Skip to main content

The Evolutionary Emergence of Intrinsic Regeneration in Artificial Developing Organisms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3853))

Abstract

Inspired upon the development of living systems, many models of artificial embryogeny are being proposed. These are usually aimed at the solution of some know limitations of evolutionary computation; among these scalability, flexibility and, more recently, fault-tolerance.

This paper focuses on the latter, proposing an explanation of the intrinsic regenerative capabilities displayed by some models of multi-cellular development.

Supported by the evidence collected from simulations, regeneration is shown to emerge as evolution converges to more regular regions of the genotype space.

The conclusion is that intrinsic fault-tolerance emerges as evolution increases the evolvability of the development process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, P., Bode, H.: Formation of pattern in regenerating tissue pieces of hydra attenuata. i. head-body proportion regulation. Dev. Biol. 78, 484–496 (1990)

    Article  Google Scholar 

  2. Ramon-Cueto, A., Cordero, M., Santos-Benito, F., Avila, J.: Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435 (2000)

    Article  Google Scholar 

  3. Federici, D., Downing, K.: Evolution and development of a multi-cellular organism: Scalability, resilience and neutral complexification. Artificial Life Journal 12(3) (2006) (in press)

    Google Scholar 

  4. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)

    Article  Google Scholar 

  5. Liu, H., Miller, J., Tyrrel, A.: Intrinsic evolvable hardware implementation of a robust biological development model for digital systems. In: Proc. of the 6th NASA Conference on Evolvable Hardware, pp. 87–92 (2005)

    Google Scholar 

  6. Miller, J.: Evolving a self-repairing, self-regulating, french flag organism. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Roggen, D., Federici, D.: Multi-cellular development: is there scalability and robustness to gain? In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 391–400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Waddington, C.: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)

    Article  Google Scholar 

  9. Schmalhausen, I.: Factors of Evolution: The Theory of Stabilizing Selection. Univ. of Chicago Press (1949); (reprinted in 1986)

    Google Scholar 

  10. Stearns, S.: Progress on canalization. Proc. Natl. Acad. Sci. USA, 10229–10230 (2002)

    Google Scholar 

  11. Gavrilets, S., Hastings, A.: A quantitative-genetic model for selection on developmental noise. Evolution 48(5), 1478–1486 (1994)

    Article  Google Scholar 

  12. Rice, S.H.: The evolution of canalization and the breaking of von baer’s laws: Modeling the evolution of development with epistasis. Evolution 52(3), 647–656 (1998)

    Article  Google Scholar 

  13. Siegal, M., Bergman, A.: Waddington’s canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99(16), 10528–10532 (2002)

    Article  Google Scholar 

  14. Stanley, K., Miikulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  15. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4(4), 461–476 (1990)

    MATH  Google Scholar 

  16. Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon (1994)

    Google Scholar 

  17. Hornby, G., Pollack, J.: Body-brain co-evolution using L-systems as a generative encoding. In: Spector, L., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 868–875. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  18. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for physical design. In: Proc. of the 2001 Congress on Evolutionary Computation, CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  19. Bongard, J.: Evolving modular genetic regulatory networks. In: Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1872–1877. IEEE Press, Piscataway (2002)

    Chapter  Google Scholar 

  20. Dellaert, F., Beer, R.: Toward an evolvable model of development for autonomous agent synthesis. In: Brooks, R., Maes, P. (eds.) Proc. of Artificial Life IV, pp. 246–257. MIT Press, Cambridge (1994)

    Google Scholar 

  21. Eggenbergen-Hotz, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) Proc. of the 4th European Conference on Artificial Life (ECAL 1997), pp. 205–213 (1997)

    Google Scholar 

  22. Miller, J.: Evolving developmental programs for adaptation, morphogenesys, and self-repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Cangelosi, A., Nolfi, S., Parisi, D.: Cell division and migration in a ’genotype’ for neural networks. Network: Computation in Neural Systems 5, 497–515 (1994)

    Article  MATH  Google Scholar 

  24. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., et al. (eds.) Proc. of GECCO 1999, pp. 35–43 (1999)

    Google Scholar 

  25. Ohno, S.: Evolution by Gene Duplication. Springer, Heidelberg (1970)

    Google Scholar 

  26. Kindred, B.: Selection for an invariant character, vibrissa number in the house mouse. v. selection on non-tabby segregants from tabby selection lines. Genetics 55(2), 365–373 (1966)

    Google Scholar 

  27. Maynard-Smith, J., Sondhi, K.: The genetics of a pattern. Genetics 45(8), 1039–1050 (1960)

    Google Scholar 

  28. Nowak, M.: What is a quasi-species? Trends Ecol. Evol. 7, 118–121 (1992)

    Article  Google Scholar 

  29. van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)

    Article  Google Scholar 

  30. Edlund, J.A., Adami, C.: Evolution of robustness in digital organisms. Artificial Life 10, 167–179 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Federici, D. (2006). The Evolutionary Emergence of Intrinsic Regeneration in Artificial Developing Organisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_16

Download citation

  • DOI: https://doi.org/10.1007/11613022_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics