
EWCG 2005, Eindhoven, March 9–11, 2005

Constructing Interference-Minimal Networks∗

Marc Benkert Joachim Gudmundsson† Herman Haverkort‡ Alexander Wolff§

Abstract

We consider the problem of producing interference-
minimal graphs with additional properties such as
connectivity, bounded stretch factor or bounded link
diameter. We compute exact interference-minimal
graphs and estimated interference-minimal graphs.
The latter can be computed faster.

1 Introduction

A wireless communication network is commonly mod-
elled by a graph G = (V,E) that consists of a set of
points V in the plane and a set of edges E. The nodes
represent hosts, while edges represent communication
links between nodes. We will assume that the links
are undirected. This is a reasonable assumption as a
one-way communication becomes unacceptably prob-
lematic. It should be noted however, that the algo-
rithms presented in Section 3 can be extended to work
for the directed model.
Burkhart et al. [2] propose a definition of in-

terference in a wireless network, and describe two
polynomial-time algorithms to construct an optimal
spanning tree and a t-spanner in terms of this defi-
nition. Their running times are O(n2 log n) for span-
ning trees and O(n4) for t-spanners, however they as-
sume that all interferences are known in advance. We
improve and extend these results. Particularly, our
algorithms are output-sensitive.
We investigate three different graph classes and

show how to compute interference-minimal graphs in
each class. First we consider the problem of com-
puting an interference-minimal connected graph, i.e.
a spanning tree. The expected running time of our
algorithm is O(nk(log2 k+log n)), where k is the min-
imum interference for which there is a spanning tree.
In addition to connectivity it is often desired that

the resulting topology is a t-spanner for some given
constant t > 1. Given two vertices u and v of a graph

∗This work was supported by grant WO 758/4-1 of the Ger-
man Science Foundation (DFG) and the European Commission
within FET Open Projects DELIS.

†Department of Mathematics and Computer Science, TU
Eindhoven, h.j.gudmundsson@tue.nl

‡Department of Computer Science, University of Århus,
herman@haverkort.net

§Fakultät für Informatik, Universität Karlsruhe,
i11www.ira.uka.de/~awolff,~mbenkert

G, we will denote by dG(u, v) the length of the short-
est path between u and v in G, and we use |uv| to
denote the Euclidean distance between u and v. A
network G is said to be a t-spanner if for every pair of
vertices u and v it holds that dG(u, v) ≤ t · |uv|. We
show that an interference-minimal t-spanner can be
computed in O(n log kt(kt

2 + n log n)) expected time,
where kt is the minimum interference for which there
exists a t-spanner.
The third graph class that we consider is the class

of d-hop networks. A graph G is said to be a d-hop
network if for every pair of vertices u and v, there is
a path using at most d links between u and v. The
expected running time of our algorithm for the d-hop
network is O(n log kd(kd

2 + n log n)), where kd is the
minimum interference for which there exists a d-hop
network.
It will turn out that our results are only faster

than a method that uses circular range searching if
k = O(n5/8). For dense graphs we argue in Section 4
that it is not realistic to assume exact data. Hosts on
the perimeter of the transmission radius may or may
not experience interference. Therefore we propose a
model based on realistically accurate data, that is, we
treat the sphere of an edge as a fuzzy object. This
means that hosts lying close to the boundary of the
transmission radius either may or may not be counted.
Using this cost model we propose algorithms for the
tree and the spanner with running times that beat
the circular range searching method for all values of
k and kt. However, the running times depend on how
fine the approximation should be.

2 Definitions

We start with the definition of interference. For a
point p ∈ R2 and a real r ≥ 0 let D(p, r) be the
closed disk that has center p and radius r. Given a
communication network G = (V,E) with V ⊂ R2, for
an edge {u, v} ∈ G and u, the range of u must be at
least |uv|. Thus, all points in D(u, |uv|) experience
interferences. As we consider undirected edges, the
following definition follows:

Definition 1 ([2]) The sphere of an edge e = {u, v}
is S(e) := D(u, |uv|) ∪ D(v, |uv|). We define the
cost function Cov (coverage) on the edge set

(
V
2

)
by

Cov(e) :=
∣∣V ∩ S(e) \ {u, v}∣∣.

203

21st European Workshop on Computational Geometry, 2005

We define the interference Int(G) of a graph G =
(V,E) by Int(G) := maxe∈E Cov(e).

For givenm ≥ 0 letGm = (V,Em) denote the graph
where Em includes all edges e with Cov(e) ≤ m.

e

Figure 1: The sphere of e. Here Cov(e) = 9.

3 Computing exact interference graphs

The main idea for computing interference-minimal
trees, spanners and d-hop networks is the same. By
combining exponential and binary search we deter-
mine the minimum graph that has the desired prop-
erty P, see Algorithm 1.

Algorithm 1: InterferenceNetwork(V,P)
E0 = ComputeEdgeSet(V, 0), G0 = (V,E0)
if FulfillsProperty(G0,P) then

return G0

m = 1/2
repeat
m = 2 ·m {exponential search}
Em = ComputeEdgeSet(V,m), Gm = (V,Em)

until FulfillsProperty(Gm,P)
E = �m/2�, r = m
repeat
m = E+ �(r − E)/2
 {binary search}
Em = ComputeEdgeSet(V,m), Gm = (V,Em)
if FulfillsProperty(Gm,P) then
r = m

else
E = m

until r = E+ 1
return Gr

The only non-trivial steps are the subroutines Com-
puteEdgeSet and FulfillsProperty. We first detail how
to implement ComputeEdgeSet efficiently. We will
use the order-m Delaunay graph and the order-m
Voronoi diagram. An edge {u, v} is an order-m De-
launay edge if there exists a circle through u and v
that has at most m points of V inside.

Lemma 1 All edges Em are order-mDelaunay edges.

Proof. Let e be an edge with Cov(e) ≤ m. By def-
inition 1 the sphere S(e) contains at most m points.
Then, the disk that has e as diameter contains at most
m points as it is contained in S(e). �

We use the duality between Voronoi diagrams and
Delaunay edges. We need precisely that {u, v} is an
order-m Delaunay edge if and only if there are two
incident faces F1 and F2 in the order-(m+1) Voronoi
diagram such that u is in the set of points that deter-
mine F1 and v is in the set of points that determine
F2. Details can be found in [4]. We need:

Theorem 2 ([4]) Form ≤ n/2−2, the order-(m+1)
Voronoi diagram can be computed in O(nm logm +
n log n) expected time. There are O(nm) order-m De-
launay edges.

Hence, by Lemma 1 we obtain the edge set Em by
testing all O(nm) order-m Delaunay edges. To do this
we first compute in O(nm logm + n log n) total time
for each point p ∈ V the m + 1 nearest neighbors of
p. Then, one edge test requires O(m) time: we have
to check how many of the m+ 1 nearest neighbors of
u lie in D(u, |uv|) and in D(u, |uv|) ∩ D(v, |uv|) and
analogously for v. With these numbers we can decide
whether Cov({u, v}) is at most m. Thus, we have:

Theorem 3 Given n points in the plane, the edge set
Em can be computed in O(nm2 + n log n) expected
time for any m ≤ n/2− 2.

Next, we describe how to implement FulfillsProp-
erty for each of the three graph classes.

3.1 Spanning trees

To obtain an interference-minimal spanning tree we
first run Algorithm 1 with the property connectiv-
ity. Let k be the minimum value for which Gk is
connected. The exponential and binary search to
determine k require O(log k) steps in total. As the
size of the edge set of each graph Gm is bounded by
O(nk), the answer to FulfillsProperty(Gm,P) can by
given in O(nk) time by running a breadth-first search
on Gm. Hence, we can find the interference-minimal
connected graph Gk in O(nk2 log k+n log n log k) ex-
pected time. If we only want to find a spanning tree T
that minimizes Int(T), it is enough to run a breadth-
first search on Gk. We can also run Prim’s algorithm
using the values Cov(e) as edge weights. This requires
O(nk + n log n) time.

Theorem 4 We can find an interference-minimal
spanning tree T that minimizes Int(T) and∑

e∈T Cov(e) in O(nk2 log k + n log n log k) expected
time, if k ≤ n/2− 2.

3.2 Spanners

Here, FulfillsProperty(Gm,P) must decide whether
the current graph Gm is a t-spanner. We do this by
computing shortest paths between all pairs of vertices

204

EWCG 2005, Eindhoven, March 9–11, 2005

and by checking for each pair {u, v} ∈
(
V
2

)
whether

dGm
(u, v) ≤ t · |uv|. Only if the answer is yes for each

query, Gm is a t-spanner of V .
For the all-pairs-shortest-path computation we use

an algorithm with expected running time O(n2 log n),
described by Moffat and Takaoka in [5], i.e.,
FulfillsProperty(Gm,P) can be implemented in time
O(n2 log n) if P is the graph property “t-spanner”.
Combining this result with Theorem 3 gives:

Theorem 5 Given t > 1, we can find an interference-
minimal t-spanner in O(n log kt(kt

2 + n log n)) ex-
pected time, if kt ≤ n/2− 2.

3.3 d-hop networks

For testing the d-hop property in Gm we set the
weights of all edges in Em to 1 and run again the all-
pairs-shortest-path algorithm. If every shortest path
has weight at most d, then Gm is a d-hop network. We
obtain time bounds analogous to those in Theorem 5.

Theorem 6 Given an integer d > 1, we can
find an interference-minimal d-hop network in
O(n log kd(kd

2 + n log n)) exp. time, if kd ≤ n/2− 2.

4 Computing estimated interference graphs

We now assume that exact data is not realistic. Hosts
on the perimeter of the transmission radius may or
may not experience interference. Therefore we treat
the sphere of an edge as a fuzzy object. This means
that hosts lying very close to the boundary of the
transmission radius either may or may not be counted.
We define the estimated interference cost model:

Definition 2 For fixed ε > 0 the maximum esti-
mated sphere of an edge e = {u, v} is defined as
Smax(e, ε) := D(u, (1 + ε) · |uv|) ∪D(v, (1 + ε) · |uv|),
the minimum estimated sphere of e is defined as
Smin(e, ε) := D(u, (1− ε) · |uv|) ∪D(v, (1− ε) · |uv|).
Following this notation we define Covmax(e, ε) and
Covmin(e, ε) correspondingly. We say that c ∈ N is an
ε-valid interference estimation of e if Covmin(e, ε) ≤
c ≤ Covmax(e, ε).

We will present algorithms for finding sparse net-
works with minimum estimated interference. Here,
’minimum’ is meant with respect to a fixed assignment
Cov(·) :

(
V
2

)
→ N of ε-valid estimations for all edges,

which we will determine later. Let Gm now denote
the graph that contains exactly the edges that have
estimated interferences of at most m, w.r.t. Cov(·).
The algorithms follow Algorithm 1, only the subrou-
tines ComputeEdgeSet and FulfillsProperty are imple-
mented differently. The basic idea to speed them up
is to perform all computations on a sparse graph G−m

u
vx y

(1 ± ε
4)|uv|

(1 ± ε)|xy|

Figure 2: Illustration for Lemma 7.

which closely approximates Gm. We obtain G−m us-
ing the well-separated pair decomposition (WSPD) of
Callahan and Kosaraju. G−n will contain only one
edge for each well-separated pair and G−m will sim-
ply be the corresponding subgraph of G−n . For de-
tails about the WSPD see [3]. We briefly recall the
basic terminology. Two subsets A,B ⊂ V are well-
separated w.r.t. a separation constant s, if there are
two closed disks DA and DB that have the same ra-
dius r and it holds that A ⊂ DA, B ⊂ DB and the
distance of DA and DB is at least sr. A WSPD of V
is a sequence of subsets {A1, B1}, . . . , {Am, Bm} such
that each pair {Ai, Bi} is well-separated and for any
two points u, v ∈ V there is exactly one pair {Aj , Bj}
with u ∈ Aj and v ∈ Bj or v ∈ Aj and u ∈ Bj .
Callahan and Kosaraju [3] showed that a WSPD of
size m = O(s2n) can be computed in O(s2n+n log n)
time.
For an well-separated pair {Ai, Bi} let Ei denote

the set Ei = {{u, v} | u ∈ Ai, v ∈ Bi}. We obtain G−n
by computing the WSPD and adding one edge of each
Ei. We then compute an (ε/4)-valid interference es-
timation for the choosen edge of Ei. The next lemma
shows that the resulting value is an ε-valid interfer-
ence estimation for ell edges of Ei. This approach
also yields the fixed assignment Cov(·) of ε-valid in-
terference estimations with respect to which we will
compute the estimated interference-minimal graphs.

Lemma 7 Let {Ai, Bi} be a well-separated pair. Let
e1 = {u, v} and e2 = {x, y} be two edges of Ei. It
holds that an (ε/4)-valid interference estimation for e1

is an ε-valid interference estimation for e2, assuming
s ≥ (8 + 5ε)/ε.

If we set the separation constant s to O(1/ε), the
graph G−n has O(n/ε2) edges, and so has G−m. The
dilation of a graph G is the infimum of the set {t |
G is a t-spanner}. We can show that:

Theorem 8 (i) Gm is connected if and only if G−m
is connected,

(ii) if G−m has dilation t then Gm has dilation in the
range [t/(1 + ε), t].

205

21st European Workshop on Computational Geometry, 2005

Next, we describe how to compute the valid estima-
tions of edge costs efficiently. The idea is to use ex-
tended query ranges. For a given ε and a query range
Q, the extended query range Qε is the set of points
lying at L∞-distance at most εw from Q, where w
is the diameter of Q. In our application, the query
range will be the union of two disks of radius r, thus
we can easily set the values such that Qε is the set of
points lying at L∞-distance at most εr from Q.
We will perform ε-approximate counting queries.

A simple modification of the BBD-tree by Arya and
Mount [1] gives the following theorem:

Theorem 9 Given a set V of n points in the plane, a
constant-complexity query rangeQ and some ε > 0, ε-
approximate range counting queries can be answered
in O(1/ε+ log n) time using O(n log n) preprocessing
and O(n) space.

Proposition 10 Given a real value ε > 0 and a
constant-complexity range Q, it holds that an ε-
approximate range counting query returns an integer
N such that |{V ∩Q}| ≤ N ≤ |{V ∩Qε}|.

Given an edge e it is straight-forward to see that
performing an ε-approximate counting query will give
an ε-valid interference estimation for e.
In summary, the graph G−n can be computed in
O(n/ε2(1/ε + log n)) deterministic time. Note that
we compute G−n in a preprocessing step and the
graphs G−m needed in the exponential and binary
search of the algorithms are obtained as subgraphs
from G−n in O(n/ε2) time. We now show how the
sparse graphs G−m help to implement the subroutine
FulfillsProperty(Gm, V) efficiently.

4.1 Spanning trees

According to Theorem 8 (i), we can perform the
testing whether Gm is connected by simply testing
G−m. A breadth-first search in G

−
m requires O(n/ε2)

time. Thus, we require O(n/ε2 log k) time in total for
connectivity testing (exponential and binary search),
where k is the minimum value for which there is a con-
nected graph. This means that Gk can be computed
in O(n/ε2(1/ε + log n)) time. We then simply run
a breadth-first search in G−k to obtain an estimated
interference-minimal spanning tree.

Theorem 11 We can find an estimated interference-
minimal spanning tree T in O(n/ε2(log n+1/ε)) time.

By running Prim’s algorithm in Gk we could find an
interference-minimal spanning tree T that also min-
imizes

∑
e∈T Cov(e, ε). However, this could require

Θ(n2) time since Gk can have up to Θ(n2) edges.

4.2 Spanners

Let t∗ > 0 be the given constant for which we want
to compute a t∗-spanner. To decide whether Gm has
dilation at most t∗ one needs to perform a shortest-
path query for every pair of points in V . How-
ever, since we are only looking for an approximate
solution we can use an approximation of t∗. We
call t a (c1, c2)-approximate stretch factor of a graph
with dilation t∗, if it holds that t/c1 ≤ t∗ ≤ c2t.
We apply a result of Narasimhan and Smid [6] that
says that a (1 + ε, 1 + δ)-approximate stretch factor
can be computed in O(nδ−2(log n + T (n))) time for
any δ > 0, where T (n) is the time required for a
(1 + ε)-approximate shortest path query. From The-
orem 8 (ii) it follows that dGm

(u, v) ≤ dG−
m
(u, v) ≤

(1 + ε) · dGm
(u, v) for any two points u, v ∈ V . Thus,

performing an exact shortest path query in G−m yields
a (1+ε)-approximate shortest path for Gm. The run-
ning time of such a query is T (n) = O(nε−2 log n) if
we use Dijkstra’s algorithm on the linear-size graph
G−m. This means computing an approximate stretch
factor t of Gm requires O(n2ε−2δ−2 log n) time in to-
tal. The subroutine FulfillsProperty(Gm, V) will an-
swer yes if t/(1 + ε) ≤ t∗. We then know that the
output is a graph Gkt for which kt is at most Int∗,
the minimum estimated interference value for any t∗-
spanner of V . Setting δ = ε and summing up the
running times yields the following theorem.

Theorem 12 Given two real numbers t∗ > 1
and ε > 0, we can find a (1 + ε)t∗-spanner in
time O(n2ε−4 log n log kt∗) with estimated interfer-
ence value at most Int∗.

References

[1] S. Arya and D. Mount. Approximate Range
Searching. Computational Geometry: Theory & Ap-
plications, 17(3–4): 135–152, 2000.

[2] M. Burkhart, P. von Rickenbach, R. Watten-

hofer and A. Zollinger. Does topology control
reduce interference? Proc. 5th ACM International
Symp. on Mobile Ad Hoc Networking and Comput-
ing (MOBIHOC), 2004.

[3] P. B. Callahan and S. R. Kosaraju. A decom-
position of multidimensional point sets with appli-
cations to k-nearest-neighbors and n-body potential
fields. Journal of the ACM, 42:67–90, 1995.

[4] J. Gudmundsson, M. Hammar and M. van

Kreveld. Higher order Delaunay triangulations.
Computational Geometry: Theory & Applications,
23(1):85–98, 2002.

[5] A. Moffat and T. Takaoka An all pairs short-
est path algorithm with expected time O(n2 log n).
SIAM Journal on Comp., 16(6):1023–1031, 1987.

[6] G. Narasimhan and M. Smid. Approximating the
Stretch Factor of Euclidean Graphs. SIAM Journal
on Comp., 30(3):978–989, 2000.

206

