Skip to main content

A High-Throughput Method to Quantify the Structural Properties of Individual Cell-Sized Liposomes by Flow Cytometry

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3853))

Abstract

We describe a new high-throughput method to quantify the structural properties of individual cell-sized liposomes. We labeled an internal aqueous solution of liposomes with a green fluorescent protein (GFP) and the membrane with a fatty acid conjugated with a red fluorescent probe. The internal aqueous volume and lipid membrane volume of each liposome was measured, and double-labeled liposomes were analyzed by flow cytometry, a useful tool that enables us to estimate the internal aqueous and lipid membrane volumes of individual cell-sized liposomes independently of shape and structure. This method shows promise in opening the way to understanding the characteristics of biochemical reactions occurring within a liposome, to optimizing the preparation method of liposomes, and to overcoming many of the difficulties in realizing an artificial cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409, 387–390 (2001)

    Article  Google Scholar 

  2. Luisi, P.L.: Toward the engineering of minimal living cells. Anat. Rec. 268, 208–214 (2002)

    Article  Google Scholar 

  3. Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90, 49–59 (2003)

    Google Scholar 

  4. Deamer, D.: A giant step towards artificial life? Trends Biotechnol. 23, 336–338 (2005)

    Article  Google Scholar 

  5. Pohorille, A., Deamer, D.: Artificial cells: prospects for biotechnology. Trends Biotechnol 20, 123–128 (2002)

    Article  Google Scholar 

  6. Monnard, P.-A.: Liposome-entrapped polymerases as models for microscale/nanoscale bioreactors. J. Membrane Biol. 191, 87–97 (2003)

    Article  Google Scholar 

  7. Oberholzer, T., Wick, R., Luisi, P.L., Biebricher, C.K.: Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Commun. 207, 250–257 (1995)

    Article  Google Scholar 

  8. Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261, 238–241 (1999)

    Article  Google Scholar 

  9. Yu, W., Sato, K., Wakabayashi, M., Nakaishi, T., Ko-Mitamura, E.P., Shima, Y., Urabe, I., Yomo, T.: Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92, 590–593 (2001)

    Article  Google Scholar 

  10. Nomura, S.M., Tsumoto, K., Hamada, T., Akiyoshi, K., Nakatani, Y., Yoshikawa, K.: Gene expression within cell-sized lipid vesicles. ChemBioChem 4, 1172–1175 (2003)

    Article  Google Scholar 

  11. Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003)

    Article  Google Scholar 

  12. Chen, I.A., Roberts, R.W., Szostak, J.W.: The Emergence of Competition Between Model Protocells. Science 305, 1474–1476 (2004)

    Article  Google Scholar 

  13. Ishikawa, K., Sato, K., Shima, Y., Urabe, I., Yomo, T.: Expression of a cascading genetic network within liposomes. FEBS Lett. 576, 387–390 (2004)

    Article  Google Scholar 

  14. Noireaux, V., Bar-Ziv, R., Libchaber, A.: Principles of cell-free genetic circuit assembly. Proc. Natl. Acad. Sci. USA 100, 12672–12677 (2003)

    Article  Google Scholar 

  15. Svetina, S., Zeks, B.: Shape behavior of lipid vesicles as the basis of some cellular processes. Anat. Rec. 268, 215–225 (2002)

    Article  Google Scholar 

  16. Woodle, M.C., Papahadjopoulos, D.: Liposome preparation and size characterization. Methods Enzymol. 171, 193–217 (1989)

    Article  Google Scholar 

  17. Lesieur, S., Grabielle-Madelmont, C., Paternostre, M.-T., Ollivon, M.: Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering. Anal. Biochem. 192, 334–343 (1991)

    Article  Google Scholar 

  18. Oku, N., Kendall, D.A., MacDonald, R.C.: A simple procedure for the determination of the trapped volume of liposomes. Biochim. Biophys. Acta 691, 332–340 (1982)

    Article  Google Scholar 

  19. Perkins, W.R., Minchey, S.R., Ahl, P.L., Janoff, A.S.: The determination of liposome captured volume. Chem. Phys. Lipids 64, 197–217 (1993)

    Article  Google Scholar 

  20. Shapiro, H.M.: Practical Flow Cytometry, 3rd edn. John Wiley & Sons, New York (1995)

    Google Scholar 

  21. Yamada, K., Toyota, T., Takakura, K., Ishimaru, M., Sugawara, T.: Preparation of BODIPY probes for multicolor fluorescence imaging studies of membrane dynamics. New J. Chem. 25, 667–669 (2001)

    Article  Google Scholar 

  22. Suga, Y., Yomo, T., Urabe, I.: Heme content of catalase I from Bacillus stearothermophilus. J. Ferment. Bioeng. 81, 259–261 (1996)

    Article  Google Scholar 

  23. Kikuchi, H., Suzuki, N., Ebihara, K., Morita, H., Ishii, Y., Kikuchi, A., Sugaya, S., Serikawa, T., Tanaka, K.: Gene delivery using liposome technology. J. Control. Release 62, 269–277 (1999)

    Article  Google Scholar 

  24. Bagwell, C.B., Adams, E.G.: Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. NY Acad. Sci. 677, 167–184 (1993)

    Article  Google Scholar 

  25. Nagle, J.F., Tristram-Nagle, S.: Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159–195 (2000)

    Google Scholar 

  26. Hofsäβ, C., Lindahl, E., Edholm, O.: Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys. J. 84, 2192–2206 (2003)

    Article  Google Scholar 

  27. Craven, B.M.: Pseudosymmetry in cholesterol monohydrate. Acta Cryst. B 35, 1123–1128 (1979)

    Article  Google Scholar 

  28. Israelachvili, J.N., Mitchell, D.J.: A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta 389, 13–19 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sato, K., Obinata, K., Sugawara, T., Urabe, I., Yomo, T. (2006). A High-Throughput Method to Quantify the Structural Properties of Individual Cell-Sized Liposomes by Flow Cytometry. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_27

Download citation

  • DOI: https://doi.org/10.1007/11613022_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics