Skip to main content

Fast Convergent Schrödinger-Poisson Solver for the Static and Dynamic Analysis of Carbon Nanotube Field Effect Transistors

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

Abstract

Carbon nanotube field-effect transistors have been studied in recent years as a potential alternative to CMOS devices, because of the capability of ballistic transport. In order to account for the ballistic transport we solved the coupled Poisson and Schrödinger equations for the analysis of these devices. Conventionally the coupled Schrödinger-Poisson equation is solved iteratively with appropriate numerical damping. Often convergence problems occur. In this work we show that this problem is due to inappropriate energy discretization, and by using an adaptive integration method the simulation time is reduced and most of the simulations converge in a few iterations. Based on this approach we investigated the static and dynamic behavior of carbon nanotube field effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appenzeller, J., Radosavljevic, M., Knoch, J., Avouris, P.: Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors. Phys. Rev. Lett. 92, 048301 (2004)

    Article  Google Scholar 

  2. Biegel, B.A.: Quantum Electronic Device Simulation. Dissertation, Stanford University (1997)

    Google Scholar 

  3. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Guo, J., Datta, S., Lundstrom, M.: A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors. IEEE Trans. Electron Devices 51, 172–177 (2004)

    Article  Google Scholar 

  5. Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. Nano Lett. 4, 1319–1322 (2004)

    Article  Google Scholar 

  6. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic Carbon Nanotube Field-Effect Transistors. Letters to Nature 424, 654–657 (2003)

    Article  Google Scholar 

  7. Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts. Nano Lett. 5, 345–348 (2005)

    Article  Google Scholar 

  8. John, D., Castro, L., Pereira, P., Pulfrey, D.: A Schrödinger-Poisson Solver for Modeling Carbon Nanotube FETs. Proc. NSTI Nanotech 3, 65–68 (2004)

    Google Scholar 

  9. John, D.L., Castro, L.C., Pulfrey, D.L.: Quantum Capacitance in Nanoscale Device Modeling. J. Appl. Phys. 96, 5180–5184 (2004)

    Article  Google Scholar 

  10. Kerkhoven, T., Galick, A.T., Ravaioli, U., Arends, J.H., Saad, Y.: Efficient numerical simulation of electron states in quantum wires. J. Appl. Phys. 68, 3461–3469 (1990)

    Article  Google Scholar 

  11. Kim, B.M., Brintlinger, T., Cobas, E., Zheng, H., Fuhrer, M., Yu, Z., Droopad, R., Ramdani, J., Eisenbeiser, K.: High-Performance Carbon Nanotube Transistors on SrTiO3/Si Substrates. Appl. Phys. Lett. 84, 1946–1948 (2004)

    Article  Google Scholar 

  12. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D., Blanks, D., Swaminathan, M.: Quantum Transport with Band-Structure and Schottky Contacts. Phys. stat. sol(b) 204, 354–357 (1997)

    Article  Google Scholar 

  13. Laux, S.E.: Techniques for Small-Signal Analysis of Semiconductor Devices. IEEE Trans. Electron Devices 32, 2028–2037 (1985)

    Article  Google Scholar 

  14. Lin, Y.M., Appenzeller, J., Knoch, J., Avouris, P.: High-Performance Carbon Nanotube Field-Effect Transistor with Tunable Polarities. Cond-mat/0501690 (2005)

    Google Scholar 

  15. Lyness, J.N.: Notes on the Adaptive Simpson Quadrature Routine. J. ACM 16, 483–495 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pulfrey, D.L., Castro, L., John, D., Pourfath, M., Gehring, A., Kosina, H.: Method for Predicting fT for Carbon Nanotube Field-Effect Transistors. Submitted to IEEE Tran. Nanotechnology (2005)

    Google Scholar 

  17. Radosavljevic, M., Appenzeller, J., Avouris, P., Knoch, J.: High Performance of Potassium n-Doped Carbon Nanotube Field-Effect Transistors. Appl. Phys. Lett. 84, 3693–3695 (2004)

    Article  Google Scholar 

  18. Rho, K.M., Lee, K., Shur, M., Fjeldly, T.A.: Unified Quasi-Static MOSFET Capacitance Model. IEEE Trans. Electron Devices 40, 131–136 (1993)

    Article  Google Scholar 

  19. Saito, R., Dresselhaus, G.D., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press (1998)

    Google Scholar 

  20. Stern, F.: Iteration Methods for Calculating Self-Consistent Fields in Semiconductor Inversion Layers. Phys. Stat. Sol(b) 6, 56–67 (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pourfath, M., Kosina, H. (2006). Fast Convergent Schrödinger-Poisson Solver for the Static and Dynamic Analysis of Carbon Nanotube Field Effect Transistors. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_66

Download citation

  • DOI: https://doi.org/10.1007/11666806_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics