OCL and Graph-Transformations — A Symbiotic
Alliance to Alleviate the Frame Problem™*

Thomas Baar

Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,
CH-1015 Lausanne, Switzerland
thomas.baar@epfl.ch

Abstract. Many popular methodologies are influenced by Design by
Contract. They recommend to specify the intended behavior of opera-
tions in an early phase of the software development life cycle. Formal
contract specification languages, however, are still rarely used because
their semantics often mismatch the needs of software developers. Restric-
tive specification languages usually suffer from the ”frame problem”: It
is hard to express which parts of the system state should remain unaf-
fected when the specified operation is executed. Constructive specifica-
tion languages, instead, suffer from the tendency to make specifications
deterministic. This paper investigates how a combination of OCL and
graph transformations can overcome the frame problem and can make
constructive specifications less deterministic. Our new contract specifica-
tion language is considerably more expressive than both pure OCL and
pure graph transformations.

Keywords: Design by Contract, Behavior Specification, Graph Gram-
mars, OCL, QVT.

1 DMotivation

Design by Contract (DbC) [1,2] encourages software developers to specify the
behavior of class operations in an early phase of the software development life
cycle. Precise descriptions of the intended behavior of operations can be of great
help to grasp design decisions and to understand the responsibilities of classes
identified in the design. The specification of behavior is given in form of a con-
tract consisting of a pre- and a postcondition, which clarify two things: The
pre-condition explicates all conditions that are expected to hold whenever the
operation is invoked. The post-condition describes how the system state looks
like upon termination of the operation’s execution.

There are many specification languages available to define contracts formally.
Despite their differences at the surface level, all languages can be divided into
only two classes. The classification is based on the technique to specify the

* This work was supported by HASLER-Foundation, project DICS-1850.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 20-31] 2006.
© Springer-Verlag Berlin Heidelberg 2006

OCL and Graph-Transformations — A Symbiotic Alliance 21

post-condition of a contract. Restrictive specification languages formulate the
post-condition in form of a predicate, i.e. a Boolean expression, which restricts
the allowed values for properties in the post-state. Well-known examples for
restrictive languages are OCL, JML, Z, and Eiffel. Constructive specification
languages interpret post-conditions not as restrictions on the post-state but —
conceptually completely different — as updates, which transform the pre-state
into the post-state. In many cases, an update denotes a deterministic contract:
for a pre-state that satisfies the pre-condition the post-state can be computed
deterministically. Well-known examples for constructive languages are B, ASM,
graph transformations, and UML’s Action Language.

This paper investigates how the expressive power of constructive languages
— as an example we consider one form of graph transformations — can be im-
proved to master non-deterministic contracts. In Sect. Bl the basic elements of
graph transformations are extended with restrictive specification elements (OCL
clauses). In its extended version, graph transformations are more powerful but
still not powerful enough to formalize all contracts that are relevant in practice.
Thus, a second extension is discussed in Sect. @l which allows to simulate the
loose semantics of restrictive languages. To summarize, the proposed extensions
of graph transformations enable software developers to write formal contracts
that (1) do not suffer from the frame problem, (2) are non-deterministic, and
(3) allow to change a state freely.

Related Work. The idea to use graph transformations to formalize contracts
is not novel. There are even already tools for this purpose available [3,4]. The
examples we found in the literature, however, are always deterministic contracts,
which do not require to extend graph transformations with restrictive specifica-
tion elements.

The idea to extend graph transformations with OCL clauses has been adopted
from the Query/Views/Transformations proposal (QVT) [5], which is a response
on a corresponding request for proposals by the OMG. In Sect. [3, the QVT
approach is put into a broader context by providing the link from model trans-
formation (the original application domain of QVT) to formal contract
specification.

Extending graph transformation rules with OCL also means to combine OCL
with object diagrams, what has been explored in the literature also for a differ-
ent target than contract formalization. The language VOCL (Visual OCL) uses
collaborations to represent OCL constraints in a visual format for better read-
ability [6]. Similarly, the proposal made by Schiirr in [7] is inspired by Spider
diagrams and aims at a more readable, graphical depiction of OCL constraints.
The approaches described in [6,[7] cannot be compared with the approach pre-
sented in this paper because they have a fundamentally different goal. Firstly,
[6,[7] do not use OCL in order to improve the expressive power of a graphical
formalism. Instead, the graphical formalism is merely used as an alternative to
OCL’s textual standard syntax. Secondly, our approach targets only operation
contracts whereas [6}[7] aim at a visualization of any kind of OCL constraints
including invariants.

22 T. Baar

2 Restrictive Languages and the Frame Problem

2.1 Example: CD Player

The main purpose of CD players is to entertain people and to play the content of
compact discs (CDs). The content of a CD is organized by tracks that are burned
in a certain order on the CD. We want to assume that a CD can be played in
two modes. In the normal mode, all tracks on the CD are played in the same
order as they appear on the CD. In addition, the CD player can work in a shuffle
mode in which the tracks are played in a randomized order. Finally, we want
to assume that a CD player has a display on which, depending on the chosen
display mode, the elapsed or remaining time for the current track is shown. This
CD player scenario is modeled straightforwardly by the class diagram shown in
Fig. [

CDPlayer <<enumerate>>
timeDisplayMode: TimeDM TimeDM

currentTrack:Integer 0.1 0..1 1.*
CcDh Track elapsed
inserted {ordered} remaining

setNextTrack()
setRandomTrack()
play()

Fig. 1. Static model of CD player scenario

In the next subsection, we will focus on the formal behavior specification for
the operations setNextTrack() whose intended semantics is to determine the
next track to be played if the CD player is working in the normal mode. The
operation setRandomTrack () will be specified in Sect.[3and determines the next
track if the CD player works in the shuffle mode.

2.2 Complexity of the Frame Problem

The intended semantics of operation setNextTrack() is to move one track for-
ward on the CD and to increase the value of attribute currentTrack by one.
The formalization of this behavior in a restrictive language such as OCL seems
to be straightforward but there are some traps one can fall into.

context CDPlayer ::setNextTrack()
pre: self.inserted —>notEmpty ()
post: self.currentTrack = (self.currentTrack@pre mod
self .inserted .track—>size ()) + 1

This contract has some merits since it resolves ambiguities that were hidden
in the informal description of the behavior. The first important information is
expressed by the pre-condition saying that the CD player assumes to have a
CD inserted whenever the operation setNextTrack() is invoked. Note that this
assumption is indeed necessary because the post-condition navigates over the

OCL and Graph-Transformations — A Symbiotic Alliance 23

currently inserted CD. The second merit of the contract is to make explicit the
behavior of setNextTrack() when the current track is the last one on the CD.
Reasonable variants might be to set currentTrack to zero (and thus to stop
playing) or to continue with the first track on the CD as it is stipulated by our
OCL constraint.

Although the OCL contract clarifies the informally given specification in some
respects, it does not capture completely the intended behavior. According to the
formal semantics of OCL in [§], an implementation still fulfills the contract even
if it would not only change the value of currentTrack but also the display
mode (attribute timeDisplayMode). Or the implementation could create/delete
other objects, or could change the state of other objects, or could change the
connections (links) between objects.

3 Constructive Languages and Non-deterministic
Contracts

Graph transformations are introduced as a constructive specification language.
It is discussed, why pure graph transformations are able to specify the operation
setNextTrack() but fail to specify setRandomTrack() correctly. To overcome
this problem, we finally discuss a combination of constructive and restrictive
specification style.

3.1 Non-deterministic Contracts

Non-deterministic contracts are necessary when not all details of the operation
behavior should be fixed in time of writing the contract.

The intended behavior of setRandomTrack() is a typical example for a non-
deterministic contract. The operation name set RandomTrack might be mislead-
ing as it might set up the expectation that our contract will enforce a true
randomized behavior of the implementation in the sense that invoking the op-
eration twice in the same state will most likely result in different post-states.
Note that this kind of randomness cannot be expressed by a contract (neither in
OCL nor in any other contract language) because it would require to describe
formally the behavior of multiple invocations whereas a contract can specify only
the behavior of a single invocation.

The specification of setRandomTrack() in OCL looks as follows:

context CDPlayer :: setRandomTrack ()
pre: self.inserted —>notEmpty ()
post: Set{1l..self.inserted .track—>size ()}
—>includes (self.currentTrack)

This contract suffers again from the frame problem but, if this is ignored
for a while, the post-condition keeps intentionally the exact post-state open
and thus allows many different implementations. Even, an implementation that
constantly sets attribute currentTrack to 1 was possible and would conform to
this contract.

24 T. Baar

3.2 Graph Transformations as a Constructive Language

A graph transformation rule consists of two graph patterns called left-hand side
(LHS) and right-hand side (RHS). Graph patterns are normal graphs whose
elements, i.e. nodes and links connecting some nodes, are identified by labels.

Besides this basic version of graph transformation rules, modern graph trans-
formation systems offer much more sophisticated elements to describe patterns
such as typed nodes, multiobjects, negative application conditions (NACs), pa-
rameters, etc. (see [9]). In the rest of the paper, we will use the graph transforma-
tion system QVT submitted as a proposal to the OMG for the standardization
of model transformations. For details on the syntax/semantics of this formalism,
the interested reader is referred to [5]. A bigger example on how QVT can be
used as a contract specification language is given in [10].

As a simple example for a behavioral specification using graph transforma-
tions, Fig. [2 shows a rule specifying the intended behavior of setNextTrack().

setNextTrack(self: CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted
sel.oraver aCD:CD <> aCD:CD
currentTrack=x currentTrack=

(x mod self.inserted.track->size()) + 1

Fig. 2. Specification of setNextTrack with QVT

The graph patterns LHS, RHS use typed nodes (e.g. self:CDPlayer) that
must conform to the system description given in Fig. [l The LHS of the rule
serves two things. First, it imposes restrictions that must hold in order to make
the rule applicable for the given state. For setNextTrack(), the effective re-
striction is that the CD player self has a CD inserted (expressed by the link
between self and aCD). The second purpose of LHS is to query the pre-state
and to extract information that is important for the post-condition encoded
by RHS. In our example, the variable x extracts the current value of attribute
currentTrack. Note that the attribute currentTrack could have been omitted
in LHS and the rule would still be applicable on exactly the same set of graphs
as before (but, in this case, RHS had to be reformulated).

The RHS of setNextTrack () is almost identical to LHS except for the value of
attribute currentTrack. Consequently, applying the rule on a state will change
only the value of currentTrack on the object self and nothing else. The new
value of this attribute is computed based on the information queried during the
first step of the rule application.

3.3 Mixing Constructive and Restrictive Languages

Graph transformation rules, as they were explained so far, can capture deter-
ministic contracts in an elegant way whereas it seems hopeless to use them for
non-deterministic contracts.

OCL and Graph-Transformations — A Symbiotic Alliance 25

Fortunately, there is a solution and the same problem has been already tackled
by other constructive languages. The language B, for example, offers, besides
a pseudo-programming language for computing the post-state, the construct
ANY-WHERE. This construct causes a non-deterministic split in the control
flow and connects the same pre-state with possibly many post-states. The non-
deterministic choices are, however, restricted by a predicate, which has to be
evaluated in all control flows to true. In other words, constructive and restrictive
specification style is mixed. The formal semantics of ANY-WHERE is defined in
[11]. For an example-driven explanation of ANY-WHERE, the reader is referred
to [12].

setRandomTrack(self: CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted
aCD:CD aCD:CD

currentTrack=x

currentTrack=y

{when}

0 <y andy < self.inserted.track->size() + 1

Fig. 3. Specification of setRandomTrack with QVT

Basically, for increasing the expressive power of graph transformations the
same idea as in B can be applied. In QVT, variables can occur in RHS even if
they do not occur in LHS. Consequently, the value of these fresh variables is not
fixed anymore by the first step of the rule application and can be chosen non-
deterministically. In order to get at least partial control over the values of these
variables, QVT has added when-clauses to transformation rules. A when-clause
contains constraints written in OCL. The constraint restricts the possible values
not only for fresh variables used in RHS but for all elements in LHS and RHS.

The specification of setRandomTrack() shown in Fig. [3 takes advantage of
the fresh variable y in RHS. The value of y is restricted in the when-clause what
exactly captures the intended semantics.

4 Giving Graph Transformations a Loose Semantics

Although the integration of the when-clause is a necessary step to make graph
transformations widely applicable and to overcome the determinism problem,
this step is not sufficient. Another immanent problem of constructive languages
remained unsolved. It is sometimes necessary to express in the contract that the
implementations of the operation are allowed to change parts of the system state
in an arbitrary way. If one puts this request to its very end, it means that in
some cases the loose semantics of restrictive languages is needed.

In this section, we propose an extension of QVT that makes it possible to
simulate the loose semantics of purely restrictive contracts written in OCL. These
enrichments require a slight extension of QVT’s notation to describe LHS and
RHS.

26 T. Baar

4.1 Possible Side Effects of Restrictive Specifications

As argued in Sect. 2] the contract for setNextTrack() written in OCL does not
exclude unintended side effects. These side effects can be classified as follows:

1. On object self, the values of the attributes not mentioned in the post-
condition might have been changed.

2. The values of attributes of CDPlayer-objects different from self might have
been changed.

3. The values of attributes of objects of other classes might have been changed.

4. An unrestricted number of objects of some classes might have been newly
created.

5. An arbitrary number of existing objects except self might have been deleted.

6. An arbitrary number of links might have been created/deleted.

We will demonstrate in Sect. how the contract for setNextTrack () shown
in Fig. @ had to be changed in order to capture each of these possible side effects.
Beforehand, in the next subsection, the new constructs proposed for QVT, which
are needed to simulate loose semantics, are summarized.

4.2 A Proposal for Extending QVT

Optional Creation/Deletion of Objects and Links. Graph transformation
rules must be able to express that an object is optionally created or deleted. The
same holds for links. So far, one can only specify that an object/link must have
been created (deleted) by displaying the object/link in RHS but not LHS (in LHS
but not in RHS). We propose to adorn an object/link in RHS with a question
mark (’?’) to mark its optional creation/deletion.

Note that it is a proven technique to adorn elements in LHS and RHS in order
to modify the standard semantics of the rule. QVT and other graph transforma-
tion formalisms allow already to adorn elements with "X’ in order to express a
negative application condition (NAC).

Placeholders to Denote Arbitrary Attributes/Classes. A more signif-
icant extension of graph transformations is the introduction of placeholders.
Currently, QVT allows to describe the change of an attribute value only if the
name of the attribute is known. One can, for example, not specify the reset of
all attributes of type Integer to 0 unless all these attributes explicitly occur in
the graph transformation rule.

We propose to use placeholders for attributes as a representation of arbitrary
attributes. These placeholders appear in the same compartment of the object
as normal attributes. In order to distinguish between normal attributes and
placeholders, we start the name of the latter always with a backslash (\). This
convention relies on the assumption that the name of normal attributes never
starts with backslash. For example, if \att appears in the attribute compartment
of an object, then it represents all attributes of this object (including attributes
inherited from super-classes).

OCL and Graph-Transformations — A Symbiotic Alliance 27

anchestorclasses |«

Attribute B 1 «| Association
Class —
name:String 2 participants name:String
1 1 1
* 1 R 2 * ;
Slot Object Link

Class.allAttributes:Set(Attribute) = self.anchestorclasses->including(self)->collect(attribute)

Fig. 4. Simplifed metamodel for states

Sometimes, a placeholder should not represent all possible attributes but only
some of them. To achieve this, we propose to use QVT’s when-clause to define
using OCL constraints which attributes are represented by which placeholders.
Such OCL constraints, however, refer to the metamodel of UML object diagrams.
To ease the understanding, we rely here on a simplified version of the official
metamodel as shown in Fig. [

Furthermore, in order to distinguish easily OCL constraints referring to the
metamodel from ordinary ones, we decided — slightly abusing OCL’s official
concrete syntax — to precede within OCL expressions each navigation on the
metalevel with a backslash.

Besides placeholders for attributes there are also analogously defined place-
holders for classes.

4.3 Realization of Possible Side Effects

We give examples on how the side effects of OCL constraints presented in
Sect. L] can be simulated using our extension of QVT. In all cases, we start
from the constructive specification of setNextTrack() shown in Fig.[2

Other Attributes for Self Can Change. A naive solution could be to ex-
plicitly list all attributes of object self in both LHS and RHS and to assign in
RHS a fresh variable to the attribute.

This solution is first of all tedious to write down and in addition has the limits
that were already discussed: In time of writing the contract, not all subclasses
of CDPlayer might be known. Be aware that the QVT rule formulated in Fig.
is applicable even when self matches with an object whose actual type is not
CDPlayer but a subclass of it. The core of the problem is, that, when writing
the contract, we cannot predict which attributes the object self actually has.

The rule shown in Fig. Bl overcomes this principal problem. Each attribute of
self is represented by placeholder \attDiffCurrentTrack as long as its name
is different from ’currentTrack’. This is precisely described in the when-clause
by an OCL constraint: For the actual class of self (which might be a subclass

28 T. Baar

setNextTrack(self:CDPlayer) |

inserted
aCD:CD

n = self.inserted.track->size() and
self.\class.\allAttributes->reject(a| a.\name="currentTrack')->includes(\attDiffCurrentTrack)

inserted
aCb:CD

self:CDPlayer

currentTrack= (x mod n) + 1
\attDiffCurrentTrack=v'

self:CDPlayer

currentTrack=x
\attDiffCurrentTrack=v

<>

{when}

Fig. 5. Different attribute values for self

of CDPlayer) all valid declarations of attributes (including declarations from
super-classes) are collected. The OCL constraint in the when-clause stipulates
that the placeholder \attDiffCurrentTrack stands for any attribute as long as
it is not named ’currentTrack’ since attribute currentTrack cannot be changed
in an arbitrary way. The value of \attDiffCurrentTrack in LHS is represented
by variable v, which does not occur in the RHS. The new value v’ in RHS shows
that the value of the attribute matching with \attDiffCurrentTrack might
have been changed during the execution of the operation.

State of Other CDPlayer-Objects Might Change. This side effect is sim-
ilar to the effect of changing the state of self and can be captured by applying
the same technique to enrich the QVT transformation. A new object other is
added to both LHS and RHS. In RHS, the value of the placeholder \att is
changed to a possibly new value v’.

setNextTrack(self:CDPlayer) |

self:CDPlayer

inserted
aCD:CD

currentTrack=x

other:CDPlayer

\att=v

self:CDPlayer

currentTrack= (x mod n) + 1

inserted
aCD:CD

other:CDPlayer

\att=v'

when
n = self.inserted.track->size() and {)

self <> other

Fig. 6. Different attribute values for other objects of class CDPlayer

State of Objects of Other Classes Might Change. In order to simulate
state changes on objects of arbitrary classes different from CDPlayer (and its
subclasses) placeholders for classes are needed. We have introduced the place-
holder \OtherClass whose value is restricted by an appropriate constraint in the
when-clause. The technique to change the state of objects of class \OtherClass
is the same as the one exploited above to simulate the state change of CDPlayer-
objects.

Objects Different from Self Might Have Been Deleted. It is not enough
to add the question mark to the new object other (that represents an arbitrary

OCL and Graph-Transformations — A Symbiotic Alliance

setNextTrack(self:CDPlayer) |

n = self.inserted.track->size() and

\Class.alllnstances->reject(c| c.\name='"CDPlayer' or c.\anchestorclasses.\name->includes('CDPlayer')->
includes(\OtherClass) and

other.\class.\allAttribute->includes(\att)

self:CDPlayer inserted | acD:CD self:CDPlayer inserted -
aCD:CD
currentTrack=x \att1 = v1 currentTrack= (x mod n) + 1 =T
other:\OtherClass | other:\OtherClass
\att=v \att=v"
{when}

Fig. 7. Different attributes for object of other classes

setNextTrack(self.CDPlayer) |

self:CDPlayer

currentTrack=x

other:\Class

self:CDPlayer

inserted

currentTrack= (x mod n) + 1

“ aCD:CD

° other:\Class

self<>other

n = self.inserted.track->size() and

Fig. 8. Deletion of objects

29

object different from self). Unfortunately, the question mark must also be at-
tached on all objects different from self that are explicitly mentioned in RHS

(without such a question mark, the QVT semantics stipulates that all objects
occurring in RHS are not deleted).

Objects Might Have Been Created. Optional creation of arbitrarily many
objects is expressed by adding a multiobject other to RHS. For each class, other
represents the set of newly created objects.

setNextTrack(self.CDPlayer) |

self:CDPlayer

currentTrack=x

inserted

self:CDPlayer

currentTrack= (x mod n) + 1

inserted

other:\Class I

n = self.inserted.track->size()

Fig. 9. Creation of objects

Links Might Have Been Created. For the optional creation of links, two
arbitrary objects o1, 02 are searched in LHS. The classes of o1, 02 must be
connected by an association with name assoname. RHS stipulates the optional
creation of a corresponding link between both objects.

30 T. Baar

setNextTrack(self:CDPlayer,assoname:String) |

self:CDPlayer _ﬂi— self:CDPlayer Lﬂed-
aCD:CD aCD:CD
currentTrack=x currentTrack= (x mod n) + 1
>|
o1:\Class1 02:\Class2 < o1:\Class1 P-2SSoname I 5 \Class2

{when}

j

n = self.inserted.track->size() and
\Class1.anchestorclasses->including(\Class1)->exists(c1|
\Class2.anchestorclasses->including(\Class2)->exists(c2|
\Association.alllnstances->select(name=assoname)->exists(a| a.participants = Set(c1,c2))))

Fig. 10. Creation of links

Links Might Have Been Deleted. Analogously to the optional deletion of
objects we mark also links that are deleted optionally with a question mark.

setNextTrack(self:CDPlayer) |
self:CDPlayer _ﬂ- self:CDPlayer _"ﬁﬂ-
aCD:CD L aCD:CD
currentTrack=x - currentTrack= (x mod n) + 1 -
-
01:\Class1 02:\Class2 o1:\Class1 ? 02:\Class?2

{when}

n = self.inserted.track->size()

Fig. 11. Deletion of links

5 Conclusion and Future Work

In this paper, pros and cons of the two main behavior specification paradigms —
constructive and restrictive style — are discussed. If restrictive languages do not
provide provision for tackling the frame problem (such as OCL), then the speci-
fied contracts are comparably weak and do most often not capture the behavior
intended by the user. Constructive languages suffer from the opposite problem as
they sometimes prescribe too detailed the behavior and do not allow the freedom
for variations among possible implementations. These two fundamental problems
make it also very difficult to define a semantically preserving transformation from
specifications of restrictive specification languages into specifications written in
a constructive language, or vice versa.

Graph transformations can be used as a basically constructive specification
language but it is sometimes also possible to pursue a restrictive specification
style. Contracts given in form of a graph transformation rule have the advantage
of being easily accessible by humans due to the visual format. In many cases,
constructive contracts are intended and constructive contracts work well. For
the case that a purely constructive semantics is not appropriate, we have given
in Sect. [a catalog of proposals to enrich a graph transition rule so that the
intended behavior is met. This approach to adapt the semantics of the rule more
to the loose semantics of restrictive languages is very flexible since the user has
the possibility to traverse the metamodel with OCL constraints.

OCL and Graph-Transformations — A Symbiotic Alliance 31

A lot of work remains to be done. First of all, the proposed formalism of

extended graph transformations should be implemented by a tool to resolve all
the small problems that can only be recognized if a tool has to be built. In order
to become confident in the formal semantics of the formalism, an evaluator needs
to be implemented that can decide for any contract and any given state transition
whether or not the transition conforms to the contract.

Once such a tool is available, it should be applied on bigger case studies

showing or disproving the appropriateness of the proposed formalism for practi-
cal software development.

References

10.

11.

12.

. Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40-51,

October 1992.

. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood

Cliffs, second edition, 1997.

. Claudia Ermel and Roswitha Bardohl. Scenario animation for visual behavior

models: A generic approach. Software and Systems Modeling (SoSym,), 3(2):164—
177, 2004.

. Lars Grunske, Leif Geiger, Albert Ziindorf, Niels van Eetvelde, Pieter van Gorp,

and Déniel Varré. Model-driven Software Development - Volume II of Research
and Practice in Software Engineering, chapter Using Graph Transformation for
Practical Model Driven Software Engineering. Springer, 2005.

. OMG. Revised submission for MOF 2.0, Query/Views/Transformations, version

1.8. OMG Document ad/04-10-11, Dec 2004.

. Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.

Consistency checking and visualization of OCL constraints. In UML 2000 - The
Unified Modeling Language, volume 1939 of LNCS, pages 294-308. Springer, 2000.
Andy Schiirr. Adding graph transformation concepts to UML’s constraint language
OCL. Electronic Notes in Theoretical Computer Science, Proc. of UNIGRA 2001:
Uniform Approaches to Graphical Process Specification Techniques, 44(4), 2001.
OMG. UML 2.0 OCL Specification — OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

Slavisa Markovi¢ and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In Proc. International Conference on Model Driven Engineering Languages
and Systems (MoDELS), volume 3713 of LNCS, pages 280-294. Springer, 2005.
Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996.

Thomas Baar. Non-deterministic constructs in OCL — what does any() mean. In
Proc. 12th SDL Forum, volume 3530 of LNCS, pages 32-46. Springer, 2005.

	Motivation
	Restrictive Languages and the Frame Problem
	Example: CD Player
	Complexity of the Frame Problem

	Constructive Languages and Non-deterministic Contracts
	Non-deterministic Contracts
	Graph Transformations as a Constructive Language
	Mixing Constructive and Restrictive Languages

	Giving Graph Transformations a Loose Semantics
	Possible Side Effects of Restrictive Specifications
	A Proposal for Extending QVT
	Realization of Possible Side Effects

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

