount key-recovery attacks
on algebraically simple block ciphers with large block and key size, even when they are practically secure
against differential and linear cryptanalysis. This can be accomplished with a minimal number of known
plaintext/ciphertext pairs. Furthermore we have demonstrated that Gröbner bases for ciphers that follow
our construction principle can be calculated by hand. These Gröbner bases are relative to a total-degree
order instead of a lexicographical order and thus do not give the solution to the polynomial system directly.
However, our contribution shows that the problem of recovering a key for these block ciphers can be reduced
to a Gröbner basis conversion.

By giving a closed formula for the vector space dimension of the ideal of all inversion-free ciphers
considered we were able to estimate the complexity of a Gröbner basis conversion using the FGLM algorithm.
This allowed us to determine more instances of Flurry and Curry ciphers that are vulnerable against
Gröbner basis attacks.

For the Gröbner Walk algorithm, it is an open problem to give bounds on its time and space complexity.

14



A Appendix

Below we give upper bounds for the maximum differential and linear characteristic probability for selected
Curry and Flurry ciphers. Since we have fixed the diffusion matrices in Section 2.3, the actual matrix to
be used only depends on the parameter m. For space reasons this is not explicitly listed in the table.

Table 4. MDCP for selected 128 bit Flurry ciphers

Flurryk,f,m,r,D

(64, f−1, 1) (32, f−1, 2) (16, f−1, 4)
(k, f, m) (64, f3, 1) (32, f3, 2) (16, f3, 4) (64, f5, 1) (32, f5, 2) (16, f5, 4) (64, f7, 1) (32, f7, 2) (16, f7, 4)

ps 2−63 2−31 2−15 2−62 2−30 2−14 3 · 2−63 3 · 2−31 3 · 2−15

r=4 2−126 2−93 2−75 2−124 2−90 2−70 < 2−122 < 2−88 < 2−53

r=6 2−252 2−155 2−105 2−248 2−150 2−98 < 2−245 < 2−147 < 2−80

r=8 2−315 2−217 2−165 2−310 2−210 2−154 < 2−307 < 2−205 < 2−120

Table 5. MLCP for selected 128 bit Flurry ciphers

Flurryk,f,m,r,D

(f−1, 1) (f−1, 2) (f−1, 4)
(k, f, m) (f3, 1) (f3, 2) (f3, 4) (f5, 1) (f5, 2) (f5, 4) (f7, 1) (f7, 2) (f7, 4)

qs 2−62 2−30 2−14 2−60 2−28 2−12 9 · 2−62 9 · 2−30 9 · 2−14

r=4 2−124 2−90 2−56 2−120 2−84 2−60 < 2−117 < 2−80 < 2−43

r=6 2−248 2−150 2−84 2−240 2−140 2−84 < 2−235 < 2−134 < 2−64

r=8 2−310 2−210 2−126 2−300 2−196 2−132 < 2−294 < 2−187 < 2−97

Table 6. MDCP for selected 128 bit Curry ciphers

Curryk,f,m,r,D

(k, f, m) (32, f−1, 2) (8, f−1, 4) (32, f7, 2)

ps 2−30 2−6 3 · 2−31

r=4 2−180 2−60 < 2−176

r=6 2−270 2−90 < 2−264

r=8 2−360 2−120 < 2−352

Table 7. MLCP for selected 128 bit Curry ciphers

Curryk,f,m,r,D

(32, f−1, 2) (8, f−1, 4)
(k, f, m) (32, f−2, 2) (8, f−2, 4) (32, f7, 2)

qs 2−30 2−6 9 · 2−30

r=4 2−180 2−60 < 2−160

r=6 2−270 2−90 < 2−241

r=8 2−360 2−120 < 2−321

15



B Appendix

Example 3. The following sequence of polynomials G is a Gröbner basis for a Flurry(32, 2, D2, f3, 4) w.r.t.
the degree-reverse lexicographical order. Variables are ordered as follows:
x0 < x1 < x2 < x3 < x16 < x17 < x18 < x19 < x14 < x15 < k0 < k1 < k6 < k7 < k2 < k3 < k4 < k5 < k8 <
k9 < k10 < k11 < x4 < x5 < x6 < x7 < x8 < x9 < x10 < x11 < x12 < x13

G = {
plaintext:
x0 + θ31 + θ29 + θ27 + θ24 + θ22 + θ21 + θ19 + θ13 + θ11 + θ8 + θ7 + θ6 + θ4 + θ3 + 1
x1 + θ31 + θ30 + θ29 + θ22 + θ21 + θ15 + θ14 + θ11 + θ10 + θ7 + θ6 + θ5 + θ3 + θ2 + θ
x2 + θ31 + θ29 + θ27 + θ26 + θ25 + θ24 + θ21 + θ19 + θ18 + θ16 + θ15 + θ14 + θ8 + θ7 + θ6 + θ4 + θ + 1
x3 + θ27 + θ26 + θ24 + θ22 + θ21 + θ20 + θ18 + θ17 + θ15 + θ13 + θ11 + θ9 + θ6 + θ4 + θ
ciphertext:
x16 + θ31 + θ29 + θ28 + θ27 + θ26 + θ24 + θ21 + θ19 + θ18 + θ16 + θ15 + θ14 + θ12 + θ4 + 1
x17 + θ28 + θ26 + θ24 + θ21 + θ20 + θ18 + θ16 + θ13 + θ10 + θ9 + θ8 + θ6 + θ5 + θ3 + θ + 1
x18 + θ29 + θ25 + θ21 + θ20 + θ19 + θ17 + θ16 + θ15 + θ14 + θ13 + θ10 + θ9 + θ8 + θ7 + θ6 + θ5 + θ3

x19 + θ29 + θ27 + θ26 + θ20 + θ13 + θ10 + θ8 + θ5 + θ2

round 1:
x4 + x2

x5 + x3

k3
0 + k2

0x2 + k0x
2
2 + x3

2 + C1x7 + C1x6 + C1x1 + C1x0

k3
1 + k2

1x3 + k1x
2
3 + x3

3 + C2x7 + C1x6 + C2x1 + C1x0

round 2:
x8 + x6

x9 + x7

x3
6 + x2

6k2 + x6k
2
2 + k3

2 + C1x11 + C1x10 + C1x5 + C1x4

x3
7 + x2

7k3 + x7k
2
3 + k3

3 + C2x11 + C1x10 + C2x5 + C1x4

round 3:
x12 + x10

x13 + x11

x3
10 + x2

10k4 + x10k
2
4 + k3

4 + C1x9 + C1x8 + C1k9 + C1k8 + C1x15 + C1x14

x3
11 + x2

11k5 + x11k
2
5 + k3

5 + C2x9 + C1x8 + C2k9 + C1k8 + C2x15 + C1x14

round 4:
x14 + x16

x15 + x17

k3
6 + k2

6x14 + k6x
2
14 + x3

14 + C1x13 + C1x12 + C1k11 + C1k10 + C1x19 + C1x18

k3
7 + k2

7x15 + k7x
2
15 + x3

15 + C2x13 + C1x12 + C2k11 + C1k10 + C2x19 + C1x18

key expansion:
k11 + θ2k7 + (θ2 + θ + 1)k1 + θk0 + θ4 + θ2

k10 + θ2k6 + θk1 + k0 + θ3 + θ
k9 + (θ2 + θ)k7 + (θ + 1)k6 + θ2k1 + (θ + 1)k0 + θ6 + θ5 + θ3 + 1
k8 + (θ + 1)k7 + (θ + 1)k6 + (θ + 1)k1 + k0 + θ5 + θ3

k5 + (θ2 + θ + 1)k7 + θk6 + θ2k1 + (θ + 1)k0 + θ6 + θ4 + θ3 + θ
k4 + θk7 + k6 + (θ + 1)k1 + k0 + θ5 + θ4 + θ3 + 1
k3 + θ2k7 + (θ + 1)k6 + (θ2 + θ + 1)k1 + θk0 + θ6 + θ5 + θ4 + θ
k2 + (θ + 1)k7 + k6 + θk1 + k0 + θ5 + θ2 + θ + 1

}

with C1 = (θ + 1)−1 and C2 = 1 + (θ + 1)−1

16



References

1. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In Zheng, Y., ed.:
ASIACRYPT. Volume 2501 of Lecture Notes in Computer Science., Springer (2002) 267 – 287

2. Murphy, S., Robshaw, M.J.: Essential Algebraic Structure within the AES. In Yung, M., ed.: CRYPTO. Volume 2442 of
Lecture Notes in Computer Science., Springer (2002) pp. 1 – 16

3. Cid, C., Murphy, S., Robshaw, M.: Small Scale Variants of the AES. In: Fast Software Encryption, 12th International
Workshop, FSE 2005, Paris, France, February 21-23, 2005. Lecture Notes in Computer Science, Springer (2005)

4. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. [25] 149 – 165
5. Nyberg, K.: Differentially Uniform Mappings for Cryptography. [26] 55–64
6. Beth, T., Ding, C.: On Almost Perfect Nonlinear Permutations. [26] 65–76
7. Dobbertin, H.: One-to-One Highly Nonlinear Power Functions on GF (2n). Applicable Algebra in Engineering, Communi-

cation and Computing 9 (1998) 139–152
8. Cheon, J.H., Chee, S., Park, C.: S-boxes with Controllable Nonlinearity. In Stern, J., ed.: EUROCRYPT. Volume 1592 of

Lecture Notes in Computer Science., Springer (1999) 286–294
9. Daemen, J., Rijmen, V.: The Design of Rijndael: The Wide Trail Strategy. Springer-Verlag (2001)

10. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In Menezes, A., Vanstone, S.A., eds.:
CRYPTO. Volume 537 of Lecture Notes in Computer Science., Springer (1991) 2 – 21

11. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In Stinson, D.R., ed.: CRYPTO. Volume 773 of Lecture Notes
in Computer Science., Springer (1994) 386 – 387

12. Knudsen, L.R.: Practically Secure Feistel Ciphers. In Anderson, R.J., ed.: FSE. Volume 809 of Lecture Notes in Computer
Science., Springer (1994) 211–221

13. Kanda, M.: Practical Security Evaluation against Differential and Linear Cryptanalyses for Feistel Ciphers with SPN
Round Function. In Stinson, D.R., Tavares, S.E., eds.: Selected Areas in Cryptography. Volume 2012 of Lecture Notes in
Computer Science., Springer (2001) 324–338

14. Jakobsen, T., Knudsen, L.: The Interpolation Attack on Block Ciphers. [25] 28–40
15. Becker, T., Weispfenning, V.: Gröbner Bases – A Computational Approach to Commutative Algebra. Springer-Verlag

(1991)
16. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. 2nd edn. Springer-Verlag, NY (1996) 536 pages.
17. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-Dimensional Gröbner Bases by Change of

Ordering. Journal of Symbolic Computation 16 (1993) 329–344
18. Collart, S., Kalkbrener, M., Mall, D.: Converting Bases with the Gröbner Walk. Journal of Symbolic Computation 24

(1997) 465–469
19. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: ISSAC, ACM

(2002) pp. 75–83
20. Faugère, J.C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Cryptosystems Using Gröbner Bases. In Boneh, D., ed.:

CRYPTO. Volume 2729 of Lecture Notes in Computer Science., Springer (2003) pp. 44–60
21. Kaltofen, E., Shoup, V.: Subquadratic-time Factoring of Polynomials over Finite FIelds. Mathematics of Computation 67

(1998) 1179–1197
22. University of Sydney Computational Algebra Group: The Magma Computational Algebra System (2004)

http://magma.maths.usyd.edu.au/magma/.
23. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139

(1999) 61–88
24. Aoki, K.: Efficient Evaluation of Security against Generalized Interpolation Attack. In Heys, H.M., Adams, C.M., eds.:

Selected Areas in Cryptography. Volume 1758 of Lecture Notes in Computer Science., Springer (2000) 135–146
25. Biham, E., ed.: Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,

Proceedings. In Biham, E., ed.: FSE. Volume 1267 of Lecture Notes in Computer Science., Springer (1997)
26. Helleseth, T., ed.: Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of Crypto-

graphic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings. In Helleseth, T., ed.: EUROCRYPT. Volume 765 of
Lecture Notes in Computer Science., Springer (1994)

17


