
Using Process Algebra to Validate Behavioral Aspects
of Object-Oriented Models

Alban Rasse*, Jean-Marc Perronne*, Pierre-Alain Muller**, Bernard

Thirion*

* MIPS, ESSAIM, Université de Haute Alsace

 12 rue des frères Lumière, 68093 Mulhouse, France

{Alban.Rasse, Jean-Marc.Perronne, Bernard.Thirion}@uha.fr

** IRISA / INRIA Rennes, Campus Universitaire de Beaulieu

 Avenue du Général Leclerc, 35042 Rennes, France

pierre-alain.muller@irisa.fr,

Abstract. We present in this paper a rigorous and automated based approach for the

behavioral validation of control software systems. This approach relies on metamodeling,

model-transformations and process algebra and combines semi-formal object-oriented

models with formal validation. We perform the validation of behavioral aspects of object-

oriented models by using a projection into a well-defined formal technical space (Finite

State Process algebra) where model-checkers are available (we use LTSA; a model checker

for Labeled Transition Systems). We then target an implementation platform, which

conforms to the semantics of the formal technical space; in turn, this ensure conformance

of the final application to the validated specification.

1 Inroduction

 The increasing complexity of control software systems makes their comprehension and

their construction more and more difficult [11]. The approach proposed in this paper (figure

1) simplifies the reliable design of these software systems through a complete software

development cycle (from the specification to the code) in a coherent and automated way. It

is based on existing techniques, from different fields of software engineering, and

integrates:

– a specification phase based on object-oriented decomposition.

– a validation phase based on formal methods and model-checking tools, so as to

provide software designers with checking techniques that improve their design

quality.

– an implementation phase to ensure the coherence of the generated code according to

both the validation and specification phases.

– a model-based software engineering process in accordance with Model-Driven

Engineering (MDE) [4], which allows - through a metamodel architecture - the

integration of the specification, the validation and the implementation phases into a

coherent software development cycle. Moreover, model transformation – a key

concept in MDE – helps to go from one modeling field to another, which, in turn,

helps to obtain automatically, from a source model, models that are adapted to a

particular technical space. These transformations make the software designer's tasks

easier by hiding, as far as possible, the complexity of formal tools which often

require an important learning effort.

 As the whole approach cannot be described in this paper, only the specification and

validation phases, with the associated transformations, will be considered here (dark gray in

figure 1).

Figure 1. Projection of the behavioral aspects into a process algebra technical space

The approach is based on a specification model which represents an abstraction of the

control software. This model is specified using classes, objects and Finite State Machines

(FSM) so as to describe the different aspects (structure, behavior, and configuration) of the

system under study. FSMs have been chosen as this formalism is based on known

semantics [8] which can be interpreted in terms of Labeled Transition System (LTS) [1].

The precisely defined semantics is necessary - on one hand - to allow the easier use of

model transformation techniques and - on other hand - to ensure the coherence of the

approach, since the behavioral aspects of the proposed models (specification, validation and

implementation) are also based on semantics that can be described in term of LTS. The

FSMs are translated into a process algebra [3] called Finite State Processes (FSP) [8]. This

leads to a validation model which can be analyzed with the Labeled Transition System

Analyzer (LTSA) model checking tool [8].

 This paper is divided into four parts. The first part presents the running example which

will be used to illustrate the proposed approach. The second and third sections describe an

overview of the specification model and the validation model respectively. Finally, the

Part described
in this paper

Semantics equivalence of the
behavioral aspects ≡

Model
transformation

(behavioral
aspects only)

Model
transformation

LTSA
Model-Checker

Checking

Specific
platform

Execution

structure
1

2

configuration

a1:

A

b2:

B
a2:

A

c1:

C

Specification Model

Meta
Model

Meta
Model

Meta
Model

Implemen-
tation model

 Properties
model

(FSP code)

Meta
Meta
Model

Validation
model

(FSP code)

≡

≡

≡

behavior

fourth section presents the model transformation concepts necessary for the generation of

the validation model.

2 Running Example

 The system used to illustrate the present approach is a control software whose role is to

manage the locomotion function of an hexapod robot [12] (figure 2.a). A leg moves in a

cyclic way between two positions aep (anterior extreme position) and pep (posterior

extreme position) (figure 2.b). The control architecture is based on decentralized control

[7]; the walking cycle of a leg (L) is obtained with local controllers (LC) and the global

behavior is obtained with six local supervisors (LS) which coordinate the local controllers

(figure 2.c).

Figure 2. a) Mobile platform, b) Walking cycle, c) Control architecture

 To ensure flexible and robust locomotion, this system must satisfy a set of liveness and

safety properties. As an example, one of these liveness properties says that all the legs must

always execute their walking cycle, whatever the possible execution trace of the system.

and in accordance with the safety properties, one leg can only be raised if its two neighbors

remain on the ground (static stability). The control software of this robot is a typical

example of the software systems which must be validated to avoid severe dysfunctions at

runtime.

3 Specification Model

 The specification model, based on object-oriented models, represents an abstraction of

the control software and includes three complementary aspects which represent,

respectively, its structure, its behavior and its configuration.

3.1 Specification of the structural aspects

 To describe the different types of entities present in control systems, we specify the

structural aspects in the form of two conceptual levels [9]. The first level models the

passive objects which must be controlled, while the second level corresponds to behavioral

objects (active entities) whose role is to control passive objects in their state space (figure

3.a). This explicit representation of behaviors allows these to be considered as full objects

and so, to be manipulated and organized within an object-oriented architecture. Moreover,

a) b)

Protraction

Retraction pep

:L

:L

:L

:L

:L

:L

:SL

:LC

:LC

:LC

 :LC :LC

:LC

:LS

:LS :LS

:LS

:LS

c)

aep

the systematic separation of passive objects from behavioral objects helps to abstract and

isolate them and thus to simplify their specification. This organization can also be

generalized since a passive/behavior association can be considered as a new (passive)

object which is, itself, supervised by another behavior (figure 3.a).

3.2 Specification of the behavioral aspects

 We model the dynamic aspects of control systems by associating each behavioral class

with a Finite State Machine (figure 3.b). Figure 3.b models the discrete behavior of a leg

controlled by its local controller, which is itself coordinated by its local supervisor. Once

specified in this way, the behavioral objects execute an elementary task, in an autonomous

and independent manner, and their concurrent execution describes the entire state space of

the six legs.

Figure 3: Specification model of the Locomotion function: a) structural aspects, b)

behavioral aspects, c) configuration aspects

 To ensure reliable locomotion, some of these states - for example the state in which all

the legs are raised at the same moment - must be prohibited. To restrict the entire state-

space to the allowed state-space, we allow (or not) some transitions to be fired by

synchronizing the actions of the LC instances with those of the LS instances. These

synchronizations (or shared actions) are detailed in the configuration aspects. Moreover,

we propose to combine behavioral and passive objects together in a composite object

(figure 3.a), so as to explicitly represent a modeled software function (here the

Locomotion). To make design easier and development effort profitable these composite can

be manipulated and (re)used to model more complex software functions in a hierarchic and

modular way.

3.3 Configuration aspects

 The previously described behavioral and structural aspects specify a set of possible

configurations of a family of software systems in terms of classes, interactions and

behaviors. Consequently, modeling a particular software system of this family requires the

description of a particular configuration. This particular configuration, which is represented

« behavior »
Local Controller (LC)

1

1

1

« passive »

Leg (L)

« behavior »
Local Supervisor (LS)

1
control

control

« composite »

Locomotion

a)

privilege

Down

Up

down up

Protraction

Retraction

transfer aep

pep
Wait

b) c)

Platform

l3:L

l2:L l4:L

ls3:LS

lc3: LC

lc2: LC lc4: LC

ls3.privilege

/ lc4.transfer

ls3.privilege
/ lc2.transfer

ls3.up / lc3.transfer,
ls3.down / lc3.aep :Locomotion

with an object diagram (figure 3.c) helps to better define the structural aspects by

specifying the topology and interactions of the instances which make up the software

system. Moreover, it also helps to better define the behavioral aspects by specifying - in the

form of relabeling annotations [8], (instance1.actionA /instance2.actionB) - the actions

which are shared between these instances. These shared actions allow to synchronize

instances in order to obtain the desired behavior. The object diagram in figure 3.c illustrates

part of the configuration of the mobile platform. This diagram shows, in accordance with

the previously mentioned safety property, how the local supervisor ls3 allows the evolving

of local controller lc3 according to the position of the two neighboring legs l2 and l4.

Indeed if legs l2 and l4 are raised (lc2 and lc4 receive the privilege to do their protraction:

ls3.privilege/lc4.transfer or ls3.privilege/lc2.transfer) then leg l3 can only be in the Down

state (figure 3.b). Conversely, if the legs l2 and l4 remain on the ground, leg l3 can be

allowed to rise (ls3.up/lc3.transfer) which will then preempt the privilege of its neighbors.

 This last specification phase helps to complete the specification model whose global

behavior (Locomotion function) must be validated so as to make sure that its specification

respects the expected properties.

4 Validation Model

 Simulation and model-checking techniques aim to make software reliable by ensuring

designers that their models meet their requirements [2, 5]. The integration of these

complementary methods into object-oriented constructions seems pertinent as they allow

the efficient validation of software systems. In the proposed approach, the validation model

is described in the form of process algebra called Finite State Process (FSP) [8] in order to

use LTSA [8]. The advantage of LTSA is that it allows both the simulation and the

checking of behavioral models.

4.1 Specification of the validation model using FSP

 In LTSA, a system is structured using a set of primitive processes, whose behavior is

modeled in FSP in the form of expressions combining local processes and actions. The

representation of the global behavior of systems is obtained with the composition of

instances of these processes (instance: Process) and with the representation of their

interactions through shared actions within a composite process. So similarly to the

specification model, modeling a composite process allows the specification of a complex

system in a modular, hierarchic way; the instances of composite processes are potentially

reused in another composite. To specify the validation model, we collect the entities

contained in the specification model (states, actions, relabeling annotations, …) to

transform these entities into FSP (i.e. section 5). Thus, as shown in figure 4.a, for the local

controller (LC), the behavior of a behavioral class, graphically described by its FSM (figure

3.b), is used to obtain the primitive process (LC) in FSP.

In a second step, the composite type instances which are presented in the configuration

aspects (figure 3.c) are used to generate the composite processes in FSP (figure 4.b). As an

example, the Locomotion behavior is obtained from a set of six instances (lci) of the

primitive process local controller (LC) and six instances (lsi) of primitive processes local

supervisor (LS).

Figure 4. Behavioral description in FSP, a) of the LC primitive process, b) of the

Locomotion composite process

 These instances are composed in a parallel way (||), then synchronized (/) using their

shared actions - thanks to the annotation (ls3.privilege/lc2.transfer, ls3.up/lc3.transfer,

etc…) - included in the Locomotion composite object (figure 3.c). This Locomotion

behavioral model is then checked using LTSA.

4.2 Analysis of the validation model

 LTSA allows the interactive simulation of the different execution traces of the specified

model to ensure that the latter satisfies the expected behavior. Simulation, which is a non-

exhaustive validation, can be completed with a search for violation of liveness and safety

properties. In the validation model proposed here, only the liveness properties will be

presented. A liveness property asserts that « something good eventually happens » [2]. In

LTSA, liveness properties are expressed with the keyword progress. The liveness property

mentioned earlier (at the end of section 2) consists in checking that each local controller

(lci) can always execute its walking cycle, which results in the recurrent detection of the

transfer action for each local controller (figure 5)

Figure 5. Liveness properties in FSP

 If a property is violated by the validation model, LTSA produces the sequence of

actions leading to this violation. The designer can then modify his/her model according to

the obtained results.

5 Model Transformation

 Model-Driven Engineering [4] aims to unify software activities from the specification

down to the executable code production, through the integration of heterogeneous models

into coherent software developments. This coherent integration is only possible - according

to MDE - through a formally defined metamodeling architecture which allows - through

different levels of abstraction (models, metamodels, metametamodel) - the precise

definition of the concepts used to characterize a particular type of (meta)model. In this

progress Leg1_Cycle = {lc1.transfer },…, progress Leg6_Cycle = {lc6.transfer

}.

LC = Retraction,

Retraction = (pep -> Wait),

Wait = (transfert -> Protraction),
Protraction = (aep -> Retraction).

|| Locomotion = (lc1 : LC || lc2 : LC || …

|| ls1 : LS || ls2 : LS || …)

/ {

ls3.privilege / lc2.transfer,

ls3.up / lc3.transfer,
…}.

a) b)

architecture, metamodels describe all the concepts necessary for the definition of a specific

type of models, while the metametamodel specifies the concepts that are common to the

metamodels used. So, from these common concepts, a set of relations between the entities

of the metamodels can be deduced. Figure 6.a describes the correspondence of the concepts

of the specification metamodel and those of the validation metamodel. The transformation

rules which can be deduced from these relations are applied to the entities of a source

model (here, the specification model) in order to obtain the entities of the target model

(here, the validation model) in a systematic way. Moreover, the explicit representation of

the metamodels and transformation rules allows the use of model transformation tools for

the automated generation of specific target models (figure 6.b). In accordance with MDE,

the present approach is based on the concepts of models, metamodels and model

transformations and has been prototyped with a metamodeling environment – MetaEdit [6]

- in order to transform the specification model into a validation model (FSP code). The FSP

code obtained in this way can directly be analyzed with the LTSA tool. As the proposed

models respect the LTS semantics, the semantic gap between these models is reduced,

which makes the transformation between models easier. Moreover, the use of model

transformation tools makes the proposed approach even more reliable by avoiding the

errors that would be caused by manual transcriptions.

Figure 6.a). Correspondence between the specification and validation metamodel, b)

Conceptual representation of metamodeling

 As said in the introduction, the aim of the present approach is to produce an executable

code for the implementation of validated control software. However, even if the joint use of

object-oriented techniques, checking tools and model transformation techniques makes

software development easier and more reliable, it does not guarantee that the

implementation conforms with the validation. That is why, the approach presented in this

paper is part of a global software development (figure 1) in which the use of a framework

and a runtime platform – also in conformity with LTS semantics – helps to reduce the

semantic gap between the models and thus allows the easier generation of a code in

accordance with the specification and validation models [10]. So, this approach allows the

creation of a coherent software development cycle that integrates specification, validation

and implementation phases.

Specification metamodel Validation metamodel

Behavior classes Primitive processes (Pp)

Instances Instance of Pp

FSM states Local processes

FSM action Action prefix

Guard Guard

Composite classes Composite processes

Shared action Relabeling

… …

b) a)

Transformation

rules

Model

transformation

tool

Source model Target model

Excerpt from the source

metamodel

a S0

b

conforms to

BehaviorA = S0,

S0 = (a -> S1),

S1 = (b -> S2),

S2 = (c -> S0).

FSM

Transition

Behavioral

 class

State

Behavior
A

ProcessDef :

ProcessIdent Paramopt =

ProcessBody

AlphabetExtensionoptRelabelopt

Hidingopt .

ProcessBody :

LocalProcess

conforms to

Excerpt from the target

metamodel

S1

S2

c

Conclusion and Perspective

 This paper has presented an approach combining object-oriented techniques with formal

validation and MDE, to ensure the validated specification of control software. In a first

step, it proposes an object-oriented specification completed with FSM for the modeling of

software systems. The specification model thus obtained is sufficiently precise to be used as

a source model for automated software generation. It can be transformed into a process

algebra so as to be validated with a model-checking tool. This approach which has been

applied on a locomotion software system has the advantage of making the conception of

software systems easier while increasing their reliability and also of being integrated in a

coherent global development ranging from the specification to the implementation. We will

continue this work, in a first step, by the checking of other liveness and safety properties to

validate more effectively the Locomotion function of the robot. In a second step, we plan to

implement the approach on a number of various applications to test its robustness.

Reference

[1] Arnold, A., Finite Transition System, Prentice Hall, Prentice Hall, 1994.

[2] Bérard, B. et al. Systems and Software verification. Model-Checking Techniques and Tools,

Springer, 2001.

[3] Bergstra, J.A., Ponse, A. and Smolka, S.A. editors, Handbook of Process Algebra. Elsevier
Science, Amsterdam, 2001.

[4] Bézivin. In search of a Basic Principle for Model-Driven Engineering, Novatica Journal, Special
Issue, March 2004.

[5] Clarke, E.M., Grumberg, O. and Peled, D. Model checking, The MIT Press, Cambridge, Mass.,
1999.

[6] Domain Specific Modeling with MetaEdit+, January 2005, http://www.metacase.com/

[7] Lin, F., and Wonham W.M., Decentralized Control and Coordination of Discrete-Event Systems

with Partial Observation. IEEE Transactions on Automatic Control, vol.35, n°12, p.1330-1337,
1990.

[8] Magee, J. and Kramer, J., Concurrency. State Models & Java Programs. John Wiley & Sons,
Chichester, UK, 1999.

[9] Perronne, J.M., Rasse, A., Thiry, L., Thirion, B., A Modeling Framework for Complex Behavior
Modeling and Integration, Proceedings of IADIS’05, Algrave, Portugal, 2005.

[10] Rasse, A., Perronne JM., Thirion, B. Toward a Validated Object-Oriented Design Approach to

Control Software. Proceedings of 16th IFAC World Congress, Prague, Czech Republic, 3-8
July, 2005.

[11] Sanz, R., Pfister, C., Schaufelberger, W. and De Atonio, A., Software for Complex Controllers

In: Control Of Complex Systems (Karl Astrom, P. Albertos, M. Blanke, A. Isidori, W.
Schaufelberger, R. Sanz, Ed.). Springer-Verlag, London, 2001, p.143-164.

[12] Thirion, B. and Thiry, L., Concurrent programming for the Control of Hexapode Walking, ACM
Ada letters, n°21, 2002, p.12-36.

