
, pp. 142 – 147, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Dynamic Properties in the Layered View Model
for XML Using XSemantic Nets

R. Rajugan1, Elizabeth Chang2, Ling Feng3, and Tharam S. Dillon1

1 eXel Lab, Faculty of IT, University of Technology, Sydney, Australia
{rajugan, tharam}@it.uts.edu.au

2 School of Information Systems, Curtin University of Technology, Australia
Elizabeth.Chang@cbs.cutin.edu.au

3 Faculty of Computer Science, University of Twente, The Netherlands
ling@ewi.utwente.nl

Abstract. Due to the increasing dependence on semi-structured data, there
exists a requirement to model, design, and manipulate self-describing, schema-
based, semi-structured data models (e.g. XML) and the associated semantics at
a higher level of abstraction than at the instance level. In this paper, we propose
to model dynamic properties of a layered XML view model, at the conceptual
level, using eXtensible Semantic (XSemantic) nets.

1 Introduction

Object-Oriented (OO) conceptual modeling offers the power in describing and
modeling real-world data semantics and their inter-relationships in a form that is
precise and comprehensible to users [1]. Conversely, XML [2] is becoming the
dominant standard for storing, describing and interchanging data among various
Enterprises Information Systems and databases. With the increased reliance on such
self-describing, schema-based, semi-structured data language/(s), there exists a
requirement to model, design, and manipulate XML data and the associated semantics
at a higher level of abstraction than at the instance level.

However, existing Object-Oriented conceptual modeling languages provide
insufficient modeling constructs for utilizing XML schema like data descriptions and
constraints, while most semi-structured schema languages lack the ability to provide
higher levels of abstraction (such as conceptual models) that are easily understood by
humans. To this end, it is interesting to investigate conceptual and schema formalisms
as a means of providing higher level semantics in the context of XML-related data
engineering. In this paper, we use XML view as a case in point and propose to model
dynamic properties of a layered XML view model [3] using eXtensible Semantic
(XSemantic) nets.

In data molding, we can group the existing view models into four categories,
namely [3]; (a) classical (or relational) views, (b) Object-Oriented (OO) views, (c)
semi-structured (namely XML) view models [4-6, 3] and (d) view models for
Semantic Web. A comprehensive discussion on existing view models can be found in
our work [3]. Here, we focus only on view models for XML.

H.T. Shen et al. (Eds.): APWeb Workshops 2006, LNCS 3842

 Modeling Dynamic Properties in the Layered View Model for XML 143

Many researchers have attempted to solve semi-structured view models by using
graph based [7] and/or semi-structured data models [8, 9]. But, as in the case of
relational and OO, the actual view definitions are only available at the lower levels of
the implementation and not at the conceptual and/or logical level. Also, it is
interesting to note that, of all the XML view models such as in [4, 5, 10, 11, 6], all
provide discussion on static properties of views and only one (Active XML views
[11]) provides some discussion on capturing, specifying and/or modeling dynamic
nature of view properties, that have potential real-world applications in XML data
engineering. In the Active XML view system, views are based on simple active rules
(using non-standard, declarative ActiveView language) rather than native (XML) data
or document centric view definitions. Thus, it is interesting to investigate modeling
and specifying dynamic properties for XML views in a systematic manner, similar to
that of describing/specifying real-world data objects in OO conceptual models.

The rest of this paper is organized as follows. In section 2 we describes our view
model, followed by section 3, where we present the view modeling notation;
XSemantic nets, with emphasis on modeling dynamic properties. Section 4 concludes
the paper with some discussion on our future research directions.

2 Our Work

Our view model for XML comprised of three levels of abstraction, namely [3],
conceptual level, logical or schema level, and document or instance level.

The top conceptual level describes the structure and semantics of views in a way
that is more comprehensible to human users. It hides the details of view
implementation and concentrates on describing objects, relationships among the
objects, as well as the associated constraints upon the objects and relationships. This
level can be modelled using some well-established modelling languages such as
UML/OCL [12], or our own XML-specific XSemantic nets [13, 14]. The output of
this level is a well-defined valid conceptual model in UML or XSemantic nets which
can be either visual or textual (in the case of XMI models). The middle level of the
view model is the schema (or logical) level describes the schema of views for the
view implementation, using the XML Schema (XSD) [15] definition language. Views
at the conceptual level are mapped into the view schemas at the schema level via the
schemata transformation mechanism developed in previous works such as [13, 16].
The output of this level will be in either textual (XSD) or some visual (graph)
notations that comply from the schema language. In our previous works such as [3,
17], we have shown how conceptual views are mapped to XSD. This includes
mapping UML (view specific) stereotypes, constraints (both UML and XSemantic
nets) and constructional constructs (such as bag, set, list etc.) to XSD. The third level
is the document or instance level, implies a fragment of instantiated XML data, which
conforms to the corresponding view schema defined at the upper level. Here, the
conceptual operators [18] (and other view dynamic properties) are mapped to
language specific query expressions (e.g. XQuery [19]), which are syntax specific.

There are two types of dynamic properties we address in our layered view model,
namely; (a) view constructs: These are the sequence of one ore more conceptual
operators that constructs the views and (b) internal class methods such as generic and

144 R. Rajugan et al.

user defined method. In this paper we address only the view constructs and the
generic methods and their declarative transformation to query expression.

To illustrate our concepts in this paper, we use the description of a simple
Conference Publishing System (CPS) for managing, distributing and archiving
conference proceedings such as ACM, LNCS, IEEE etc. The system is similar to that
of existing systems such as SpringerLink [20] or IEEE Xplore® [21].

3 Modeling Views with XSemantic Nets

The eXtensible Semantic (XSemantic) net based view design methodology comprised
of three design levels: (1) semantic level, (2) schema level and (3) instance level. The
aim is to enforce conceptual modeling power of semi-structured data (and views) in
order to narrow the gap between real-world objects and XML document structures.
The XSemantic net notation used in this paper is shown in Fig. 1.

The first level corresponds to the OO conceptual level and composes of two
models, namely, the XML domain model and the XML view model. This level is
based on modified semantic network [13] that provides semantic modeling of XML
domains. The second level of the proposed methodology is concerned with detailed
XML schema design for both domain and view objects defined at the semantic level,
including element/attribute declarations and simple/complex type definitions. The
mapping between these two design levels are extension of the schemata
transformation proposal stated in [13] and proposed to transform the semantic models
into the XML Schema, based on which XML documents can be systematically
created, managed, and validated. The third level of the design methodology is concern
with detailed query design for the views defined at the semantic level, including query
language specific expressions and syntax declarations. The declarative transformation
between the semantic level and the instance level are proposed to transform valid
conceptual operators (and other dynamic properties) into native XML query lanague
expressions, such as XQuery FLOWR expressions, Java or SQL 2003/SQLX
statements. The resulting query expressions/statements are able to construct
imaginary XML documents that can be validated against the XML (view) schemas,
developed at the schema level of the design methodology.

The original “modified” semantic network based design methodology for XML
was proposed in [13],to enforce conceptual modeling power in XML domains. It was
a modified semantic net notation, to model XML domains using Object-Oriented
conceptual modeling principles. The modification includes; (i) the removals of cycles
in the original semantic network concept and (ii) the addition of clusters [13]
(connection, connection cluster and connection cluster set) to realistically capture
real-world objects and their properties or descriptions (i.e. attributes constraints etc.).
By doing so, the designers can differentiate the different levels of complex and simple
nodes that are used to represent real-world objects (e.g. PAPER) and their properties
(e.g. PaperID, Title etc.). Later, in order to model views for XML, the “modified”
semantic network was extended (called XML Semantic (XSemantic) net [14]) to
include a set of conceptual operators [18] to systemically construct conceptual views
from a given collection set of nodes and edges. The conceptual operators include; (i) a
set of binary conceptual operators, namely union, intersection, difference Cartesian

 Modeling Dynamic Properties in the Layered View Model for XML 145

product and join and (ii) a set of unary conceptual operators, namely projection,
selection, rename and restructure.

Since OO models describe both structure and behavior of an object, in order to
capture dynamic properties of the views, we further extended XML Semantics nets
with a new node type called event node. An example of an event node is shown in
Fig. 1-3. An event node is a node that describes a dynamic property (i.e. methods,
messages, or triggers) associated with a complex node, using one more conceptual
operators, user defined and/or generic methods (i.e. get, set, update or delete). An
event node may be described as; (i) an event node en ε Node, is a 4-tuple, en = (nid,
nname, ncategory, ncontent), (ii) ncategory indicating if the node is an “event” (this is in
comparison to “basic” or “complex” categories), (iii) ncontent is a textual description of
the methods. For example, the select conceptual operator node may be stated as,
ncontent = σpaper-type=“journal” and (iv) the parent of the event node is always of type
complex. A complex node may have one or more simple nodes that may contain data
values. Conversely, each simple node is connected to a complex node (or the root
node). Thus, the event nodes associated with a complex node may be able to provide
weak encapsulation for accessing and the simple nodes that are connect to the
complex node in question. An XML Semantic net model with event nodes is called
eXtensible Semantic (XSemantic) net. A detail discussion on modeling static
properties, constraints and relationships of the conceptual views can be found in [13,
17]. Here, we only discuss modeling dynamic properties using XSemantic nets.

Fig. 1. XSemantic net notation Fig. 2. Generic method exa-
mples

Fig. 3. JOIN operator exa-
mple

Example 1: In Fig. 2, “Referee” is a valid XML conceptual view, named in the
context of “Person”. It is constructed using the conceptual SELECT operator, which
can be shown as; σ type=“referee”.

Example 2: In the case of conceptual JOIN operator with join conditions (Fig. 3),
where x = Paper and y = Referee/*; x→ x.PaperId = y.paperID y.

In this paper, we use XQuery as the document view construction language and for
generic methods (namely the get or retrieve methods). However, unlike SQL in
relational data model, XQuery standard do not fully support XML data manipulation

146 R. Rajugan et al.

(for set and update operations). But, we choose XQuery as it is gaining momentum as
the language of choice for XML databases and repositories, and in the future it will
support many of the data manipulation features. The following examples demonstrate
some of these declarative transformations.

Example 3: To transform the get method in the person node (Fig. 2), the following
code return a person’s first name; doc ("person.xml")//firstName.

Example 4: As shown in Fig. 2, the conceptual view operators of the view “Referee”
can be mapped to the document view construct (XQuery expression) as shown below
in the code segment.
for $type in document ("person.xml")//type
where $type = "referee"
return <referee> {$role} </referee>

Example 5: As shown in example 2 (Fig. 3), we can show the conditional join
conceptual operator can be mapped to the following XQuery expression, at the
document level as;
for $paper in document ("paper.xml"),

$ref in document ("referee.xml")
where $paper//papered = $ref//paperID
return <join-example> {$paper} <referee> {$ref} </referee> </join-example>

4 Conclusion and Future Work

In this paper, we presented a modeling notation to capture dynamic properties in the
layered view model using XSemantic nets. We also have shown a declarative
transformation of such dynamic properties into document view (query) expressions.

For future work, some issues deserve investigation. First, the investigation of a
formal mapping approach to conceptual view (dynamic) properties to query
expressions and the automation (including efficient query constructs) of such
transformation. Second, is the investigation into dynamic perspectives of the
conceptual view formalism that can be applied to traditional data, Semantic Web and
web services.

References

1. T. S. Dillon and P. L. Tan, Object-Oriented Conceptual Modeling: Prentice Hall,
Australia, 1993.

2. W3C-XML, "XML 1.0, (http://www.w3.org/XML/)," 3 ed: The W3C Consortium, 2004.
3. R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "A Three-Layered XML View Model: A

Practical Approach," 24th Int. Conf. on Conceptual Modeling (ER '05), Klagenfurt,
Austria, 2005.

4. S. Abiteboul, "On Views and XML," Proc. of the eighteenth ACM PODS '99, USA, 1999.
5. S. Abiteboul, et al., "Active Views for Electronic Commerce," Proc. of Int. Conf. on

VLDB, Scotland, 1999.
6. Y. B. Chen, et al., "Designing Valid XML Views," Proc. of the 21st Int. Conf. on ER '02,

Tampere, Finland, 2002.

 Modeling Dynamic Properties in the Layered View Model for XML 147

7. Y. Zhuge and H. Garcia-Molina, "Graph structured Views and Incremental Maintenance,"
Proc. of the 14th IEEE Conf. on Data Engineering (ICDE '98), USA, 1998.

8. S. Abiteboul, et al., "Views for Semistructured Data," Wrk.. on Management of
Semistructured Data, USA, 1997.

9. H. Liefke and S. Davidson, "View Maintenance for Hierarchical Semistructured," Proc. of
DaWak '00, UK, 2000.

10. S. Cluet, et al., "Views in a Large Scale XML Repository," Proc. of the 27th VLDB Conf.
(VLDB '01), Italy, 2001.

11. S. Abiteboul, et al., "Active XML: A Data-Centric Perspective on Web Services," BDA,
2002.

12. OMG-UML™, "UML 2.0 Final Adopted Specification (http://www.uml.org/#UML2.0),"
2003.

13. L. Feng, E. Chang, and T. S. Dillon, "A Semantic Network-based Design Methodology for
XML Documents," ACM Transactions on Information Systems (TOIS), vol. 20, No 4, pp.
390 - 421, 2002.

14. R.Rajugan, et al., "Semantic Modelling of e-Solutions Using a View Formalism with
Conceptual & Logical Extensions," 3rd Int. IEEE Conf. on INDIN '05, Perth, Australia,
2005.

15. W3C-XSD, "XML Schema (http://www.w3.org/XML/Schema)," vol. 2004, 2 ed: W3C,
2001.

16. L. Feng, E. Chang, and T. S. Dillon, "Schemata Transformation of Object-Oriented
Conceptual Models to XML," Int. Journal of Computer Systems Science & Engineering,
vol. 18, No. 1, pp. 45-60, 2003.

17. R.Rajugan, et al., "Alternate Representations for Visual Constraint Specification in the
Layered View Model," The Int. Conf. on Information Integration and Web Based
Applications & Services (iiWAS '05), Malaysia, 2005.

18. R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "A Layered View Model for XML
Repositories & XML Data Warehouses," The 5th Int. Conf. on Computer and Information
Technology (CIT '05), Shanghai, China, 2005.

19. W3C-XQuery, "XQuery 1.0 (http://www.w3.org/XML/Query): The World Wide Web
Consortium (W3C), 2004.

20. Springer, "SpringerLink: http://www.springerlink.com," Springer, 2005.
21. IEEE, "IEEE Xplore®: http://ieeexplore.ieee.org," Rel 1.8 ed: IEEE, 2004.

	Introduction
	Our Work
	Modeling Views with XSemantic Nets
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

