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Abstract. In this paper, we present a novel scene interpretation method
by unified modeling of visual context using a hierarchical graphical model.
Scene interpretation through object recognition is difficult due to several
sources of ambiguity (blur, clutter). We model the visual context of scene,
object, and part to disambiguate them during recognition. A precisely
designed hierarchical graphical model can represent the contexts in a
unified way. We also propose a new inference method, particle-based be-
lief propagation, optimized to scene interpretation in this hierarchical
graphical model. Such an inference method suits the high-level context
of scene interpretation. In addition, our core inference is so general that
it can be used in any complex inference problems. Experimental results
validate the power of the proposed model of visual context to solve the
ambiguities in scene interpretation.

1 Introduction

The main task of scene interpretation in high level vision is to identify and de-
termine the pose of 3D objects within a 2D image such as Fig. 1(a). A scene
usually contains several types of 3D object in front of a complex background.
The conventional local, feature-based object recognition methods [1][2][3], which
use only individual object information, may work under high-quality viewing
conditions, however, such methods often generate false alarms in ambiguous en-
vironments. In real, uncontrolled working environments, the ambiguities of scene
interpretation originate from image blurring, background clutter and similarity
of objects. Camera images can be blurred by short image acquisition time and
large distances. Features from the background or other objects can cause false
matching, which degrades object recognition performance. Previous works tried
to remove the influence of background clutter by stereo matching-based figure-
ground segmentation [4], distance ratio [1]. Another approach incorporates the
background information rather than removing it. Torralba et al. propose a sim-
ple Bayesian formula using background features [5]. They get prior distribution
of object label, position, and scale from background features. From the inter-
pretation of many scene-images, we find a very interesting fact: many objects
appear together and are strongly related to specific scenes.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 963–972, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



964 S. Kim and I.S. Kweon

(a)

Exterior context

Scene Context

Part Context

Object Context

Pixel Context

Interior context

Exterior context

Scene Context

Part Context

Object Context

Pixel Context

Interior context

(b)

Fig. 1. (a) Scene interpretation result of our system: Labeled part, object and place
information is overlayed. (b) Four types of visual context such as scene, object, part,
and pixel context are interrelated within a scene.

The relational information between scene and objects, and between objects,
provides visual context in vision. Visual context can alleviate the recognition
problem enormously. If we view only the separated objects in Fig. 2(a), we
cannot discriminate between them because image blurring gives them similar
shapes and appearances. However, if we view Fig. 2(b), we can recognize that
the left object is a hair drier in a bathroom, and the right object is a drill in
a workshop. Objects are usually defined by function and relation. Objects are
associated with some scenes more than others, just as seagulls are associated
with the sea. Although there are many kinds of visual context, we confine them
to exterior context (scene,object context) and interior context (part, pixel con-
text) as Fig. 1(b). According to cognitive experiments performed by Bar and
Ullman [6], a spatial context between parts has substantial effect on recognition
performance. Carbonetto proposed MRF-based modeling of spatial context in
object layer only [7].

The key idea of this paper is to model this kind of relational information
and use it to resolve ambiguities. Section 2 explains the details of the compu-
tational model of context in scene interpretation. Section 3 and 4 deal with an
inference and a learning method respectively. Section 5 details the specific im-
plementations. We validate the proposed method through large-scale experiment
in Section 6 and conclude in Section 7.

(a) (b)

Fig. 2. (a)We cannot discriminate which one is a drier, which one is a drill without
scene context. (b) We can discern them more accurately with the scene context [8].
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2 Hierarchial Graphical Model of Visual Context

In this section, we present a novel framework, incorporating multiple visual con-
texts, to improve the efficiency and reliability of object recognition in ambiguous
environments. Pixel context is used to build the visual features of local image
patches. Spatial relations of each pixel’s edge orientation, edge magnitude and
color are encoded to form visual features. Part context prompts expectations for
neighboring parts and objects. Object context provides expectations of neigh-
boring objects and scene information such as place. Scene context provides the
priors of object existence. These contexts interact with one another and exchange
contextual information to provide reliable recognition results.

A graphical model is a suitable tool for dealing with such a complex system
description. A graphical model is simply a marriage between probability the-
ory and graph theory [9]. Nodes represent random variables, and the arcs or
edges represent probabilistic interaction between variables. This can solve un-
certainty and complexity problems simultaneously by compact representation of
joint probability distribution. We have to estimate multiple variables, such as
part identity and pose (xP ), object identity and pose (xO), and scene properties
like place identity (xS). If we model this problem using a simple Bayesian frame-
work with a simple directed graphical model, as Fig. 3(a), then we can represent
the joint probability distribution in a factored form, as in equation (1) (This is
conventional approach).

p(xS , xO, xP , I) = p(I|xP )p(xP |xO)p(xO |xS)p(xS) (1)

Although this graphical model can represent the joint probability density in a
simpler form, it cannot model the whole visual context correctly. The first prob-
lem of the model is that it cannot represent the hierarchical interaction of each
layer explicitly. Only top-down contexts are represented using directed arrows.
However, in practice, bottom-up contextual information also exist. As indicated
in [8], recognized objects can activate a scene context, and a recognized scene
can also activate object recognition. Objects and object parts have properties of
bidirectional exchange similar to the scene-objects case. The second problem is
that neighboring contexts of parts and objects are not reflected in this graphical
model. As Bar and Ullman showed when they demonstrated the importance of
spatial relation in object recognition [6], we have to insert the spatial relation
context or neighbor context in the part and object layer. Based on these cog-
nitive facts, we solve the first problem by introducing an undirected graphical
model, such as Markov Random Field (MRF), a generalized version of directed
graphical model. MRF can more accurately represent the bidirectional property
of each layer. We solve the second problem by adding more spatial nodes to
reflect the neighboring context in the part and object layer.

Fig. 3(b) shows the refined graphical model for multiple context-based ob-
ject recognition. This graphical model can represent all the contexts properly.
Contexts are reflected on two types of graphical representations. The top-down
and bottom-up context of hidden variables is handled in tree-structured graph-
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Fig. 3. (a) Simple Bayesian network can model only top-down influences. (b) Proposed
hierarchical graphical model (HGM) model can represent bottom-up, top-down and
neighboring context simultaneously. (c) An object node gathers three kinds of messages.

ical representation (here, red thick lines). In addition, sensory evidence is rep-
resented by thin black lines. The neighboring context of parts and object is
reflected on planar loop structured graphic (here, dotted thick blue lines). The
black nodes are pixel contexts acting as visual features robust to photometric
and geometric distortions. These pixel contexts provide bottom-up evidence to
the part layer. Similarly, whole scene features give bottom-up evidence to the
scene layer.

3 Inference by Particle-Based Belief Propagation

3.1 Modified Belief Propagation (BP)

The goal of scene interpretation using the graphical model of Fig. 3(b) is to
estimate hidden variables. We first assume discrete random variables for as part
identity, object identity and scene identity. From a statistical view point, variable
estimation is equivalent to computing certain marginal probabilities. The term
inference means the computation of marginal probabilities. A practical inference
method is belief propagation (BP), which is supposed to solve inference prob-
lem at least approximately [10]. We adapt the standard BP to the hierarchial
graphical model in terms of three aspects.

(1) Function-based message categorization: We can represent the multiple con-
texts by three types of messages: bottom-up (M1), top-down (M2), and neighbor
(M3) messages. Fig. 3(c) shows a part of the graphical model in object layer. An
object node receives messages from the lower node (part information), the higher
node (scene context) and neighboring nodes (neighboring object) simultaneously.
The belief at the object node is updated by

B(xO) = αM1(xO)M2(xO)M3(xO). (2)
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(2) Max-product rule: We use the max-product message update instead of sum-
product in standard BP because the max-product shows a significantly better
convergence [11].

(3) Approximation of message update: Message updating in standard BP is
very inefficient since the node where message is propagated has to be excluded
during message gathering and while other messages are recalculated. We make
the message update efficient by replacing it with a current belief (B(xS)) of that
node:

M2(xO) ← max
xS

{ψOS(xO, xS)B(xS)} (3)

where ψOS(xO, xS) is the compatibility or correlation function between two
nodes. Contextual information is stored in this compatibility function. The mes-
sage is propagated by tune-MAX. We tune all possibly transferable messages by
multiplying current belief by the compatibility function, then only the maximal
message is propagated to the node. The modified BP is held for both part layer
and scene layer as object layer.

3.2 Particle-Based Belief Propagation (PBP)

In general, belief distribution of each node cannot be represented by parametric
forms. A stochastic approximate inference must represent the distribution by
a set of weighted samples. Conventionally, nonparametric BP is optimized to
continuous random variables such as tracking or feature localizations [12]. We
apply the concept of particle filter to the proposed HGM for object recogntion.

As discussed, there are many sources of ambiguities from object similarity,
blurring by motion, and image noises. One solution to these ambiguities, in
the computational approach, is not to jump to conclusions but to allow multiple
high-probability values to stay available until longer feedbacks like visual context
exert an influence. The concept of particle filtering is to compute a set of plausible
guesses instead of a single guess to estimate a variable. These guesses are then
assigned as weights to approximate a posterior distribution. Fig. 4(a) shows the
particle-based BP in the object layer. A particle is composed of a hypothesized
object ID and deterministically estimated object pose (scale, orientation, and
position in image) relative to model CFCM . Each particle weight is updated
by tune-max (M2(x

(i)
O ) = maxk{ψOS(x(i)

O , x
(k)
S )B(x(k)

S )}). In general, a particle
is generated using three kinds of correlation functions. After message update,
particles are resampled using optimal resampling [13]. The same PBP also exists
in the part layer, and the scene layer.

4 Learning of Compatibilities

The notion of learning in graphical model is the same as the learning of com-
patibility functions that relate two neighboring nodes. Fig. 4(b) shows seven
compatibility functions to learn. Two evidence functions (φ(y, xP ), φ(y, xS)),
part-part compatibility (ψ(xP , xP )), part-object compatibility for bottom-up
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Fig. 4. (a) Each node is represented by a set of particles, or possible hypotheses.
Belief of each particle is calculated by incoming bottom-up, top-down and neighboring
messages. (b) Learning is estimating both nodes and compatibilities. There are 7 kinds
of compatibilities to learn in the HGM.

(ψ(h({xP }), xO)), part-object compatibility for top-down (ψ(xP , xO)), object-
object compatibility (ψ(xO , xO)), and scene-object compatibility (ψ(xO , xS)).
These compatibilities can be regarded as functional representations of multiple
visual contexts. The compatibility functions are modeled as follows:

– φ(y, xP ) is bottom-up evidence to part and estimated by Gaussian noisy
measurement model of appearance similarity between scene and shared fea-
ture. Shared feature is generated by visual clustering in feature space.

– φ({y}, xS) is bottom-up evidence to scene and estimated by holistic voting
of the distribution of nearest features. Each clustered scene feature contains
the prior distribution of place.

– ψ(xP , xP ) is compatibility between neighboring parts and measured by same
labeling and proximity of part location.

– ψ(h({xP }), xO) is compatibility between parts and object, which estimated
through the size of Hough transform in pose space. Pose consistent parts
provide messages in approximated form of Hough size.

– ψ(xP , xO) is compatibility between part and object, which is estimated by
modeling Gaussian noisy model of part pose.

– ψ(xO, xO) is compatibility between objects and estimated by learning of
labeled training objects.

– ψ(xO, xS) is compatibility between object and scene. This is also estimated
by counting labeled training images (see Fig. 5(b)).

5 Details of Implementation

5.1 Representation of Object and Scene

We interpret scenes at identification level: identifying previously viewed objects
with place ID as in Fig. 1(a). We represent a 3D object with a set of view-
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Fig. 5. (a) An example of 3D object representation: 5 mutliview objects are clus-
tered to a single CFCM. In a CFCM, each parts shares object pose parameters. (b)
Compatibility matrices: (Top) shows place-object and (bottom) shows object-object
compatibilities. Darker intensity represents stronger correlation.

clustered common frame constellation models (CFCM) that are extended to 3D
object representation using [3][15] (see Fig. 5(a)). Each CFCM is composed of
a set of learned parts. This means that each part contains both mean, variance
of pose and an index to the shared features to handle a variety of objects. We
assume that an object is decomposed into radial symmetry parts and corner-like
parts. Features are generated by describing them with the localized histograms
of edge orientation, edge density, and hue. This feature consists of a histogram
vector of appearance and image structure-based pose (part size, part orientation,
location) which is used to learn CFCMs. More details of the feature detector
and scalable 3D object representation scheme are explained in [14] and [15],
respectively. Place information is encoded into clustered features which store
the distribution of place information.

5.2 Particle Management in Scene Interpretation

Particle Generation: Ideally, we can generate particles using the compatibil-
ities in bottom-up, top-down, and neighboring messages. However, we generate
them using only bottom-up messages.

Resampling particles: The recognition system degenerates to a single peak
if we use unimodal particle representation. We solve this problem using multi-
modal particle representation in part layer and object layer [16].

Final particle selection : The system requires at least four steps of concurrent
message update and resampling to propagate the top-down context to the lowest
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layer. Final scene interpretation is performed by selecting the max particles in
each multi-modal representation.

6 Experimental Results

We evaluate the context-based scene interpretation system using a huge
database. Table 1 summarizes the database. After scalable learning of 3D by
feature clustering and view clustering, the feature size is reduced by 33.3%
from 72,083 to 48,063 (ε = 0.2). After shared feature-based view clustering, the
CFCM size is reduced from 5.5 CFCMs/object to 2.4 CFCMs/object (T 2=10
pixels). Fig. 5 shows the learning results of compatibility between place-object
and object-object by counting the occurrences.

The proposed system can remove the ambiguity of blurred object shown in
Fig. 6. The place information acquired from overall scene features provides priors
of certain objects. Finally, we evaluated our proposed method through extensive
experiments with 228 indoor scenes. Recognition is assumed to be successful if
both object ID and pose are correct. Fig. 7(a) is the results by cumulatively
adding contexts. L1, L2, L3 represent part, object, scene layer, respectively.
M1, M2, M3 represent bottom-up, top-down, neighboring message, respectively.

Table 1. Composition of database for training and test: We labeled place IDs to each
images and objects are segmented and labeled for training. Test set is composed of
unoverlapped images and unseened images (scene size: 640×480 color image).

Role Scene Object
No. of place No. of scene No. of objects No. of views

Training 12 228 (even) 112 620

Test
Learned 12 228 (odd) 112 645

Unlearned random 25 0 0

Fig. 6. The proposed context-based scene interpretation system can disambiguate
blurred objects successfully, especially with the help of scene context
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Fig. 7. (a) Performance by adding contexts: Full contexts show very low false alarm
rate. (b) Component effect of individual context: Part context shows most dominant.
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Fig. 8. Scene interpretation without scene context (a) and with scene context (b)

Especially C1 is basic recognition block which is composed of L1M1 and L2M1.
So, L1M3 denotes neighboring part context, L1M2 denotestop-down context to
part. L2M3 means neighboring object context. Without context, the detection
rate (DR) is 95.8% and the false alarm rate (FAR) is 15%. However, if we use
full context, the DR is 96.28% and FAR is 0.15%. Fig. 7(b) shows the impact of
each context to recognition. Fig. 8 represents the power of scene context.

7 Conclusions

In this paper, we proposed a novel scene interpretation paradigm using the hi-
erarchical context in cluttered indoor environments to remove ambiguities. The
key contribution is unification of scene, object and part context using a hierar-
chical graphical model. To handle the ambiguities, we proposed a particle-based
belief propagation method to object recognition problem. Finally, we validate
the feasibility of model-based scene interpretation by the experiments in com-
plex indoor environments. Work is underway to extend to the scene interpreta-
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tion of category level by properly modeling feature detector and compatibility
functions.
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