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Abstract. In this paper, we present a syntactic method for solving first-
order equational constraints over term algebras. The presented method
exploits a novel notion of quasi-solved form that we call answer. By allow-
ing a restricted form of universal quantification, answers provide a more
compact way to represent solutions than the purely existential solved
forms found in the literature. Answers have been carefully designed to
make satisfiability test feasible and also to allow for boolean operations,
while maintaining expressiveness and user-friendliness. We present de-
tailed algorithms for (1) satisfiability checking and for performing the
boolean operations of (2) negation of one answer and (3) conjunction
of n answers. Based on these three basic operations, our solver turns
any equational constraint into a disjunction of answers. We have imple-
mented a prototype that is available on the web.
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1 Introduction

An equational constraint is an arbitrary first-order formula built over a signature
Σ of function symbols and equality as unique predicate symbol. Equational con-
straints are interpreted over term algebras. An equational solving method takes as
input an equational constraint and produces the set of all its solutions or, more
precisely, some particular representation of it. Syntactic methods are rewriting
processes that transform the input constraint into an equivalent disjunction of
constraints, in the so-called solved form, which represents its solutions. In par-
ticular, those solutions serve to decide whether the input constraint is satisfiable
or not.

On one hand, equational constraint solving is an very important tool in many
areas of automated deduction. The integration of efficient equational solvers in
theorem provers has been a challenging problem, important for many practical
applications. Equational constraints can be used for restricting the set of ground
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instances in order to define more eficient resolution mechanism (cf. [6]). In auto-
mated model building, equational constraints play a crucial role for model rep-
resentation (e.g. [5, 11]). On the other hand, equational constraint solving may
be applied for several purposes in the areas of functional/logic programming and
databases. Therein, many problems related to semantics and implementation is-
sues can be reduce to equational constraint solving problems. Some well known
examples include the problems of answering negative goals, decidindg whether
a case-definition is complete, evaluating a boolean conjunctive query on a re-
lational database, etc. Besides, equational constraint solving have been found
useful in other areas such as formal verification tools, computational linguistic,
machine learning, program transformation, etc.

It is well known that the free equality theory1, originally introduced by Mal-
cev in [15], is non-elementary (see [10, 21]). Besides, the inherent complexity of
the satisfiability problem of equational problems (i.e. where the quantifier pre-
fix is of the form ∀∗∃∗) for finite signature is studied in [19]. The most well
known algorithms for equational solving [9,14, 15] and later extensions to richer
theories (see [20]) are based on quantifier elimination with solved forms that
combine equations and disequations. Negation should be allowed since, for ex-
ample, the constraint ∀v( x 6= f(v, v) ) cannot be finitely represented without
negation (disequations). As opposed to negation, universal quantification can be
dropped from any equational formula by the well-known quantifier elimination
technique. As a consequence, most solved form notions (see [8] for a survey) are
boolean combinations of certain kind of existential formulas whose satisfiability
test is trivial even in the case of finite signature. However, in exchange for the
simplicity of the test, the solver must remove all universal quantifiers. This often
requires application of the so-called2 Explosion Rule ([9]) that we recall in Fig.
1, that implies substitution of a formula by a disjunction of as many formulas
as there are function symbols in the finite signature Σ. A more compact rep-

(Exp) ∀y( ϕ ) 7−→
∨

f∈Σ
∃z∀y( ϕ ∧w = f(z) )

if there exists an equation x = t or a disequation x 6= t such that

some yi ∈ y occurs in t, z are fresh and Σ is finite

Fig. 1. The Explosion Rule (Exp)

resentation of solutions reduces the blow up of the number of disjuncts along
the quantifier elimination process, which in turn improves the method. At the
same time, the basic operations for managing this more expressive notion must
not be expensive. We propose a notion of quasi-solved form, called answer, that
allows a restricted form of universal quantification, which is enough to avoid the
1 Also called the theory of term algebra and Clark’s equational theory.
2 That is, the Weak Domain Closure Axiom in the nomenclature of [14].
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above rule (Exp) and offers a more compact representation of solutions. Answers
have been carefully designed to make satisfiability test feasible and also to allow
for boolean operations (of negation and conjunction), while retaining expressive-
ness and user-friendliness. The idea of gaining efficiency via restricted forms of
universal quantification has been already proposed in [18] and in [16].

A very preliminary version of this work was presented as [1]. We have imple-
mented (in Prolog) a prototype of the general constraint solver. It is available
at ˜http://www.sc.ehu.es/jiwlucap/equality constraints.html.

Outline of the paper. In the next section, we recall some useful definitions
and denotational conventions. Section 3 is devoted to the details of the notion
of answer and some examples. In Section 4, we introduce the answer satisfia-
bility test with some illustrative examples. In Section 5, we show how the two
other basic operations on answers —conjunction and negation— can be effi-
ciently performed. Besides, we make use of these basic operations (together with
the quantifier elimination technique) to provide a solving method for general
equational constraints. We give a summarizing example in Section 6. Finally, we
present some concluding remarks and briefly discuss some related work.

2 Definitions and Notation

Let us fix a denumerable set of variables X. Given a (finite or infinite) signature
Σ, a Σ-term is a variable from X, or a constant, or a function symbol of arity
n applied to n terms. A term is ground if it contains no variable symbols. T (Σ)
stands for the algebra of all ground Σ-terms or Herbrand universe, whereas
T (Σ,X) is used to denote the set of all Σ-terms. We denote by V ar(t) the set
of all variables occurring in t and t(v) denotes that V ar(t) ⊆ v. A term is linear
if it contains no variable repetitions. A bar is used to denote tuples of objects.
Subscripts are used to denote the components of a tuple and superscripts are
used to enumerate tuples. For example, xj denotes a component of x, whereas
x1, . . . , xj, . . . , xm is a tuple enumeration and xji is a component of the tuple
xj . Concatenation of tuples is denoted by the infix operator ·, i.e. x ·y repre-
sents the concatenation of x and y. When convenient, we treat a tuple as the
set of its components. A Σ-equation is t1 = t2, where t1 and t2 are Σ-terms,
whereas t1 6= t2 is a Σ-disequation (that is also written as ¬(t1 = t2)). By a
collapsing equation (or disequation) we mean that at least one of its terms is a
variable. We abbreviate collapsing Σ-equation by Σ-CoEq, and Σ-UCD stands
for universally quantified collapsing Σ-disequation. We abbreviate

∧
i ti = si by

t = s and
∨
i ti 6= si by t 6= s. To avoid confusion, we use the symbol ≡ for the

metalanguage equality.
A Σ-substitution σ ≡ {x1 ← t1, . . .xn ← tn} is a mapping from a finite set

of variables x, called domain(σ), into T (Σ,X). It is assumed that σ behaves as
the identity for the variables outside domain(σ). A substitution σ is called a Σ-
assignment if σ(xi) ∈ T (Σ) for all xi ∈ domain(σ). We intentionally confuse the
above substitution σ with the conjunction of equations

∧
i xi = ti. The (possibly

ground) term σ(t) (also denoted tσ) is called an (ground) instance of the term
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t. The most general unifier of a set of terms {s1, . . . , sm}, denoted mgu(s), is
an idempotent substitution σ such that σ(si) ≡ σ(sj) for all 1 ≤ i, j ≤ m and
for any other substitution θ with the same property, θ ≡ σ′ ·σ holds for some
substitution σ′. For tuples, mgu(s1, . . . , sm) is an abbreviation of σ1·. . .·σn where
σi ≡ mgu(s1i , . . . , s

m
i ) for all 1 ≤ i ≤ n. The most general common instance of

two terms t and s, denoted bymgi(t, s), is the term whose set of ground instances
is the intersection of both sets of ground instances (for t and s), and it can be
computed using a unification algorithm.

An equational constraint is a first-order Σ-formula built over Σ-equations (as
atoms) using the classical connectives and quantifiers. Atoms include the logical
constants True and False. Equational constraints are interpreted in the term al-
gebra T (Σ). A Σ-assignment σ satisfies a Σ-equation t1 = t2 iff t1σ ≡ t2σ. The
logical constants, connectives and quantifiers are interpreted as usual. A solu-
tion of an equational constraint is a Σ-assignment that satisfies the constraint.
Constraint equivalence means the coincidence of the set of solutions. We make
no distinction between a set of constraints {ϕ1, . . . , ϕk} and the conjunction
ϕ1 ∧ . . .∧ ϕk. We abbreviate ∀x1 . . .∀xn (resp. ∃x1 . . .∃xn) by ∀x (resp. ∃x).

3 The Notion of Answer

In this section, we present the notion of answer and give some illustrative exam-
ples. The following definition also introduces some notational conventions.

Definition 1. Let x be a k-tuple of pairwise distinct variables. A Σ-answer for x
is either a logical constant (True or False) or a formula of the form ∃w( a(x,w) ),
where a(x,w) is a conjunction of Σ-CoEqs and Σ-UCDs of the form:

x1 = t1 ∧ . . .∧ xk = tk ∧
n∧

i=1

mi∧

j=1

∀v( wi 6= sij(w, v) ) (1)

such that the n-tuple w ≡ V ar(t1, . . . , tk) is disjoint from x, every term sij(w, v)
neither contains the variable wi nor is a single universal variable in v, and
n,m1, . . . ,mn ≥ 0. ut

Remark 1. We abbreviate the equational part of (1) by x = t(w). Any equation
xj = wi such that wi does not occur in the rest of the answer can be left out.
The scope of each universal quantifier is restricted to one single disequation,
although a universal variable can occur repeatedly in a disequation. ut

The following examples show that answers provide a compact and explana-
tory description of the sets of solutions that they represent.

Example 1. Let Σ ≡ {a/0, g/1, f/2}. Consider the following Σ-answer:

∃w1∃w2( x = f(w1, w2) ∧ ∀v1( w1 6= (v1) ) ∧ ∀v2( w2 6= f(w1, v2) ) ). (2)

By application of the rule (Exp) for eliminating v1 and v2, the answer (2) is
equivalent to the disjunction of the following six existential constraints:
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1. x = f(a, a)
2. ∃z1( x = f(a, g(z1)) )
3. ∃z1∃z2( x = f(a, f(z1, z2)) ∧ z1 6= a )
4. ∃z1∃z2( x = f(f(z1 , z2), a) )
5. ∃z1∃z2∃z3( x = f(f(z1 , z2), g(z3)) )
6. ∃z1∃z2∃z3∃z4( x = f(f(z1 , z2), f(z3, z4)) ∧ z3 6= f(z1, z2) ) ut

Example 2. The following equational constraint of signature Σ ≡ {a/0, g/1, f/2}:

∃w1∃w2∀y1∀y2( f(f(w1, a), f(w2, x2)) 6= f(f(y1 , a), f(y2, y2)) ∧
f(g(y2), x1) 6= f(x2, f(y1, y1)) )

is equivalent to the disjunction of the following two answers:3

∃w2( x2 = w2 ∧ ∀v( w2 6= g(v) ) ) (3)
∃w1( x1 = w1 ∧ ∀v( w1 6= f(v, v) ) ) (4)

It is easy to see that the equational part of any answer is always satisfiable.
In fact, it is an idempotent substitution. Besides, with infinitely many function
symbols, one can always find an assignment that satisfies a given finite conjunc-
tion of UCDs. Therefore, answers are always satisfiable for infinite signatures. On
the contrary, if Σ is finite, the disequational part of an answer is not necessarily
satisfiable in T (Σ). As a consequence, we say that an answer is a quasi-solved
form.

4 The Satisfiability Test

In this section, we introduce an algorithm for deciding answer satisfiability w.r.t.
a finite signature. Notice that, for finite Σ, the set T (Σ) can be finite or infinite.
The test works for both. We also give some examples of satisfiability and discuss
about efficiency. In the case of finite signature Σ, as explained above, an answer
is satisfiable iff its disequational part is. Hence, we shall concentrate in the
disequational part of the tested answer. A Σ-answer ∃w( a(x,w) ) is satisfiable
in T (Σ) iff there is at least one Σ-assignment with domain w that satisfies the
conjunction of UCDs inside a(x,w).

Example 3. Each of the two following conjunctions of Σ-UCDs is (individually)
unsatisfiable in T (Σ) (for Σ ≡ {a/0, g/1, f/2}):

1. w 6= a ∧ ∀v( w 6= g(v) ) ∧ ∀v1∀v2( w 6= f(v1, v2) )

2. w 6= a ∧w 6= g(a) ∧ ∀v( w 6= g(g(v)) ) ∧
∀v1∀v2( w 6= g(f(v1 , v2)) ) ∧ ∀v1∀v2( w 6= f(v1, v2) ) ut

3 As said in Remark 1, we have left out x1 = w1 in (3) and x2 = w2 in (4).
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The satisfiability of a conjunction of UCDs on a variable wi could be tested using
the algorithm introduced in [13] for deciding whether an implicit representation
of terms can be explicitely (finitely) represented. In [13], an implicit represen-
tation is an expresion t/t1 ∨ . . .∨ tn that represents those ground instances of t
that are not instances of any ti for 1 ≤ i ≤ n. Actually, we could transform any
set

S ≡ {∀v( wi 6= sij(w, v) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

of UCDs into an equivalent4 set of inequalities on the involved tuple w, using a
fresh function symbol c as tuple constructor and fresh variables u, as follows:

Tup(S) ≡ { ∀v∀u( c(w) 6= c(wσij) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi, (5)
σij ≡ θij ∪ {wi ← sijθij} where θij ≡ {wk ← uk|1 ≤ k 6= i ≤ mj}}.

Then, by treating the tuple constructor c as just another function symbol (ex-
cept for the explosion rule), the algorithm uncover of [13] could be invoked, as
uncover(c(w), c(w)σ11, . . . , c(w)σnmn ), in order to decide if there exists an ex-
plicit representation of the implicit representation c(w)\c(w)σ11∨. . .∨c(w)σnmn .
The algorithm uncover refines such implicit representations to explicit ones (if
it is possible), by applying the explosion rule only to linear5 terms. For example,
being the signature {a/0, b/0, f/2}, the implicit representation

c(v1, a) \ c(a, a)∨ c(b, v2)

can be explicitly represented by {c(f(u1, u2), a)}, whereas c(v1, v2) \ c(v3, v3)
cannot be explicitly represented.

Our answer satisfiability test exploits the same idea but, for efficiency, it
does not exhaustively obtain the set of all possible elements represented by
the tuple of variables c(w), as the call uncover(c(w), c(w)σ11, . . . , c(w)σnmn)
does. Instead, it works by value elimination in two steps. Each step takes into
account a different (syntactic) subclass of UCDs. Moreover, we use a slightly
simplified version of uncover (see Figure 2) since term linearity is an invariant
condition in our uncover runs. Figure 3 outlines our answer satisfiability test
for a finite signature Σ. We denote by Ext(wi) —namely, the extension of wi—
the collection of all ground terms that wi could take as value. As in [13], we use
fresh variables for finitely representing infinite variable extensions. For instance,
{v} represents the whole T (Σ)’s universe (for any Σ) and {f(v1, a), f(b, v2)} an
infinite subset when Σ contains {a, b, f}. The basic idea is that a UCD disallows
some values in Ext(wi). The first step treats the UCDs ∀v( wi 6= sij(v) ) without
existential variables (that is, V ar(sij) ∩w ≡ ∅) and without repetitions in their
universal variables v. Roughly speaking, this is the only subclass of UCDs that
can transform an infinite variable extension —described by a collection of linear
terms— into a finite one. After the first iteration in Step 1 (see Fig. 3), the
extension of each wi can either be empty, or non-empty finite, or infinite. Notice

4 This well known equivalence corresponds to the rule U2 in [9].
5 In [13], linear terms are called unrestricted terms.
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partition(t, θ) is // u stands for a fresh tuple of variables of the adequate size
if θ is a renaming then return ∅
else select {z ← f(s1, . . . sh)} ∈ θ

let σ′ ≡ {z ← f(u)} and σi ≡ {ui ← si} for 1 ≤ i ≤ h
return

⋃
g∈Σ,g 6=f

t{z ← g(u)} ∪ partition(tσ′, θ \ σ ∪ {σi|1 ≤ i ≤ h})

uncover(t, tθ1, . . . , tθn) is

let {s1, . . . , sk} ≡ partition(t, θ1)
let σij ≡mgi(si, tθj) for each (i, j) ∈ {1, . . . , k} × {2, . . . , n}
return

⋃k

r=1
uncover(sr, srσr2, . . . , srσrn)

Fig. 2. Simplified Version of uncover ([13])

that Ext(wi) represents an infinite set of terms if and only if it contains (at
least) one non-ground term. Then, the input answer is unsatisfiable if some
Ext(wi) ≡ ∅. On the contrary, the answer is satisfiable if every Ext(wi) is
infinite. This first step is very often enough to decide the satisfiability of the
input answer.

Example 4. The above answers (2), (3) and (4) are decided to be satisfiable at
the first step since both Ext(w1) and Ext(w2) remain infinite. For (2) and (3),
the test takes into account the first UCD (the only one in (3)). For (4), no UCD
satisfies the condition, hence the test decides at once. ut

Example 5. Both constraints in Example 3 are unsatisfiable. This is decided in
the first step since Ext(w) becomes empty. ut

At the end of the first step, if no Ext(wi) is empty and at least one Ext(wi)
is finite, the test requires a second step. The second step looks whether there
exists (at least) one assignment σ with domain wfin ≡ {wi|Ext(wi) is finite}
that satisfies only the subclass FinUCD of the remaining UCDs such that all
their existential variables are contained in wfin. We denote by Ext(wfin) the
cartesian product of all Ext(wi) such that wi ∈ wfin.

Example 6. Let Σ ≡ {a/0, g/1, f/2}. Suppose that S is a set of UCDs formed
by ∀v1( w1 6= g(v1) ), ∀v1∀v2( w1 6= f(v1, v2) ) and a large finite set S0 of UCDs
of the form ∀v( wi 6= f(wj , v) ) where i, j > 1 and i 6= j. At the first step, only
the two first UCDs are considered to yield Ext(w1) ≡ {a}, whereas Ext(wi) is
infinite for all i > 1. At the second step, FinUCD becomes empty. Hence, S is
satisfiable. Notice that the exhaustive computation of uncover over the whole
tuple of variables could be much more expensive depending on the size of S0. ut

Theorem 1. The satisfiability test of Figure 3 terminates for any input (S, Σ).
Besides, it returns “satisfiable” if there exists a Σ-assignment that satisfies the
set S. Otherwise, it returns “unsatisfiable”.

Proof. It is based on the results of [13]. See the appendix. ut
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// input: S ≡ {∀v( wi 6= sij(w, v) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
// Σ ≡ {f1\a1, . . . , fk\ak} (finite signature)

step 1: for i ∈ {1, . . . , n} do
let {t1, . . . tki} ≡ {sij | 1 ≤ j ≤ mi, V ar(sij) ∩w ≡ ∅ and each

vh ∈ v occurs at most once in sij}
if ki = 0 then Ext(wi) := {u} for fresh u

else Ext(wi) := uncover(wi, t1, . . . , tki)
when some Ext(wi) ≡ ∅ exit with unsatisfiable

let wfin be the tuple of all wi ∈ w such that Ext(wi) is finite

if wfin ≡ ∅ then exit with satisfiable
else go to step 2

step 2: let FinUCD ≡ {∀v( wi 6= sij(w, v) ) ∈ S | wi ∈ wfin, V ar(sij) \ v ⊆ wfin}
if FinUCD ≡ ∅ then exit with satisfiable
else let {σ1, . . . , σm} be the set of substitutions such that

Tup(FinUCD) ≡ {∀v∀u( w 6= wσi ) | 1 ≤ i ≤m} (see (6))

C :=
⋃

t∈Ext(wfin)
uncover(t, tσ1, . . . , tσm)

if C 6≡ ∅ then exit with satisfiable
else exit with unsatisfiable

Fig. 3. Answer Satisfiability Test

The introduced satisfiability test has a poor worst case performance. Actu-
ally, answer satisfiability is an NP-complete problem (see [19]). However, the test
performs efficiently in practice because of several structural reasons that can be
summed up as follows. In general, answers having expensive computations in
both steps are unlikely. If the input answer contains a lot of UCDs to be treated
in the first step, the extension of some variable usually becomes empty and the
test stops. However, where few UCDs are treated at the first step, it is usual that
most extensions remain infinite and, therefore, the second step becomes unnec-
essary or very cheap.6 On the contrary, the worst case occurs when every wi has
a large finite extension, but every possible assignment violates some UCD. The
combination of both properties requires a lot of UCDs to be expressed.7

5 Operations on Answers and Equational Solving

In this section, we present a method for transforming any equational constraint
into a disjunction of answers. This solving method uses, besides the satisfiability
test, two boolean operations on answers —conjunction and negation— which
will also be presented. For general equational solving, we use the classical quan-
tifier elimination technique. However, we keep the matrix as a disjunction of
6 Remember that the second step only checks the UCDs such that all their existential

variables have a finite extension (according to the first step).
7 Since the first-order language of the free equality cannot express very “deep” prop-

erties of terms.
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satisfiable answers on the prefix variables, instead of a quantifier-free CNF (or
DNF) formula. That is, at every step we have a formula of the form:

Q1u
1 . . .Qmu

m(
k∨

j=1

∃w( aj(u1 · . . . · um, w) ) )

where each Qi ∈ {∀, ∃} and each aj(u1 · . . . · um, w) is a satisfiable answer on
u1 · . . .·um. Then, if the last block Qm is ∃, it is easily eliminated by erasing from
each aj all the equations on um. Then, we also remove every UCD containing at
least one wk which does not occur in the equational part.8 It is worthwhile to
notice that the satisfiability of each aj(u1 · . . . · um, w) guarantees that both the
eliminated and the remaining part of the treated answer are satisfiable. In fact,
the answer is equivalent to (∃umϕ1)∧ϕ2, where (∃umϕ1) is the eliminated part
and ϕ2 the remaining one. If Qm ≡ ∀, double negation is applied:

Q1u
1 . . .Qm−1u

m−1¬∃um¬(
k∨

j=1

∃w( aj(u1 · . . . · um, w) )︸ ︷︷ ︸
ψj

). (6)

Suppose a procedure P exists that transforms the negation of a disjunction of
answers (on some variables) into a disjunction of answers (on the same variables).
Then, using P , the inner formula ¬

∨k
j=1 ψj is transformed into a disjunction of

answers. After that, ∃um is easily eliminated as above. Finally, the procedure P
is again applied and the original innermost block ∀um is already eliminated. We
implement the procedure P as follows, using two boolean operations on answers:

¬
k∨

j=1

ψj 7−→
k∧

j=1

¬ψj 7−→(1)
k∧

j=1

mj∨

r=1

ϕjr 7−→
m∨

r=1

kr∧

j=1

βjr 7−→(2)
m∨

r=1

nr∨

h=1

γhr

(1) The negation of an answer ψj yields a disjunction
∨mj

r=1 ϕjr of answers.
(2) The conjunction

∧kr

j=1 βjr of answers yields a disjunction
∨nr

h=1 γhr of an-
swers.

Moreover, both boolean operations preserve the variables for which source and
target answers are obtained. In the next two subsections, we give the successive
steps that constitute each transformation. It is easy to see that each step pre-
serves equivalence. For that, we use the auxiliary transformation rule (UD) of
Fig. 4.

Proposition 1. The transformation rule (UD) of Figure 4 is correct.

Proof. See the appendix. ut

8 It has just disappeared with the previously eliminated equations.
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(UD) ¬∃v[x = t(w, v1) ∧ ϕ] 7−→ ∀v1[x 6= t(w, v1)] ∨ ∃v1[x = t(w, v1) ∧ ∀v2¬ϕ]

where v1 ≡ V ar(t) ∩ v and v2 ≡ v\v1

Fig. 4. Auxiliary Transformation Rule (UD)

5.1 Negation of one answer

Now, we show how to transform the negation of an answer for x into an equivalent
disjunction of answers for x. First, we apply the transformation rule (UD):

¬∃w[ x = t(w) ∧
n∧

i=1

mi∧

j=1

∀v( wi 6= sij(w, v) ) ] 7−→(UD)

¬∃w[ x = t(w) ] ∨ ∃w[ x = t(w) ∧
n∨

i=1

mi∨

j=1

∃v( wi = sij(w, v) ) ].

By the rule (UD), the first disjunct ¬∃w( x = t(w) ) is transformed into:

∀w1[ x1 6= t1(w1) ]∨ ∃w1[ x1 = t1(w1) ∧ ∀w2( x2 6= t2(w1 ·w2) ) ] ∨ . . . ∨
∃w1 . . .∃wn−1[ x1 = t1(w1 · . . . ·wn−1) ∧ . . . ∧ xn−1 = tn−1(w1 · . . . ·wn−1)

∧ ∀wn( xn 6= tn(w1 · . . . ·wn) ) ] (7)

Then, we replace the variables xi in the disequations by new variables w′
i, adding

the corresponding equation xi = w′
i. The result is already a disjunction of an-

swers for x. For the second disjunct, we first lift the internal disjunctions:
n∨

i=1

mi∨

j=1

∃w[ x = t(w) ∧ ∃v( wi = sij(w, v) ) ]

and then substitute each sij(w, v) for wi in t(w):
n∨

i=1

mi∨

j=1

∃w∃v( x = t(w){wi ← sij(w, v)} ).

5.2 Conjunction of k answers

Using unification, we transform a conjunction of k answers for x:
k∧

i=1

∃wi[ x = t
i(wi) ∧

n∧

h=1

mh∧

j=1

∀v( wih 6= sihj(w
i, v) ) ]

into an equivalent disjunction of answers for x. If the mgu(t1(w1), . . . , tk(wk))
does not exist, the disjunction is equivalent to False. Otherwise, we get a substi-
tution σ that is used for joining the equational parts as follows:

∃w1 . . .∃wk[ x = σ(t1(w1)) ∧
n∧

h=1

mh∧

j=1

∀v( σ(wih) 6= σ(sihj (w
i, v)) ) ].
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Now, letting w ≡ w1 · . . . ·wk we have a constraint of the form:

∃w[ x = t′(w) ∧
n∧

h=1

mh∧

j=1

¬∃v( th(w) = rhj(w, v) ) ].

Let σhj ≡ mgu(th(w), rhj(w, v)). If σhj does not exist, ¬∃v( th(w) = rhj(w, v) )
is equivalent to True. Otherwise, since σhj is an idempotent substitution, each
answer ¬∃v( σhj ) can be transformed into a disjunction

∨nhj

k=1 ∃z( ak(w, z) ) of
answers for w by (UD) as we show in Subsect. 5.1 (see (7)). Hence, the constraint
has the form:

∃w[ x = t′(w) ∧
n∧

h=1

mh∧

j=1

nhj∨

k=1

∃z( ak(w, z) ) ]. (8)

Finally, we apply distribution and (recursively) conjunction of answers for w:

∃w[ x = t′(w) ∧
m∨

r=1

∃z( br(w, z) ) ].

Then, we lift the internal disjunction and substitute the equational part of each
answer br(w, z) in t′(w).

Notice that, the only blow-up (in the number of answers) could be produced
in the transformation of (8), by the distribution and conjuntion of answers.
However, in practice, the blow-up is often non-significant. This is due to the fact
that the above

∨nhj

k=1 ∃z(ak(w, z)) are obtained by using the rule (UD). Since the
rule (UD) yields mutually excluding constraints, many internal conjunctions of
answers for w are reduced to False at once.

6 A Complete Example

In this section, we demonstrate the application of our solving method to the
following equational constraint on x1, x2, x3 (free variables):

∀y1∃w1∀y2( f(x1, g(y2)) 6= f(f(w1, x2), a) ∧w1 6= f(y1, y1) ∧
∃w2∀y3( f(x2, a) 6= f(g(y3), w1) ) ∧
∀y4∀y5( f(x1, x2) 6= f(g(x3), f(y4, y5)) ) )

First, after a preliminary treatment, we obtain the following disjunction of an-
swers for x1, x2, x3, y1, w1 (as matrix) prefixed by ∀y1∃w1:

∀y1∃w1( ∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 6= f(z4, z4) ∧ ∀y4∀y5( z2 6= f(y4, y5) ) ∧ ∀y2( z2 6= g(y2) ) ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 6= f(z4, z4) ∧ z1 6= g(z3) ∧ ∀y3( z2 6= g(y3) ) ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 6= f(z4, z4) ∧ ∀y4∀y5( z2 6= f(y4, y5) ) ∧ z5 6= a ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 6= f(z4, z4) ∧ z1 6= g(z3) ∧ z5 6= a ) ).
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Notice that the prefix is shorter (than the prefix of the prenex-DNF form) be-
cause answers allow universal quantification.

Now, quantifier elimination is successively applied until the prefix is erased.
The innermost block ∃w1 is easily eliminated by removing the CoEq w1 = z5 and
all the UCDs involving z5. Thus, we have a disjunction of answers for x1, x2, x3, y1
prefixed by ∀y1 which, by double negation, is equivalent to:

¬∃y1( ¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ ∀y4∀y5( z2 6= f(y4, y5) ) ∧
∀y2( z2 6= g(y2) ) ) ∧

¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ z1 6= g(z3) ∧
∀y3( z2 6= g(y3) ) ) ∧

¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ ∀y4∀y5( z2 6= f(y4, y5) ) ) ∧
¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ z1 6= g(z3) ) ).

Then, each of the four negated answers for the variables x1, x2, x3, y1 produces
a disjunction of answers for the same variables, as follows:

¬∃y1( [ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∨
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ] ∧

[ ∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z4) ∨
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ] ∧

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ] ∧
[ ∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] )

By distributing conjunction over disjunction, we obtain the following disjunction
of conjunctions of answers:

¬∃y1( [ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ]∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ]∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ]∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
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∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] ).

It is easy to see that, in the latter three conjunctions of answers, the variable
x2 makes impossible the unification that is required to perform a conjunction of
answers. Hence, the three conjunctions are transformed to False at once. Whereas
the first conjunction yields the following satisfiable answer for x · y1:

¬∃y1( ∃z( x1 = g(z1) ∧ x2 = f(z2, z3) ∧ x3 = z1 ∧ y1 = z4 ) ).

Then, the block ∃y1 and the equation y1 = z4 can be eliminated. Finally, the
negation of the resulting answer for x, that is:

¬∃z( x1 = g(z1) ∧ x2 = f(z2, z3) ∧ x3 = z1 )

yields the following disjunction of two answers for x:

∃w( x1 = w4 ∧ x2 = f(w2, w3) ∧ x3 = w1 ∧w4 6= g(w1) ) ∨
∃w( x1 = w2 ∧ x2 = w3 ∧ x3 = w1 ∧ ∀v1∀v2( w3 6= f(v1, v2) ) ).

7 Conclusions and Related Work

The notion of answer provides a sufficiently compact representation of solutions
while retaining user-friendliness and efficient performance of basic operations.
In particular, we give detailed algorithms for answer satisfiability checking (for
finite signature), negation of one answer and conjunction of several answers.
This combination of features makes answers a suitable notion of (quasi-)solved
form for achieving a good trade-off between time and space efficiency in theorem
proving methods for logics with equality. Answers are particularly suitable for
methods that require some equality constraint notation more expressive than
substitutions. We have shown how the quantifier elimination method takes ad-
vantage of using answers in this sense, given a new method for general equality
constraint solving. This method applies to both finite and infinite signatures.
The only difference is that satisfiability checking is not needed in the latter case.

Answer is an intermediate notion between purely existential solved forms
of, for example, [14, 9] and substitutions with exceptions of [4]. Answers allow a
kind of restricted universal quantification which, besides being more expressive,
allows one to confine the role of the explosion rule to the satisfiability test. In
this process, since universal quantifiers are not eliminated, we never blow up
the tested answer via the explosion rule. Explosion is only implicitly used (in
the satisfiability test) for computing the indispensable variable extensions. The
methods presented in [14] and [9] are both based in quantifier elimination with
explicit usage of the explosion rule, although they use two different notions of
solved form. The method of [14], for finite signatures, is based on using the explo-
sion rule to perform the conjunction of boolean combinations of basic formulas.
For instance, ∃w( x = w )∧¬∃u( x = f(g(f(u, u)), u) ) is solved by explosion of
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the first conjunct and then by unification. This operation produces a (signature-
dependent) number of existential disjuncts. For example, if the signature also
contains the constant a, it yields x = a, ∃w(x = f(a,w)), ∃w(x = f(g(a), w)), . . ..
Our method yields a (signature-independent) disjunction of answers, that is
∃w( x = w ∧ ∀u( w 6= f(g(f(u, u)), u) ) ) for the just above example. Similarly,
the proposal of [9], which has been implemented by N. Peltier (see [16,17]), uses
explosion to eliminate all the universal quantifiers. Explosion increases the num-
ber of disjuncts in a ratio proportional to the signature. Besides, this blow up
interacts with the “CNF-to-DNF” transformation. We cannot avoid the latter
blow up, but we benefit from the smaller number of conjuncts. As a consequence,
our solutions are always (except for very simple examples) shorter and computa-
tionally simpler than the ones given by the system in [17]. Actually, to improve
this system, a (very different from ours) restricted form of universal quantifica-
tion is proposed in [16]. This new solved form allows to replace explicit explosion
with the so-called binary explosion, which is signature-independent and yields a
binary blow up of the formula. Unfortunately, this improvement has not been
yet incorporated to [17].

The closest work to our own can be found in [4], where two notions of solved
form are provided. They are called substitutions with exceptions (SwEs for short)
and constrained substitution. Both involve universal quantification and require
a satisfiability test in the case of finite signature. However, there are significant
differences, the most important one being that universal quantification is more
restricted in answers than in both solved forms of [4]. The following discussion is
applicable to both notions of solved form, even though in the sequel we will only
mention SwEs. With respect to answers, SwEs provide a more compact represen-
tation of solutions, but the basic operations for handling them, in particular the
satisfiability test, become intricate. More precisely, a SwE is an expression of the
form σ0[x,w0] − {σ1[x,w1], . . . , σk[x,wk]} where σ[z, y] denotes a substitution
on domain z such that y ≡ V ar(σ(z)). A SwE of the above form is interpreted
as the equality constraint ∃w0( σ0∧∀w1( ¬σ1 )∧ . . .∧∀wk( ¬σk ) ). Notice that
each ¬σi is a disjunction of disequations. For example, the following SwE:

{x1← f(a,w1), x2 ← g(w1), x3 ← f(w2, w1)}
−{ {x1 ← f(a, y), x2 ← f(a, y), x3 ← g(y)},
{x1← f(a, g(y1)), x2 ← g(y2)← x3, f(y3, v)} }

corresponds to the equality constraint:

∃w1∃w2( x1 = f(a,w1) ∧ x2 = g(w1) ∧ x3 = f(w2, w1) ∧ (9)
∀y( x1 6= f(a, y) ∨ x2 6= f(a, y) ∨ x3 6= g(y) ) ∧
∀y1∀y2∀y3∀v( x1 6= f(a, g(y1)) ∨ x2 6= g(y2) ∨ x3 6= f(y3, v) ) )

In answers, universal quantification is restricted to affect one disequation, in-
stead of a disjunction of disequations. Since universal quantification does not
distribute over disjunction, this is not a minor difference, especially when testing
satisfiability. Actually, [4] introduces a method for solving a system of equations
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and disequations with the proviso that a satisfiability test is given. There, it is
shown that, for testing satisfiability, it is not enough to check that a substitution
is an instance of another. Instead, it is necessary to check whether each instance
of the former is an instance of the latter substitution that, in general, requires an
infinite number of checks. The solving method that we introduce here provides
an easy way for transforming any SwE into a (possibly empty, if unsatisfiable)
disjunction of satisfiable answers. For example, our constraint solver transforms
the above SwE, really the equality constraint (9), into the following answer:

∃w1∃w2( x3 = f(w2, w1) ∧ x2 = g(w1) ∧ x1 = f(a,w1) ∧ ∀v1( w1 6= g(v1) ) )

Two other notions of solved form that allow for restricted forms of universal
quantification were introduced in [18, 19] and [7].
The approach of [18,19] is more interested in complexity results and in efficient
checking of the satisfiability of equational problems than in computing their
solutions. In [18,19], the set of solutions of an equational problem is expressed
by a restricted form of ∃∗∀∗-CNF (called PFE-form), whereas our disjunction of
answers is a ∃∗∀∗-DNF formula. In order to illustrate that point, we borrow from
[18,19] the following ∃∗∀∗-CNF equational constraint (where z and y stands for
z1, z2, z3, z4 and y1, y2, y3, y4):

∃z∀y[ ( f(z1, g(z2)) = f(y1, z3) ∨ g(y1) = z3 ∨ f(a, y2) = f(z2, g(y4)) (10)
∨f(g(y2), z1) 6= f(y3, g(y1)) ∨ g(z3) 6= z2 ) ∧

( f(y1, a) = f(g(z2), a) ∨ f(g(z4), y1) 6= f(z2, a) ∨ g(y1) 6= g(g(y3)) ) ∧
( f(g(z2), z1) = f(g(y1), y1) ∨ g(y2) = y3 ∨ f(a, y4) = f(z2, g(y2))

∨f(f(a, y3), g(y2)) 6= f(z1, y4) ∨ g(z2) 6= g(f(a, z3)) ∨ z4 6= y1 ) ]

In [18,19], these equational constraints are tranformed (in polinomial time) into
the so-called PFE-form. The PFE-form of the (10) is:

∃z[ ∃u1∃u2( [ z1 = g(u1) ∧ z2 = g(z3) ∧ g(u1) = z3 ] ∨
∀y1∀v[ z1 6= g(y1) ∨ z2 6= g(v) ∨ z3 6= v ] ) ∧

( [ z1 = f(a, z3) ∧ z2 = f(a, z3) ∧ f(g(f(a, z3)), f(a, u2)) = f(g(z4), z4) ] ∨
[ z1 = f(a, u2) ∧ z2 = f(a, z3) ∧ f(a, g(a)) = f(z2, g(a)) ] ∨

∀y3∀v( z1 6= f(a, y3) ∨ z2 6= f(a, v) ∨ z3 6= v) ) ]

The satisfiability of PFE-forms can be checked by a non-deterministic algorithm
([18,19]) in polinomial-time. Our solver proceeds in a very different way. In
particular, we obtain answers for constraints with free variables. For the above
∃∗∀∗-CNF constraint (10), our solver first tranforms the inner ∀∗-CNF into the
disjunction of the following ten answers for z (for easier reading, each wi is
considered to be existentially quantified):

1. z1 = f(a,w3) ∧ z2 = w1 ∧ z3 = w2 ∧ ∀v1( w3 6= g(v1) ) ∧w1 6= f(a,w2)
2. z1 = w4 ∧ z2 = w5 ∧ z3 = w6 ∧ ∀v2( w4 6= g(v2) ) ∧ ∀v3( w4 6= f(a, v3) )
3. z1 = f(a, g(w9)) ∧ z2 = w7 ∧ z3 = w8 ∧w7 6= f(a,w8)
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4. z1 = w10 ∧ z2 = w10 ∧ z3 = w11 ∧ z4 = w10 ∧ ∀v4( w10 6= g(v4) )
5. z1 = g(w14) ∧ z2 = w12 ∧ z3 = w13 ∧ ∀v5( w12 6= g(v5) )
6. z1 = g(w15) ∧ z2 = g(g(w15)) ∧ z3 = g(w15)
7. z1 = g(w16) ∧ z2 = g(w16) ∧ z3 = w17 ∧ z4 = g(w16) ∧ ∀v6( w16 6= g(v6) )
∧ w17 6= w16

8. z1 = g(w20) ∧ z2 = g(w18) ∧ z3 = w19 ∧ ∀v7( w18 6= g(v7) ) ∧w19 6= w18

9. z1 = g(g(w22))∧ z2 = g(g(w22))∧ z3 = w21 ∧ z4 = g(g(w22))∧w21 6= g(w22)
10. z1 = g(w25) ∧ z2 = g(g(w24)) ∧ z3 = w23 ∧w23 6= g(w24)

Then, the existencial closure (by ∃z∃w) of the disjunction of the above ten
answers is easily reduced to True by checking that each answer is satisfiable.
The main goal of [7] is the efficient decidability of equational formulas with a
long prefix of quantifiers, focusing on infinite signatures. Because of this focus,
they do not deal with the satisfiability test. Besides, the notion of solved-form
of [7] allows unrestricted nesting of negation and quantification.

We believe that answers could be helpful for development and improvement
of resolution- and instance-based methods. On the one hand, for example, the
resolution-based method presented in [6] can be easily adapted to deal with an-
swers instead of ∃∗∀∗-constraints. Moreover, all the ∃∗∀∗-constraints used in the
several examples of [6] are really answers. With such adjustment, the interesting
method of [6] could benefit from compactness (in particular, avoiding explosion
rule) and superior performance of basic operations. On the other hand, it seems
worth investigating the usefulness of answers for the area of growing interest of
instance-based methods. See [2] for a recent and good summary and for references.
In conclusion, we offer some pointers to future developments and applications of
the notion of answer to the latter area. First, in [12](Sec. 4), it is pointed out
that, for redundancy elimination, “it might be useful to employ elaborate con-
straint notations such as the ones proposed in [6]” and answers seem to be even
better suited for that goal. Second, the notion of context used in [3] could be
represented by atoms constrained by (disjunction of) answers. Then, negation
and conjunction of answers would become basic for building context unifiers and
the satisfiability test becomes essential for guiding the procedure.
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Appendix

In this section, we give the proofs of Theorem 1 and Proposition 1. In the former
proof, we make use of some results of [13]. In order to make this paper self-
contained, let us recall them using our terminology.

We consider a fixed term t such that V ar(t) ≡ x and a fixed collection of
substitutions θ1, . . . , θn such that domain(θj ) ≡ x for every 1 ≤ j ≤ n.
PROPOSITION 4.6. ([13] ) If each c(x)θi is not a linear term, then there
does not exists a finite set of terms equivalent to t/tθ1 ∨ . . .∨ tθn. ut
PROPOSITION 4.8. ([13] ) If each c(x)θi is a linear term, then there exists
a finite set of terms equivalent to t/tθ1 ∨ . . .∨ tθn. ut
THEOREM 4.1. ([13] ) The algorithm uncover can be used to find an
equivalent finite set of terms for t/tθ1∨ . . .∨ tθn if one exists. Otherwise,
uncover will terminate with an implicit representation. ut

Our proof of Theorem 1 is based on the following two lemmas:

Lemma 1. Let t be a term such that V ar(t) ≡ x and θ1, . . . , θn be a collection
of substitutions such that domain(θj) ≡ x and xiθj is linear for every 1 ≤ j ≤ n.
uncover(t, tθ1, . . . , tθn) always terminates and yields a (possibly empty) finite set
of linear terms that is equivalent to t/tθ1 ∨ . . .∨ tθn.

Proof. It is a direct consequence of Proposition 4.8 and Theorem 4.1 in [13]. ut

Lemma 2. Let w0 ·w1 a disjoint partition of a given tuple w, σ an assignment
with domain w0 and Ext(w1) an extension of w1 that is infinite for every w1

j .
Let S0 be a set of UCDs on w of the form ∀v( wi 6= sij(w, v) ) that satisfies the
following two properties:

(P1) V ar(sij) ∩w 6≡ ∅ or some vk appears more than once in sij
(P2) ({wi} ∪ V ar(sij)) ∩w1 6≡ ∅.

If every term in Ext(w1) is linear, then σ can be extended to an assignment σ′

with domain w that satisfies:

σ ∧ S0 ∧
∧

w1
j
∈w1

∨

t∈Ext(w1
j )

(w1
j = t).

Proof. Since σ(w0
i ) is a ground term ti ∈ T (Σ) for each wi ∈ w0, we can

substitute ti for w0
i in S0. Then, we obtain a finite set S of universal disequations

on w1 that is trivially equivalent to σ ∧ S0. Besides, by construction, S consists
universal disequations of the following three types:

(T1) ∀v( w1
k 6= s(v) ) where at least one vk occurs repeatedly in s

(T2) ∀v( w1
k 6= s(w1, v) )

(T3) ∀v( t 6= s(w1, v) ) where t is a ground term and V ar(s) ∩w1 6≡ ∅
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and σ′ should extend σ to w (hence, to w1) while satisfying:

S ∧
∧

w1
j
∈w1

∨

t∈Ext(w1
j )

(w1
j = t). (11)

Since each Ext(w1
i ) is described by a collection of linear terms, a finite con-

junction of universal disequations of type (T1) is not able to turn Ext(w1
i ) up

into a finite extension (this follows from Proposition 4.6 in [13]). Besides, each
disequation of type (T2) and (T3) involves at least one existential variable with
infinite extension. Hence, the finite number of universal disequations of these
two types cannot disallow the infinite possible assignments. Therefore, there are
infinitely many σ′ that satisfies (11). ut

Now, we can prove our result:

Theorem 1. The satisfiability test of Figure 3 terminates for any input
(S, Σ). Besides, it returns “satisfiable” if there exists a Σ-assignment that sat-
isfies the set S. Otherwise, it returns “unsatisfiable”.

Proof. By Lemma 1, the satisfiability test terminates and, moreover, every term
in each Ext(wi) is linear along the whole process. There are four possible exit
points:

1. If some Ext(wi) becomes empty, by Lemma 1, there is not possible assign-
ment with domain wi that satisfies the subset of S considered at the first
step. Hence, there is not assignment for w that satisfies S.

2. If wfin becomes empty at the end of the first step, then, by Lemma 2, the
empty assignment (with empty domain) can be extended to an assignment
σ′ with domain w that satisfies S. Notice that the set of UCDs that satisfies
(P1) and (P2) of Lemma 2 are exactly S minus the UCDs considered at the
first step.

3. If the second step returns “satisfiable”, on the basis of Lemma 1, C contains
the finite collection of all possible assignments to wfin that satisfies the
subset of UCDs involved by the two steps. Therefore, by Lemma 2, each of
these possible assignments σ with domain wfin can be extended to w for
satisfying the whole set S.

4. If the second step returns “unsatisfiable” after checking a subset S0 of UCDs,
by Lemma 1, S0 is unsatisfiable and, hence, S is unsatisfiable too. ut

Now, we prove the following result:

Proposition 1. The transformation rule (UD) of Figure 4 is correct.

Proof. (UD) can be obtained by successive applications of the rule (ud0):

¬∃v[ x = t(w, v1) ∧ ϕ ] 7−→ ¬∃v1[ x = t(w, v1) ] ∨ ∃v1[ x = t(w, v1) ∧ ¬∃v2( ϕ ) ]
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where v1 ≡ V ar(t) ∩ v and v2 ≡ v\v1. It suffices to note that the constraint:

¬∃v11[ x1 = t1(w, v11) ] ∨ ∃v11[ x1 = t1(w, v11) ∧ ¬∃v12( x2 = t2(w, v12) ) ]
∨ . . .∨ ∃v11 . . .∃v1(n−1)[ x1 = t1(w, v11) ∧ . . .∧ xn−1 = tn−1(w, v1(n−1))

∧ ¬∃v1n( xn = tn(w, v1n) ) ] (12)

is equivalent to ¬∃v1[ x = t(w, v1) ] where v1 ≡ v11 · . . . · v1n. Hence, it only
remains to show that the rule (ud0) is correct. By conjunction (and distribution)
of ¬∃v[ x = t(w, v)∧ϕ ] with the tautology ¬∃u( x = t(w, u) )∨∃u( x = t(w, u) ),
we obtain two disjuncts. The first disjunct is trivially equivalent to the formula
¬∃v1( x = t(w, v1) ). The second one ∃u( x = t(w, u) ) ∧ ¬∃v[ x = t(w, v) ∧ ϕ ]
is equivalent to:

∃u∀v1[ x = t(w, u) ∧ (x 6= t(w, v1) ∨ ¬∃v2( ϕ ) ) ]

where the quantifier ∀v1 has been lifted to the prefix. By distribution and sim-
plification, it yields ∃u∀v1[ u 6= v1 ∨ (x = t(w, u) ∧ ¬∃( v2ϕ ) ) ]. Then, by the
well known rule (U2):

(U2) ∀y( P ∧ (yi 6= t ∨R) ) 7→ ∀y( P ∧R{yi ← t} )

(see, for example, [9]) the constraint is equivalent to:

∃u[ x = t(w, u) ∧ ¬∃v2( ϕ{v1 ← u} ) ].

This constraint coincides with the second disjunct in the right-hand side of (ud0)
except for v1, which has been renamed u. ut
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