
A Scalable Update Management Mechanism for

Query Result Caching Systems at
Database-Driven Web Sites

Seunglak Choi2, Sekyung Huh1, Su Myeon Kim1,
Junehwa Song1, and Yoon-Joon Lee1

1 KAIST, 373-1 Kusong-dong Yusong-gu Daejeon 305-701, South Korea
{skhuh, yjlee}@dbserver.kaist.ac.kr,
{smkim, junesong}@nclab.kaist.ac.kr

2 ETRI, 161 Gajeong-dong Yusong-gu Daejeon 305-350, South Korea
slchoi@etri.re.kr

Abstract. A key problem in using caching technology for dynamic con-
tents lies in update management. An update management scheme should
be very efficient without imposing much extra burden to the system, es-
pecially to the original database server. We propose an scalable update
management mechanism for query result caching in database-backed
Web sites. Our mechanism employs a two-phase consistency checking
method, which prunes out unaffected queries at the earliest possible mo-
ment. The method scales well with a high number of cached instances.

1 Introduction

Caching technology has been frequently used to improve the performance of serv-
ing dynamic contents at Web sites. The key problem in using caching technology
for dynamic contents lies in update management; that is, cached contents should
be ensured consistent to the original data in databases. Thus, an effective update
management mechanism is of utmost importance for dynamic content caching.
Moreover, an update management scheme should be very efficient without im-
posing much extra burden to the system, especially to the origin database server.
Note that the database server can be easily a bottleneck to overall Web site’s
performance. Thus, if not efficient, the advantage of using the cache will be sig-
nificantly impaired due to the extra overhead to keep the freshness of the cached
data.

In this paper, we propose an efficient update management mechanism for
dynamic content caching, more specifically, for query result caching [5,6,8,2] in
database-driven Web sites. The idea of query result caching is to store results of
frequently-issued queries and reuse the results to obtain the results of subsequent
queries, significantly saving computational cost to process queries and retrieve
results. Our method, upon reception of an update request, instantly processes the
update and invalidates affected query results in the cache. In doing so, the cache
initiates and takes in charge of the update management process, and minimizes

X. Zhou et al. (Eds.): APWeb 2006, LNCS 3841, pp. 850–855, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Scalable Update Management Mechanism 851

the involvement of the database server. In other reported update management
schemes [4,3,1], the servers are heavily responsible for the overall update process.
In addition, our mechanism employees a two-phase consistency checking method
in which the expensive part, i.e., join checking, is performed only once to a
group of queries. In this fashion, the method prunes out unaffected queries at
the earliest possible moment. Thus, the method scales well with a high number
of cached instances. The number of query instances can be very high especially
for range queries.

This paper is organized as follows. In section 2, we describe the cache consis-
tency mechanism. In section 3, we evaluate and analyze the performance of the
mechanism. Finally in section 4, we present conclusions.

2 Cache Consistency Mechanism

2.1 Query Templates and Query Instances

Before describing our mechanism, we introduce the notions of query templates
and instances. In Web-based applications, a user usually submits a request by
using a HTML form. Figure 1 shows a simple example. A user types a search
keyword and clicks the submit button in the form. Then, a WAS generates
a query from the form and sends it to a database server. The generation of
the query is done as encoded in the applications. Thus, each HTML form can
be translated to a template of queries through the encoding. We call such a
template a query template. The queries generated from the same HTML form,
i.e., from the same query template are of the same form; they share the same
projection attributes, base tables, and join conditions. The only difference among
the queries lies in their selection regions, which are specified by users. We call
the individual queries generated upon user’s requests query instances.

SELECT I_TITLE, I_ID, A_FNAME, A_LNAME
FROM ITEM, AUTHOR
WHERE I_A_ID = A_ID
AND A_LNAME = '@keyword'

Fig. 1. HTML form and its corresponding query form. The HTML form is clipped
from the Search Request Web page of the TPC-W benchmark [7].

We characterize a query template QT = (T, PA, JC) as follows. T is a set of
tables which are specified in a FROM clause. PA is a set of projection attributes.
JC is a set of join conditions. T (QT), PA(QT), and JC(QT) denotes T, PA, and
JC of a query template QT respectively. We define a query group of a template
QT as QG(QT) = {Qi} where Qi is generated from QT . A query instance Qi is
said to be affected by an update if Qi is modified by the update.

852 S. Choi et al.

Web Server &
WAS

Read-Query
Processor (RQP)

(1)
DBMS

(2)

(4)

(3) (5) (6)

Query Result Caching System

Consistency
Maintainer (CM)

Fig. 2. Processing Flow

2.2 Architectural Overview

Under the proposed mechanism, a caching system conceptually consists of the
Consistency Maintainer (CM) and the Read-Query Processor (RQP) (see
Figure 2). CM performs the consistency check to identify query results affected
by a given update and invalidates affected results. RQP is a main component of
the caching system, which stores query results and serves read queries.

Figure 2 depicts the processing flow of the consistency check. A WAS sends an
update query to CM (1). CM forwards the update to the origin database server
(2). In order to find the templates which can include the query instances affected
by the update, CM investigates query template information kept in RPQ (3) and
sends to the database server a join check query (4), which will be discussed in
detail in section 2.3. Once the templates are determined, CM finds affected query
instances in the templates (5) and removes them from the cache (6).

2.3 Two-Phase Consistency Check

Consistency check is to test if there exist any query instances which are affected
by an update. This involves repeated matching of each query instance against
a given update, and thus costs serious computation overhead. We identify that
there are many computation steps which are repeated in testing different in-
stances. To avoid such repetition, we propose a two-phase consistency checking
mechanism. We note that different query instances generated from the same
query template differ only in their selection regions. Thus, during the first step
called template check, we match the query template against the update and
identifies if it is possible that any of the query instances from the template are
affected by the update. Then, during the second step, called instance check,
individual instances are matched against the update.

Template Check. The following three conditions are satisfied, if U affects any
query instances in QG(QT).

1. If a set of attributes modified by U intersects PA(QT). Note that, for INSERT
and DELETE, this condition is always true. These queries insert or delete an
entire tuple.

A Scalable Update Management Mechanism 853

2. If a table on which U is performed is included in T (QT).
3. If one or more newly inserted tuples by U satisfy JC(QT). If QT has join

conditions, query instances generated from QT include only joined tuples.
Thus, only when the inserted tuples are joined, U can affects the query
instances.

Example 1. Let us consider a query template QT , a query instance Q, and an
update U as follows. Q is generated from QT .

QT : T = {ITEM, AUTHOR}, PA = {I TITLE, I COST, A FNAME},
JC = {I A ID = A ID}

Q : SELECT I TITLE, I COST, A FNAME FROM ITEM, AUTHOR
WHERE I A ID = A ID AND I PUBLISHER = ‘McGrowHill’

U : INSERT INTO ITEM (I ID, I A ID, I TITLE, I PUBLISHER)
VALUES (30, 100, ‘XML’, ‘McGrowHill’)

The conditions (1) and (2) are easily evaluated as trues. U modifies the pro-
jection attribute I TITLE and the table ITEM. For checking the condition (3), a
cache sends to a database server a join check query as shown below. This query
examines whether the table AUTHOR has the tuples which can be joined with the
tuple inserted by U . Because the join attribute value of the inserted tuple is 100,
the join check query finds the tuples with A ID = 100. If the result of the query
is not null, we know that the inserted tuple is joined.

SELECT A ID FROM AUTHOR WHERE AUTHOR.A ID = 100

As described in the example 1, the join check requires the query processing of
a database server. The two-phase consistency check performs the join check over
each query template, not each query instance. Thus, it dramatically decreases
the overhead to a database server.

Instance Check. Once a template passed the template check, the query in-
stance check is applied to the template. It finds the affected query instances by
comparing the selection region of an update query to those of query instances.
If the selection region of a query instance overlaps that of an update query, we
know that the query instance is affected by the update. In the example 1, the
query instance Q is affected by the update U because the selection region of Q,
I PUBLISHER=‘McGrowHill’, is equal to that of U .

3 Performance Evaluation

Experimental Setup. We measured the update throughputs of the query re-
sult caching system adopting the proposed mechanism. We sent update queries
to the caching system. For each update, the caching system forwards the update
query and sends join check queries to a database server. Under this situation, the
throughput is limited by the amount of processing these queries in the database
server.

854 S. Choi et al.

Database
server TPC-W

Database

Query
generator

Cache
server

Fig. 3. Experimental setup

Figure 3 shows the setup for evaluating the proposed mechanism. The Query
Generator emulates a group of Web application servers, generating queries. It
runs on a machine with a Pentium III 800MHz, 256MB RAM. For the database
server, we used Oracle 8i with the default buffer pool size of 16MB. The database
server runs on a machine with a Pentium IV 1.5GHz, 512M RAM. The caching
system runs on the machine with a Pentium III 1GHz, 512M RAM. We imple-
mented the proposed mechanism as a part of WDBAccel query result caching
system [5]. All machines run Linux and are connected through a 100Mbps Eth-
ernet.

We populated the database of the TPC-W benchmark in the database server
at 100K scale 1. The TPC-W benchmark [7] is an industrial standard benchmark
to evaluate the performance of database-driven Web sites. We used the update
query modified from one used in Admin Confirm Web page of TPC-W: INSERT
INTO ITEM (I ID, I A ID, I COST, I PUBLISHER)VALUES (@I ID, @I A ID,
@I COST, ‘@I PUBLISHER’). This query inserts information on a book into ITEM.
The values of the attribute I ID follow the random distribution.

Experimental Results. In order to determine the performance improvement
by the two-phase consistency check, we measured the update throughputs of
the two-phase check and the brute-force approach. In the brute-force approach,
the join check is performed against individual query instances. (Note that in the
two-phase check, the join check is performed against a query template.)

 0

 20

 40

 60

 80

 100

 50 100 150 200

up
da

te
 th

ro
ug

hp
ut

 (
qu

er
ie

s/
se

c)

of query instances

Two-phase Brute-force

Fig. 4. Update throughputs of a single cache node

Figure 4 shows the update throughputs as the number of query instances
ranging from 50 to 200. The figure shows that the throughputs of the two-phase
1 In TPC-W, the scale of database is determined by the cardinality of ITEM table.

A Scalable Update Management Mechanism 855

check are equal. This means that the two-phase check imposes the same overhead
on a database server regardless of how many query instances are. The amount
of overhead of the two-phase check will depend on only the number of query
templates. The two-phase check generates a join check query for each query
template.

4 Conclusions

In this paper, we proposed a scalable update management mechanism for the
query result caching systems. We divided a consistency check to two phases,
template check and instance check. The template check is performed over a query
template, not an individual instance. We presented the experimental results that
verify a high level of the scalability of the mechanism.

References

1. Khalil Amiri, Sara Sprenkle, Renu Tewari, and Sriram Padmanabhan. Exploiting
templates to scale consistency maintenance in edge database caches. In Proceedings
of the International Workshop on Web Caching and Content Distribution, 2003.

2. Khalil S. Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. DBProxy:
A self-managing edge-of-network data cache. In 19th IEEE International Conference
on Data Engineering, 2003.

3. K. Selcuk Candan, Divyakant Agrawal, Wen-Syan Li, Oliver Po, and Wang-Pin
Hsiung. View invalidation for dynamic content caching in multitiered architectures.
In Proceedings of the 28th VLDB Conference, 2002.

4. K. Selcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant
Agrawal. Enabling dynamic content caching for database-driven web sites. In Pro-
ceedings of ACM SIGMOD Conference, Santa Barbara, USA, 2001.

5. Seunglak Choi, Jinwon Lee, Su Myeon Kim, Junehwa Song, and Yoon-Joon Lee.
Accelerating database processing at e-commerce sites. In Proceedings of 5th In-
ternational Conference on Electronic Commerce and Web Technologies (EC-Web
2004), 2004.

6. Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for database-backed
web sites. In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

7. Transaction Processing Performance Council (TPC). TPC benchmarkTMW (web
commerce) specification version 1.4. February 7, 2001.

8. Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. Caching
strategies for data-intensive web sites. In Proceedings of the 26th VLDB Conference,
2000.

	Introduction
	Cache Consistency Mechanism
	Query Templates and Query Instances
	Architectural Overview
	Two-Phase Consistency Check

	Performance Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

