Skip to main content

Smooth Foreground-Background Segmentation for Video Processing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Abstract

We propose an efficient way to account for spatial smoothness in foreground-background segmentation of video sequences. Most statistical background modeling techniques regard the pixels in an image as independent and disregard the fundamental concept of smoothness. In contrast, we model smoothness of the foreground and background with a Markov random field, in such a way that it can be globally optimized at video frame rate. As a background model, the mixture-of-Gaussian (MOG) model is adopted and enhanced with several improvements developed for other background models. Experimental results show that the MOG model is still competitive, and that segmentation with the smoothness prior outperforms other methods.

KS has been funded by the Monash Institute for Vision Systems, HW by the ARC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proc. 7th ICCV, pp. 255–261 (1999)

    Google Scholar 

  2. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. IEEE TPAMI 19, 780–785 (1997)

    Google Scholar 

  3. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE CVPR, pp. 246–252 (1999)

    Google Scholar 

  4. Elgammal, A., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proc. IEEE CVPR, pp. 302–309 (2004)

    Google Scholar 

  6. Kottow, D., Koppen, M., Ruiz del Solar, J.: A background maintenance model in the spatial-range domain. In: Proc. 2nd SMVP (2004)

    Google Scholar 

  7. Matsuyama, T., Ohya, T., Habe, H.: Background subtraction for non-stationary scenes. In: Proc. 4th ACCV, pp. 662–667 (2000)

    Google Scholar 

  8. Koller, D., Weber, J., Malik, J.: Robust multiple car tracking with occlusion reasoning. In: Proc. 3rd ECCV, pp. 189–196 (1994)

    Google Scholar 

  9. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. In: Proc. ICVS (1999)

    Google Scholar 

  10. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: Proc. 9th ICCV, pp. 1305–1312 (2003)

    Google Scholar 

  11. Greiffenhagen, M., Ramesh, V., Niemann, H.: The systematic design and analysis cycle of a vision system: a case study in video surveillance. In: Proc. IEEE CVPR., vol. 2, pp. 704–711 (2001)

    Google Scholar 

  12. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  13. Paragios, N., Ramesh, V.: A MRF-based approach for real time subway monitoring. In: Proc. IEEE CVPR (2001)

    Google Scholar 

  14. Sheikh, Y., Shah, M.: Bayesian object detection in dynamic scenes. In: Proc. IEEE CVPR, pp. 74–81 (2005)

    Google Scholar 

  15. Levine, M.D.: Vision in Man and Machine. McGraw-Hill, New York (1985)

    Google Scholar 

  16. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE TPAMI 6, 721–741 (1984)

    MATH  Google Scholar 

  17. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proc. IEEE CVPR, pp. 648–655 (1998)

    Google Scholar 

  18. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in computer vision. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, p. 359. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, K., Wang, H. (2006). Smooth Foreground-Background Segmentation for Video Processing. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_58

Download citation

  • DOI: https://doi.org/10.1007/11612704_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics