This is the Pre-Published Version

Adaptive Genetic Algorithm and Quasi-Parallel
Genetic Algorithm: Application to Knapsack
Problem

K.Y Szeto"! and Zhang Jian':?

(1) Department of Physics, (2) Department of Mathematics, Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong SAR, China
tCorresponding author: phszeto@ust.hk

Abstract. A new adaptive genetic algorithm using mutation matrix is
introduced and implemented in a single computer using the quasi-parallel
time sharing algorithm for the solution of the zero/one knapsack prob-
lem. The mutation matrix M (t) is constructed using the locus statistics
and the fitness distribution in a population A(t) with N rows and L
columns, where N is the size of the population and L is the length of the
encoded chromosomes. The mutation matrix is parameter free and adap-
tive as it is time dependent and captures the accumulated information in
the past generation. Two strategies of evolution, mutation by row (chro-
mosome), and mutation by column (locus) are discussed. Time sharing
experiment on these two strategies is performed on a single computer for
solving the knapsack problem. Based on the investment frontier of time
allocation, the optimal configuration for solving the knapsack problem is
found.

1 Introduction

Parallel computation using the Darwinian principle of survival of the fittest has
been implemented quite successfully in the framework of Genetic algorithms
[1,2] with many successful application in many areas, such as solving the crypto-
arithmetic problem [3], time series forecasting [4], traveling salesman problem
[5], function optimization [6], and adaptive agents in stock markets [7,8]. How-
ever, the necessity of parameter setting in the application of genetic algorithm is
a serious drawback for its practitioners, as its efficiency depends very much on
the experience of the user on the problem at hand. One notable example of this
drawback concerns the ad-hoc manner in the choice of the selection mechanism.
One may need to use different percentage of the population for survival for dif-
ferent problems. Indeed, even for the same problem, the percentage of survivors
in the evolution process should be time dependent for higher efficiency. Though
some advances in adaptive parameter control on selection have been made, such
as in the solution of the financial knapsack problem [9], the need for parameters
setting remains. Here we like to address a novel way to do the selection process
by the introduction of a mutation matrix that is time dependent but problem
independent. We call our method mutation only genetic algorithm, or MOGA.

A second issue of parallel computation is the allocation of computer resource.
It is desirable to devise a method for locating the optimal parameters in running
the bottleneck program in a single computer that satisfies the criteria of both
high speed and high confidence. Based on the ideas of Hogg and Huberman and
collaborators [10], Szeto and Jiang [11] developed a formalism of quasi-parallel
genetic algorithm, which is a method of combining existing algorithms into new
ones that are unequivocally preferable to any of the component algorithms using
the notion of risk in economics [12]. Here we assume that only one computer is
available and the sharing of resource is realized only in the time domain. The
concept of optimal usage is defined economically by the ”investment frontier”,
characterized by low risk and high speed to solution. In this paper, we combine
the work on mutation only genetic algorithm and time sharing in the framework
of quasi-parallel genetic algorithm. We test this approach on the 0/1 knapsack
problem with satisfactory results, locating the investment frontier for the knap-
sack problem.

2 Mutation Matrix

2.1 Mutation Matrix for Traditional Genetic Algorithm

In traditional simple genetic algorithm, the mutation/crossover operators are
processed on the chromosome indiscriminately over the loci. The loci statistics
is never employed. The recent work of Ma and Szeto [13] on Locus Oriented
Adaptive Genetic Algorithm (LOAGA) has demonstrated the importance of the
locus specific mutation rate for solving the zero/one knapsack problem. In this
paper, we generalize their method and further demonstrate the advantage of
using the information on the loci statistics on mutation operator. First let’s
show that traditional genetic algorithm can be treated as a special case in our
formulation. We consider a population of N chromosomes, each of length L
and binary encoded. We describe the population by a N x L matrix, which en-
try A;;(¢),i = 1,...,N;j = 1,..., L being the value of the jth locus of the ith
chromosome. The convention is to order the rows of A by the fitness of the chro-
mosomes, f;(t) < fr(t) for ¢ > k. Next we introduce a mutation matrix with
elements M;; = a;(t)b;(t),i = 1,...,N;j = 1,...,L, where 0 < a;(t),b;(t) < 1
are called the row mutation probability and column mutation probability re-
spectively. Traditionally we divide the population of N chromosomes into three
groups: (1) Survivors who are the fit ones. They form the first Ny rows of the
population matrix A(t 4+ 1). Here N3 = ¢1 N with the survival selection ratio
0 < ¢; < 1. (2) The number of children is No = ¢o N and is generated from the
fit chromosomes by genetic operators such as mutation. Here 0 < ¢o < 1 — ¢ is
the second parameter of the model. We replace the next Ny population matrix
A(t+1) (3) The remaining N3 = N — N; — N3 rows are the randomly generated
chromosomes to ensure the diversity of the population so that the genetic al-
gorithm continuously explores the solution space. In our formalism, traditional
genetic algorithm with mutation only corresponds to a time independent mu-
tation matrix with elements M;; = 0 for i = 1,..., Ny, M;; = m € (0,1) for

i = Ni,..., Ng, and finally we have M;; = 1 for i = Ny, ..., N. Here m is the
time independent mutation rate. We see that traditional genetic algorithm with
mutation only requires at least three parameters: N1, No and m .

2.2 Mutation Probability

We first consider the case of mutation on a fit chromosome. We expect to mutate
only a few loci so that it keeps most of the information unchanged. This corre-
sponds to “exploitation” of the features of fit chromosomes. On the other hand,
when an unfit chromosome undergoes mutation, it should change many of its
loci so that it can explore more regions of the solution space. This corresponds
“exploration” . Therefore, we require that M;;(t) should be a monotonic increas-
ing function of the row index 7 since we order the population in descending order
of fitness. One simple solution is to use a;(t) = (i —1)/(N — 1) . Next, we must
decide on the choice of loci for mutation once we have selected a chromosome
to undergo mutation. This is accomplished by computing the locus mutation
probability of changing to X (X = Oorl) at locus j as p;x by

NN +1 - k) x G (X)
B ZN:1 m

Here k is the rank of the chromosome in the population. d;;(X) = 1 if the jth
locus of the kth chromosome assume the value X, and zero otherwise. The factor
in the denominator is for normalization. Note that p;x contains information of
both locus and row and the locus statistics is biased so that heavier weight for
chromosomes with high fitness is assumed. This is in general better than the
original method of Ma and Szeto[13] where there is no bias on the row. After
defining p;x, we define the column mutation rate as

(1)

Pjx

= 1= lpio— 051~ |pi ~ 03]
- N
Zj’:l b]/

For example, if 0 and 1 are randomly distributed, then pjo = p;j1 = 0.5. We
have no useful information about the locus, so we should mutate this locus, and
b; = 1. When there is definitive information, such as when pjo = 1—p;1 =0 or 1,
we should not mutate this column and b; = 0.

b;

(2)

3 Mutation Only Genetic Algorithm: MOGA

Once the mutation matrix M is obtained, we are ready to discuss the strategy
of using M to evolve A. There are two ways to do Mutation Only Genetic
Algorithm. We can first decide which row (chromosome) to mutate, then which
column (locus) to mutate, we call this particular method the Mutation Only
Genetic Algorithm by Row or abbreviated as MOGAR. Alternatively, we can
first select the column and then the row to mutate, and we call this the Mutation
Only Genetic Algorithm by Column or abbreviated as MOGAC.

For MOGAR, we go through the population matrix A(t) by row first. The
first step is to order the set of locus mutation probability b;(¢) in descending
order. This ordered set will be used for the determining of the set of column
position (locus) in the mutation process. Now, for a given row i, we generate a
random number z. If z < a;(t) , then we perform mutation on this row, otherwise
we proceed to the next row and A;;(t+1) = A;;(¢),j =1,...,L . If row 7 is to be
mutated, we determine the set R;(t) of loci in row i to be changed by choosing the
loci with b;(t) in descending order, till we obtain K (t) = a;(t) x L members. Once
the set R;(t) has been constructed, mutation will be performed on these columns
of the ith row of the A(t) matrix to obtain the matrix elements A;;(t +1),j =
1,..., L. We then go through all N rows, so that in one generation, we need to
sort a list of L probabilities and generate N random numbers for the rows. After
we obtained A(t+1), we need to compute the M;;(t+1) = a;b;(t+1)and proceed
to the next generation.

For MOGAC, the operation is similar to MOGAR mathematically except now
we rotate the matrix A by 90 degrees. Now, for a given column j we generate
a random number y. If y < b;(¢), then we mutate this column, otherwise we
proceed to the next column and A;;(t + 1) = A4;;(¢),i = 1,...,N . If column j
is to be mutated, we determine the set S;(t) of chromosomes in column j to be
changed by choosing the rows with the a;(t) in descending order, till we obtain
W;(t) = b;(t) x N members. Since our matrix A is assumed to be row ordered
by fitness, we simply need to choose the N, N —1, ..., N —W; +1 rows to have the
jth column in these row mutated to obtain the matrix elements A;;(t + 1), =
1,..., N. We then go through all L columns, so that in one generation, we need to
sort a list of IV fitness values and generate L random numbers for the columns.

4 Quasi-parallel Algorithm

Now we switch our discussion from MOGA to the problem of allocation of com-
putational resource to two algorithms: MOGAR and MOGAC in one single
computer when solving a particular optimization problem. The framework for
proper mixing of computing algorithms is the quasi-parallel algorithm of Szeto
and Jiang [11]. Here we first summarize this algorithm. A simple version of our
quasi-parallel genetic algorithm (QPGA = (M, SubG A, I, T)) consists of M in-
dependent sub-algorithms SubGA. The time sharing of the computing resource
is described by the resource allocation vector I'. If the total computing resource
is R, shared by M sub-algorithms G;,7 = 1,2, ..., M, with resource R; assigned to
G; in unit time, then we introduce 7; = R;/R, 0 < 7; <1 foranyi=1,2,...., M,
and Zi\il 7; = 1, and the allocation of resource for sub-algorithms is defined by
the resource allocation vector, I' = (11, T2, ..., 7as)" . In our case, we have M = 2
and our SubGA are MOGAR and MOGAC. For resource allocation, we only
have one parameter 0 < -« < 1 which is the fraction of time the computer is
using MOGAR, and the remaining fraction of time (1 —) we use MOGAC.
The termination criterion T is used to determine whether a Q PG A should stop
running. Thus, we have a mixture of MOGAR with MOGAC in the framework

of quasi-parallel genetic algorithm with a mixing parameter . The parallel ge-
netic algorithm described above can be implemented in a serial computer. For a
particular generation t, we will generate a random number z. If z < ~, then we
perform MOGAR, otherwise we perform MOGAC to generate the population
A(t + 1). We now apply this quasi-parallel mutation only genetic algorithm to
solve the 0/1 knapsack problem and try to obtain the investment frontier that
give the mixing parameter ~ that yields the fastest speed for solving the problem
while also running with most certainty (minimum risk) of getting the solution.

5 The Zero/One Knapsack Problem

The model problem to test our ideas on mutation only genetic algorithm is the
Knapsack problem. We define the 0/1 knapsack problem [14] as follow. Given
L items, each with profit P;, weight w; and the total capacity limit ¢, we need
to select a subset of L items to maximize the total profit, but its total weight
does not exceed the capacity limit. Mathematically, we want to find the set
x; €{0,1},i=1,....,L to

L L
Maximize Z Pjx; subjected to constraint ¢ > Z w;T; (3)
Jj=1 J

We consider a particular knapsack problem with size L = 150 items, ¢ = 4000.
The set P; € [0,1000] and w; € [0,100] are chosen randomly to define our prob-
lem, but afterwards fixed. In order not to violate the constraint of the problem,
we use two tricks, ”"Punishment” and ”Repairing”. Punishment reduces the fit-
ness when the constraint is violated, while Repairing modifies the chromosome
(adding/deleting items) until the constraint is satisfied. We will use a method
called Greedy Repair. If a chromosome violates the constraint (total weight is
over the constraint in the Knapsack), the repair scheme will find the site k& with
minimum value of Py /wy and reset xj to zero, i.e., removing the kth item from
the knapsack. This process continues till the constraint is satisfied. When the
constraint is satisfied, and if some empty space remains, Greedy Repair will
tried to fill the knapsack "as full as possible” by picking up the unselected item
(those sites m where z,,=0) and fill them in the knapsack in descending order
of P,,/wy,. Repair operation stops once the constraint is violated. This scheme
can repair all chromosomes into local optimal solution in Hamming space.

6 Results

In the early version of our ideas on mutation matrix [13], we have found that
locus oriented adaptive genetic algorithm (LOAGA) outperforms dynamic pro-
gramming which is the usual method for Knapsack problem. We have found
evidence that mixing MOGAR with MOGAC in a time-sharing manner pro-
duces superior results compared to (LOAGA) in numerical experiment for the

0/1 knapsack problem. Here we like to find the optimal time sharing parame-
ter by locating the investment frontier of our mutation only genetic algorithm.
We first define our MOGAR and MOGAC. We choose the simplest form of

Average first passage time
------- Standard deviation of the first passage time

520
480
440
400

Time

360
320
280
240
200

160+

0.1 0.2 0.3 0.4 0.5 0.6

Fig. 1. Mean first passage time to solution and its standard deviation of 1000 runs as
a function of time sharing parameter y

a;(t) = (i—1)/(N —1). Here N (= 100) is the size of the population in all genetic
algorithms. For a given generation time ¢, we generate a random number z. If
z < 7, then we perform MOGAR, otherwise we perform MOGAC to generate
the population A(t+1). Next we address the stopping criterion. We use exhaus-
tive search to locate the true optimal solution of the knapsack problem. Then,
we run our mixed MOGA in QPGA formalism 1000 times to collect statistical
data. For each run, we define the stopping time to be the generation number
when we obtain the optimal solution, or 1500, whichever is smaller. The choice
of 1500 as the upper bound is based on our numerical experience since for a
wide range of v, all the runs are able to find the optimal solution within 1500
generations. Only for those extreme cases where 7y is near 1 or 0, meaning that
we use MOGAR alone or MOGAC alone, a few runs fail to find the optimal
solution within 1500 generations. This is expected since we know row mutation
only GA has low speed of convergence while column mutation only GA has early
convergence problem. These extreme cases turn out to be irrelevant in our search
of the investment frontier as demonstrated in Fig.1, where we plot the mean first
passage time to solution and its standard deviation of 1000 runs as a function of
the time sharing parameter . These results demonstrate the power of QPGA
(i.e., time-sharing of computational resource) based on Mutation Only Genetic
Algorithm. In Fig.2, we plot average first passage time to solution versus stan-
dard deviation. The curve is parameterized by . We see that there is a point on
the curve which is closest to the origin. This point is unique in this experiment,
corresponding to a value of 7. = 0.22 4 0.02. The interpretation of this time

540 -
5201
500 -
480
460
440
420
400
380
360 -

The average first passage interation number

340

T T T T T T
160 180 200 220 240 260

Standard deviation of the average first passage interation number

Fig. 2. Average passage time to solution versus standard deviation. The curve is pa-
rameterized by vy

sharing parameter is that our QPGA will be fastest and most reliable (least
risky) in finding the optimal solution of the 0/1 knapsack problem. In another
word, the investment frontier of this problem consists of a single critical point
at ve.

7 Conclusion

Using the simple observation that ordinary genetic algorithm can be considered
as a special case of evolutionary computation using a special static form of mu-
tation matrix, we develop a general formalism for mutation matrix that allows
adaptive genetic algorithm without the need to preset selection parameters. We
further generalize the evolution by making use of the locus statistics and de-
velop MOGAC, mutation only genetic algorithm by column. This new algorithm
has high speed of convergence. By combining it with MOGAR, mutation only
genetic algorithm by row, we find a way to combine efficiently two processes:
exploration of solution space and exploitation of the features of locus statistics
for the fit chromosomes. The method we use is time sharing of MOGAR and
MOGAC in the framework of quasi-parallel genetic algorithm. This methodol-
ogy is tested on the 0/1 knapsack problem. We succeed in locating the critical
value of time sharing in the investment frontier of mixing MOGAR and MOGAC
to be 0.22, meaning that statistically we should use 22% of the computational
resource on mutation by row, and 78% on mutation by column when solving the
knapsack problem. Our general formalism can be used to address various types
of optimization problems such as Ising model in random fields, Potts model, and
traveling salesman problem. Our future work will address the incorporation of
crossover in our formulation.

8 Acknowledgement

K.Y. Szeto acknowledged that this work is supported by RGC grant no. HKUST6157/01P
and 603203.

References

[1] J.H. HOLLAND, Adaptation in natural and artificial systems. Ann Arbor, MI: Uni-
versity of Michigan Press, 1975.

[2] D.E. GOLDBERG, Genetic algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, MA, 1989.

[3] S. P. L1 aND K.Y. SzETO, Crytoarithmetic problem using parallel Genetic Algo-
rithms, Mendl’99, Brno, Czech, 1999.

[4] K.Y. SzeTo AND K.H. CHEUNG, Multiple time series prediction using genetic
algorithms optimizer. Proceedings of the International Symposium on Intelligent
Data Engineering and Learning, Hong Kong, IDEAL’98, 127-133, 1998.

[5] R. JianG aND K.Y. SzeTO, Y.P. Luo AND D.C. Hu, Distributed parallel genetic
algorithm with path splitting scheme for the large traveling salesman problems. Pro-
ceedings of Conference on Intelligent Information Processing, 16th World Computer
Congress 2000, Aug.21-25, 2000, Beijing, Ed. Z. Shi, B. Faltings, and M. Musen,
Publishing House of Electronic Industry, 478-485, 2000.

[6] K.Y. Szeto, K.H. CHEUNG AND S.P. L1, Effects of dimensionality on parallel
genetic algorithms. Proceedings of the 4th International Conference on Information
System, Analysis and Synthesis, Orlando, Florida, USA, Vol.2, 322 325, 1998.

[7] K.Y. SzETO AND L.Y. FONG, How adaptive agents in stock market perform in the
presence of random news: a genetic algorithm approach, LNCS/LNAI, Vol. 1983, Ed.
K. S. Leung et al. Spriger-Verlag, Heidelberg, 2000, IDEAL 2000, 505-510, 2000.

[8] ALEX L.Y. FonG AND K.Y. SZETO, Rule Eztraction in Short Memory Time Series
using Genetic Algorithms, European Physical Journal B Vol.20, 569-572(2001).

[9] Kwok YIP SZETO AND MAN HoN Lo, An Application of Adaptive Genetic Algo-
rithm in Financial Knapsack Problem, The 17th International Conference on In-
dustrial € Engineering Applications of Artificial Intelligenc & Expert Systems, Ed
Bob Orchard, et al. May 17-20, 2004, LNAI3029 Springer Verlag 2004.pp1220-1227.

[10] B.A. HUBERMAN, R.M. LUKOSE AND T. HoGaG, An economics approach to hard
computational problems, Science, Vol.275, No.3: 51 54, 1997.

[11] KwoK YIP SZETO AND JIANG RUI, A quasi-parallel realization of the Investment
Frontier in Computer Resource Allocation Using Simple Genetic Algorithm on a
Single Computer, LNCS 2367, 6th International Conference, PARA 2002, Espoo,
Finland, June 15-18, 2002 pp.116-126. Springer-Verlag.

[12] H. MARKOWITZ, J. of Finance, Vol.7, 77, 1952.

[13] C.W. MaA AND K.Y. SzETO, Locus Oriented Adaptive Genetic Algorithm: Ap-
plication to the Zero/One Knapsack Problem, Proceeding of The 5th International
Conference on Recent Advances in Soft Computing, RASC2004 Nottingham, UK.
p.410-415, 2004.

[14] V. GORDON, A. BouM, AND D. WHITLEY, A Note on the Performance of Genetic
Algorithms on Zero-One Knapsack Problems, Proceedings of the 9th Symposium on
Applied Computing (SAC’94), Genetic Algorithms and Combinatorial Optimization,
Phoeniz, Az, pp 194-195, 1994.

