Skip to main content

Use of a Dense Surface Point Distribution Model in a Three-Stage Anatomical Shape Reconstruction from Sparse Information for Computer Assisted Orthopaedic Surgery: A Preliminary Study

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

Constructing anatomical shape from extremely sparse information is a challenging task. A priori information is often required to handle this otherwise ill-posed problem. In the present paper, we try to solve the problem in an accurate and robust way. At the heart of our approach lies the combination of a three-stage anatomical shape reconstruction technique and a dense surface point distribution model (DS-PDM). The DS-PDM is constructed from an already-aligned sparse training shape set using Loop subdivision. Its application facilitates the setup of point correspondences for all three stages of surface reconstruction due to its dense description. The proposed approach is especially useful for accurate and stable surface reconstruction from sparse information when only a small number of a priori training shapes are available. It adapts gradually to use more information derived from the a priori model when larger number of training data are available. The proposed approach has been successfully validated in a preliminary study on anatomical shape reconstruction of two femoral heads using only dozens of sparse points, yielding promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavalle, S., Merloz, P., et al.: Echomorphing introducing an intra-operative imaging modality to reconstruct 3d bone surfaces for minimally invasive surgery. In: CAOS, pp. 38–39 (2004)

    Google Scholar 

  2. Hofstetter, R., Slomczykowski, M., et al.: Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comp Aid Surg 4, 65–76 (2004)

    Article  Google Scholar 

  3. Livyatan, H.M., Yaniv, Z., Joskowicz, J.: Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE T Med Imaging 22, 1395–1406 (2004)

    Article  Google Scholar 

  4. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv Comput Math 13, 1–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their training and application. Comput Vis Image Und 61(1), 38–59 (1995)

    Article  Google Scholar 

  6. Golland, P., Grimson, W.E.L., Shenton, M.E., Kikinis, R.: Small sample size learning for shape analysis of anatomical structures. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 72–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Blanz, V., Vetter, T.: Reconstructing the complete 3D shape of faces from partial information, pp. 295–302. it+ti Oldenburg Verlag (2002)

    Google Scholar 

  8. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999, pp. 187–194 (1999)

    Google Scholar 

  9. Lapeer, R.J.A., Prager, R.W.: 3D shape recovery of a newborn skull using thin-plate splines. Comput Med Imag Grap 24, 193–204 (2000)

    Article  Google Scholar 

  10. Fleute, M., Lavallee, S.: Building a complete surface model from sparse data using statistical shape models: application to computer assisted knee surgery system. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998)

    Google Scholar 

  11. Stindel, E., Briard, J.L., et al.: Bone morphing: 3D Morphological data for total knee arthroplasty. Comp Aid Surg 7, 156–168 (2002)

    Article  Google Scholar 

  12. Chan, C.S., Edwards, P.J., Hawkes, D.J.: Integration of ultrasound-based registration with statistical shape models for computer-assisted orthopedic surgery. In: SPIE, Medical Imaging, pp. 414–424 (2003)

    Google Scholar 

  13. Rajamani, T.K., Nolte, L.-P., Styner, M.: Bone morphing with statistical models fro enhanced visualization. In: SPIE Medical Imaging, pp. 122–130 (2004)

    Google Scholar 

  14. Rajamani, T.K., Joshi, S., Styner, M.: Bone model morphing for enhanced surgical visualization. IEEE International Symposium on Biomedical Imaging, 1255–1258 (2004)

    Google Scholar 

  15. Rajamani, T.K., et al.: A novel and stable approach to anatomical structure morphing for enhanced intraoperative 3D visualization. SPIE Medical Imaging, 718–725 (2005)

    Google Scholar 

  16. Brechbuehler, C., Gerig, G., Kuebler, O.: Parameterization of closed surfaces for 3D shape description. Comput Vis Image Und

    Google Scholar 

  17. Davies, R.H., Twining, C.H., et al.: 3D statistical shape models using direct optimization of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Loop, C.T.: Smooth subdivision surfaces based on triangles. M.S.Thesis, Department of Mathematics, University of Utah (August 1987)

    Google Scholar 

  19. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE T Pattern Anal 14, 239–256 (1992)

    Article  Google Scholar 

  20. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vision Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  21. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vision 13, 119–152 (1994)

    Article  Google Scholar 

  22. Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE T Pattern Anal 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  23. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: Measuring errors between surfaces using the Hausdorff Distance. In: IEEE International Conference on Multimedia and Expo (ICME) 2002, pp. 705–708 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, G., Rajamani, K.T., Nolte, LP. (2006). Use of a Dense Surface Point Distribution Model in a Three-Stage Anatomical Shape Reconstruction from Sparse Information for Computer Assisted Orthopaedic Surgery: A Preliminary Study. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_6

Download citation

  • DOI: https://doi.org/10.1007/11612704_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics