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Abstract. We present in this paper a rigorous and automated based approach for the 

behavioral validation of control software systems. This approach relies on metamodeling, 

model-transformations and process algebra and combines semi-formal object-oriented 

models with formal validation. We perform the validation of behavioral aspects of object-

oriented models by using a projection into a well-defined formal technical space (Finite 

State Process algebra) where model-checkers are available (we use LTSA; a model checker 

for Labeled Transition Systems). We then target an implementation platform, which 

conforms to the semantics of the formal technical space; in turn, this ensure conformance 

of the final application to the validated specification. 

1 Inroduction 

 The increasing complexity of control software systems makes their comprehension and 

their construction more and more difficult [11]. The approach proposed in this paper (figure 

1) simplifies the reliable design of these software systems through a complete software 

development cycle (from the specification to the code) in a coherent and automated way. It 

is based on existing techniques, from different fields of software engineering, and 

integrates: 

– a specification phase based on object-oriented decomposition. 

– a validation phase based on formal methods and model-checking tools, so as to 

provide software designers with checking techniques that improve their design 

quality. 

– an implementation phase to ensure the coherence of the generated code according to 

both the validation and specification phases. 

– a model-based software engineering process in accordance with Model-Driven 

Engineering (MDE) [4], which allows - through a metamodel architecture - the 

integration of the specification, the validation and the implementation phases into a 

coherent software development cycle. Moreover, model transformation – a key 

concept in MDE – helps to go from one modeling field to another, which, in turn, 

helps to obtain automatically, from a source model, models that are adapted to a 



particular technical space. These transformations make the software designer's tasks 

easier by hiding, as far as possible, the complexity of formal tools which often 

require an important learning effort. 

  

 As the whole approach cannot be described in this paper, only the specification and 

validation phases, with the associated transformations, will be considered here (dark gray in 

figure 1). 

 

Figure 1. Projection of the behavioral aspects into a process algebra technical space 

The approach is based on a specification model which represents an abstraction of the 

control software. This model is specified using classes, objects and Finite State Machines 

(FSM) so as to describe the different aspects (structure, behavior, and configuration) of the 

system under study. FSMs have been chosen as this formalism is based on known 

semantics [8] which can be interpreted in terms of Labeled Transition System (LTS) [1]. 

The precisely defined semantics is necessary - on one hand - to allow the easier use of 

model transformation techniques and - on other hand - to ensure the coherence of the 

approach, since the behavioral aspects of the proposed models (specification, validation and 

implementation) are also based on semantics that can be described in term of LTS. The 

FSMs are translated into a process algebra [3] called Finite State Processes (FSP) [8]. This 

leads to a validation model which can be analyzed with the Labeled Transition System 

Analyzer (LTSA) model checking tool [8].  

 

 This paper is divided into four parts. The first part presents the running example which 

will be used to illustrate the proposed approach. The second and third sections describe an 

overview of the specification model and the validation model respectively. Finally, the 
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fourth section presents the model transformation concepts necessary for the generation of 

the validation model.  

2 Running Example 

 The system used to illustrate the present approach is a control software whose role is to 

manage the locomotion function of an hexapod robot [12] (figure 2.a). A leg moves in a 

cyclic way between two positions aep (anterior extreme position) and pep (posterior 

extreme position) (figure 2.b). The control architecture is based on decentralized control 

[7]; the walking cycle of a leg (L) is obtained with local controllers (LC) and the global 

behavior is obtained with six local supervisors (LS) which coordinate the local controllers 

(figure 2.c). 

 

Figure 2. a) Mobile platform, b) Walking cycle, c) Control architecture 

 To ensure flexible and robust locomotion, this system must satisfy a set of liveness and 

safety properties. As an example, one of these liveness properties says that all the legs must 

always execute their walking cycle, whatever the possible execution trace of the system.  

and in accordance with the safety properties, one leg can only be raised if its two neighbors 

remain on the ground (static stability). The control software of this robot is a typical 

example of the software systems which must be validated to avoid severe dysfunctions at 

runtime.  

3 Specification Model 

 The specification model, based on object-oriented models, represents an abstraction of 

the control software and includes three complementary aspects which represent, 

respectively, its structure, its behavior and its configuration. 

3.1 Specification of the structural aspects  

 To describe the different types of entities present in control systems, we specify the 

structural aspects in the form of two conceptual levels [9]. The first level models the 

passive objects which must be controlled, while the second level corresponds to behavioral 

objects (active entities) whose role is to control passive objects in their state space (figure 

3.a). This explicit representation of behaviors allows these to be considered as full objects 

and so, to be manipulated and organized within an object-oriented architecture. Moreover, 
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the systematic separation of passive objects from behavioral objects helps to abstract and 

isolate them and thus to simplify their specification. This organization can also be 

generalized since a passive/behavior association can be considered as a new (passive) 

object which is, itself, supervised by another behavior (figure 3.a). 

3.2 Specification of the behavioral aspects 

 We model the dynamic aspects of control systems by associating each behavioral class 

with a Finite State Machine (figure 3.b). Figure 3.b models the discrete behavior of a leg 

controlled by its local controller, which is itself coordinated by its local supervisor. Once 

specified in this way, the behavioral objects execute an elementary task, in an autonomous 

and independent manner, and their concurrent execution describes the entire state space of 

the six legs. 

 

Figure 3: Specification model of the Locomotion function: a) structural aspects, b) 

behavioral aspects, c) configuration aspects 

 

 To ensure reliable locomotion, some of these states - for example the state in which all 

the legs are raised at the same moment - must be prohibited. To restrict the entire state-

space to the allowed state-space, we allow (or not) some transitions to be fired by 

synchronizing the actions of the LC instances with those of the LS instances. These 

synchronizations (or shared actions) are detailed in the configuration aspects.  Moreover, 

we propose to combine behavioral and passive objects together in a composite object 

(figure 3.a), so as to explicitly represent a modeled software function (here the 

Locomotion). To make design easier and development effort profitable these composite can 

be manipulated and (re)used to model more complex software functions in a hierarchic and 

modular way. 

3.3 Configuration aspects 

 The previously described behavioral and structural aspects specify a set of possible 

configurations of a family of software systems in terms of classes, interactions and 

behaviors. Consequently, modeling a particular software system of this family requires the 

description of a particular configuration. This particular configuration, which is represented 

« behavior » 
Local Controller (LC) 

1 

1 

1 

« passive » 

Leg  (L) 

« behavior » 
Local Supervisor (LS) 

1 
control 

control 

« composite » 

Locomotion 

a) 

privilege 

Down 

Up 

down  up 

Protraction 

 

Retraction 

transfer aep 

pep 
Wait 

b) c) 

Platform 

l3:L 

l2:L l4:L 

ls3:LS 

lc3: LC 

lc2: LC lc4: LC 

ls3.privilege 

/ lc4.transfer  

ls3.privilege  
/ lc2.transfer 

ls3.up / lc3.transfer, 
ls3.down / lc3.aep :Locomotion 



with an object diagram (figure 3.c) helps to better define the structural aspects by 

specifying the topology and interactions of the instances which make up the software 

system. Moreover, it also helps to better define the behavioral aspects by specifying - in the 

form of relabeling annotations [8], (instance1.actionA /instance2.actionB) - the actions 

which are shared between these instances. These shared actions allow to synchronize 

instances in order to obtain the desired behavior. The object diagram in figure 3.c illustrates 

part of the configuration of the mobile platform. This diagram shows, in accordance with 

the previously mentioned safety property, how the local supervisor ls3 allows the evolving 

of local controller lc3 according to the position of the two neighboring legs l2 and l4. 

Indeed if legs l2 and l4 are raised (lc2 and lc4 receive the privilege to do their protraction: 

ls3.privilege/lc4.transfer or ls3.privilege/lc2.transfer) then leg l3 can only be in the Down 

state (figure 3.b). Conversely, if the legs l2 and l4 remain on the ground, leg l3 can be 

allowed to rise (ls3.up/lc3.transfer) which will then preempt the privilege of its neighbors. 

 

 This last specification phase helps to complete the specification model whose global 

behavior (Locomotion function) must be validated so as to make sure that its specification 

respects the expected properties. 

4 Validation Model 

 Simulation and model-checking techniques aim to make software reliable by ensuring 

designers that their models meet their requirements [2, 5]. The integration of these 

complementary methods into object-oriented constructions seems pertinent as they allow 

the efficient validation of software systems. In the proposed approach, the validation model 

is described in the form of process algebra called Finite State Process (FSP) [8] in order to 

use LTSA [8]. The advantage of LTSA is that it allows both the simulation and the 

checking of behavioral models. 

4.1 Specification of the validation model using FSP 

 In LTSA, a system is structured using a set of primitive processes, whose behavior is 

modeled in FSP in the form of expressions combining local processes and actions. The 

representation of the global behavior of systems is obtained with the composition of 

instances of these processes (instance: Process) and with the representation of their 

interactions through shared actions within a composite process. So similarly to the 

specification model, modeling a composite process allows the specification of a complex 

system in a modular, hierarchic way; the instances of composite processes are potentially 

reused in another composite. To specify the validation model, we collect the entities 

contained in the specification model (states, actions, relabeling annotations, …) to 

transform these entities into FSP (i.e. section 5). Thus, as shown in figure 4.a, for the local 

controller (LC), the behavior of a behavioral class, graphically described by its FSM (figure 

3.b), is used to obtain the primitive process (LC) in FSP.  

 

In a second step, the composite type instances which are presented in the configuration 

aspects (figure 3.c) are used to generate the composite processes in FSP (figure 4.b). As an 

example, the Locomotion behavior is obtained from a set of six instances (lci) of the 



primitive process local controller (LC) and six instances (lsi) of primitive processes local 

supervisor (LS). 

 

Figure 4. Behavioral description in FSP, a) of the LC primitive process, b) of the 

Locomotion composite process 

 

 These instances are composed in a parallel way ( || ), then synchronized ( / ) using their 

shared actions - thanks to the annotation (ls3.privilege/lc2.transfer, ls3.up/lc3.transfer, 

etc…) - included in the Locomotion composite object (figure 3.c). This Locomotion 

behavioral model is then checked using LTSA.  

4.2 Analysis of the validation model 

 LTSA allows the interactive simulation of the different execution traces of the specified 

model to ensure that the latter satisfies the expected behavior. Simulation, which is a non-

exhaustive validation, can be completed with a search for violation of liveness and safety 

properties. In the validation model proposed here, only the liveness properties will be 

presented. A liveness property asserts that « something good eventually happens » [2]. In 

LTSA, liveness properties are expressed with the keyword progress. The liveness property 

mentioned earlier (at the end of section 2) consists in checking that each local controller 

(lci) can always execute its walking cycle, which results in the recurrent detection of the 

transfer action for each local controller (figure 5)  

 

Figure 5. Liveness properties in FSP 

 If a property is violated by the validation model, LTSA produces the sequence of 

actions leading to this violation. The designer can then modify his/her model according to 

the obtained results.  

5 Model Transformation 

 Model-Driven Engineering [4] aims to unify software activities from the specification 

down to the executable code production, through the integration of heterogeneous models 

into coherent software developments. This coherent integration is only possible - according 

to MDE - through a formally defined metamodeling architecture which allows - through 

different levels of abstraction (models, metamodels, metametamodel) - the precise 

definition of the concepts used to characterize a particular type of (meta)model. In this 
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architecture, metamodels describe all the concepts necessary for the definition of a specific 

type of models, while the metametamodel specifies the concepts that are common to the 

metamodels used. So, from these common concepts, a set of relations between the entities 

of the metamodels can be deduced. Figure 6.a describes the correspondence of the concepts 

of the specification metamodel and those of the validation metamodel. The transformation 

rules which can be deduced from these relations are applied to the entities of a source 

model (here, the specification model) in order to obtain the entities of the target model 

(here, the validation model) in a systematic way. Moreover, the explicit representation of 

the metamodels and transformation rules allows the use of model transformation tools for 

the automated generation of specific target models (figure 6.b). In accordance with MDE, 

the present approach is based on the concepts of models, metamodels and model 

transformations and has been prototyped with a metamodeling environment – MetaEdit [6] 

- in order to transform the specification model into a validation model (FSP code). The FSP 

code obtained in this way can directly be analyzed with the LTSA tool. As the proposed 

models respect the LTS semantics, the semantic gap between these models is reduced, 

which makes the transformation between models easier. Moreover, the use of model 

transformation tools makes the proposed approach even more reliable by avoiding the 

errors that would be caused by manual transcriptions.  

 

Figure 6.a). Correspondence between the specification and validation metamodel, b) 

Conceptual representation of metamodeling 

 As said in the introduction, the aim of the present approach is to produce an executable 

code for the implementation of validated control software. However, even if the joint use of 

object-oriented techniques, checking tools and model transformation techniques makes 

software development easier and more reliable, it does not guarantee that the 

implementation conforms with the validation. That is why, the approach presented in this 

paper is part of a global software development (figure 1) in which the use of a framework 

and a runtime platform – also in conformity with LTS semantics – helps to reduce the 

semantic gap between the models and thus allows the easier generation of a code in 

accordance with the specification and validation models [10]. So, this approach allows the 

creation of a coherent software development cycle that integrates specification, validation 

and implementation phases. 
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Conclusion and Perspective 

 This paper has presented an approach combining object-oriented techniques with formal 

validation and MDE, to ensure the validated specification of control software. In a first 

step, it proposes an object-oriented specification completed with FSM for the modeling of 

software systems. The specification model thus obtained is sufficiently precise to be used as 

a source model for automated software generation. It can be transformed into a process 

algebra so as to be validated with a model-checking tool. This approach which has been 

applied on a locomotion software system has the advantage of making the conception of 

software systems easier while increasing their reliability and also of being integrated in a 

coherent global development ranging from the specification to the implementation. We will 

continue this work, in a first step, by the checking of other liveness and safety properties to 

validate more effectively the Locomotion function of the robot. In a second step, we plan to 

implement the approach on a number of various applications to test its robustness.   
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